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Abstract We construct an anticyclotomic Euler system for the Rankin–Selberg convolutions of two
modular forms, using p-adic families of generalised Gross–Kudla–Schoen diagonal cycles. As applications
of this construction, we prove new results on the Bloch–Kato conjecture in analytic ranks zero and one,
and a divisibility towards an Iwasawa main conjecture.
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1. Introduction

In this paper, we study the anticyclotomic Iwasawa theory of Rankin–Selberg convolutions

of two modular forms using a new Euler system arising from p-adic families of diagonal
cycles. By an application of Kolyvagin’s methods, our construction yields results towards

the Bloch–Kato conjecture and the Iwasawa main conjecture in this setting.

1.1. Statement of the main results

Let g ∈Sl(Ng,χg) and h∈Sm(Nh,χh) be newforms of weights l≥m≥ 2 of the same parity

and nebentypus χg and χh. Let K/Q be an imaginary quadratic field of discriminant

−D < 0. Let k > 0 be an even integer, and let ψ be a Hecke character of K of infinity
type (1−k,0), conductor f and central character

εψ = χ̄gχ̄h.

Fix an odd prime p � NgNh, such that (f,p) = 1 and an embedding ιp : Q ↪→ Qp, and let
E = LP be a finite extension of Qp containing the image under ιp of the values of ψ and

the Fourier coefficients of g and h. We consider the E -valued GK -representation

V ψ
g,h := Vg ⊗Vh(ψ

−1
P

)(1− c),
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The diagonal cycle euler system for GL2×GL2 3

where c = (k + l +m− 2)/2, Vg and Vh are the (dual of Deligne’s) p-adic Galois

representations associated to g and h, respectively, and ψP is a p-adic Galois character

attached to ψ.
The cyclotomic Iwasawa theory of Vg ⊗Vh has been extensively studied in a series of

works of Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ17, KLZ20],

among others ([BLLV19], [BL21], etc.). The key tool exploited in these works is the Euler
system of Beilinson–Flach classes, a system of cohomology classes arising from certain

special elements (introduced by Beilinson [Bei84], and further studied by Flach [Fla92]

and Bertolini–Darmon–Rotger [BDR15a, BDR15b]) in the K1 of products of two modular
curves.

In contrast, the anticyclotomic Iwasawa theory of Vg ⊗Vh (or rather of its conjugate

self-dual twists, such as V ψ
g,h) appears to not have been studied before. The principal

contribution of this paper is the construction of an anticyclotomic Euler system for V ψ
g,h.

As stated in Theorem A below (which corresponds to Theorem 6.5 in the body of the
paper), for general weights (k,l,m), our construction requires the additional assumptions

that p splits in K and p � hK (the class number of K ), and that both g and h are ordinary

at p, but note that for (k,l,m) = (2,l,l), Theorem 4.6 contains a version of our main result
without these additional hypotheses.

Theorem A. Suppose that p splits in K and p � hK , and that both g and h are ordinary

at p. Let S be the set of all squarefree products of primes split q in K and coprime to
DNgNhf, and denote by K[n] the maximal p-extension of K inside the ring class field of

conductor n. Then there exists a family of cohomology classes

κψ,g,h,npr ∈H1(K[npr],Tψ
g,h)

for all n ∈ S and r ≥ 0, where Tψ
g,h is a fixed GK-stable lattice inside V ψ

g,h, such that for
all nq ∈ S with q prime, we have

corK[nqpr]/K[npr](κψ,g,h,nqpr ) =

{
Pq(Fr

−1
q )κψ,g,h,npr if q �= p,

κψ,g,h,npr if q = p,

where q is any of the primes of K above q, and Pq(Fr
−1
q ) = det(1−Fr−1

q X|(V ψ
g,h)

∨(1)).

The construction of this Euler system, which is taken up in the first part of the paper,

is based on the diagonal classes studied by Darmon–Rotger [DR14, DR17, DR22] and

Bertolini–Seveso–Venerucci [BSV22], extending earlier constructions due to Gross–Kudla
[GK92] and Gross–Schoen [GS95]. Roughly speaking, our classes κψ,g,h,npr are suitable

modifications of diagonal classes for the triples (θ̃ψ,npr,g,h), where θ̃ψ,npr is a certain

deformation of the theta series associated to ψ, and the main difficulty in the proof of
Theorem A is in establishing the Euler system norm relations.

The main results in the second part of the paper are the proof of new cases of the Bloch–

Kato conjecture for V ψ
g,h in analytic rank zero and a divisibility towards the Iwasawa main

conjecture for V ψ
g,h. These are obtained by applying Kolyvagin’s methods (in the form

recently developed by Jetchev–Nekovář–Skinner [JNS] in the anticyclotomic setting) to
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our Euler system. In the results that follow, we use ‘big image’ to refer to Hypothesis
(HS) in Section 8.1, for which sufficient conditions are given in Section 8.2.

Theorem B. Suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,

(b) p splits in K,

(c) p does not divide the class number of K,

(d) V ψ
g,h has big image.

Let

κψ,g,h := κψ,g,h,1.

If l−m< k < l+m, then the following implication holds:

κψ,g,h �= 0 =⇒ dimE Sel(K,V ψ
g,h) = 1,

where Sel(K,V ψ
g,h)⊂H1(GK,V ψ

g,h) is the Bloch–Kato Selmer group.

Remark.

(1) For k = l =m = 2, together with the Gross–Zagier formula for diagonal cycles by
Yuan–Zhang–Zhang [YZZ], Theorem B supports the Bloch–Kato conjecture for

V ψ
g,h in analytic rank one, reducing it to the expected injectivity of the p-adic étale

Abel–Jacobi map.

(2) Still in the case k = l =m= 2, combined with the p-adic Gross–Zagier formula for
diagonal cycles in forthcoming work of Hsieh–Yamana [HY], Theorem B establishes

some cases of Perrin-Riou’s p-adic Beilinson conjecture in analytic rank one.

(3) In general, by the main result of [DR14], the nonvanishing of κψ,g,h also follows
from the nonvanishing of a special value of the triple product p-adic L-function

Lp(f,g,h) introduced below.

In analytic rank zero, we get unconditional applications to the Bloch–Kato conjecture.

Let f = θψ ∈ Sk(Nψ,εψ) be the theta series associated to ψ, let ε�(V
ψ
g,h) be the epsilon

factor of the Weil–Deligne representation associated to the restriction of Vf ⊗ Vg ⊗
Vh(1− c) to GQ�

, and put N = lcm(Nψ,Ng,Nh).

Theorem C. Let the hypotheses be as in Theorem B, and assume, in addition, that

• ε�(V
ψ
g,h) = +1 for all primes 	 |N ,

• gcd(Nψ,Ng,Nh) is squarefree.

If k ≥ l+m, then

L(V ψ
g,h,0) �= 0 =⇒ Sel(K,V ψ

g,h) = 0,

and hence, the Bloch–Kato conjecture for V ψ
g,h holds in analytic rank zero.

Remark. Here, L(V ψ
g,h,s) is the triple product L-function introduced by Garrett,

Piatetski–Shapiro and Rallis, which satisfies a functional equation relating its values at s
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and −s. When k ≥ l+m, the local root number condition in Theorem C implies that the
sign in this functional equation is +1, and so the central L-values L(V ψ

g,h,0) are expected

to be generically nonzero.

A third application is to the anticyclotomic Iwasawa main conjectures for Rankin–

Selberg convolutions. Let (f,g,h) be a triple of p-adic Hida families. In [Hsi21], Hsieh

has constructed a square root triple product p-adic L-function Lp(f,g,h) whose square
interpolates the central values of the triple product L-function attached to the classical

specialisations of (f,g,h) to weights (k1,k2,k3) with k1 ≥ k2+k3. Letting g and h be the

Hida families passing through the ordinary p-stabilisations of g and h, respectively, we
obtain an element

Lp(f,g,h) ∈ Λf

interpolating a square root of the above central L-values for the specialisations of f to

weights k ≥ l+m, where Λf is the finite flat extension of Λ = Zp[[1+pZp]] generated by
the coefficients of f . Greenberg’s generalisation of the Iwasawa main conjectures [Gre94]

predicts that Lp(f,g,h)
2 generates the Λf -characteristic ideal of a certain torsion Selmer

group XF (A
†
fgh). We also show that our classes κψ,g,h,n are universal norms in the p-

direction, therefore giving rise, in particular, to an Iwasawa cohomology class

κψ,g,h,∞ ∈H1
Iw(K∞,Tψ

g,h)

for the anticyclotomic Zp-extension K∞/K. The class κψ,g,h,∞ is associated with the
triple (f,g,h), where f = fψ is a CM Hida family attached to ψ for which Λf

∼= Λac, the

anticyclotomic Iwasawa algebra. Assuming the nontriviality of κψ,g,h,∞, we can prove the

following result towards the Iwasawa main conjecture for Lp(f,g,h)
2.

Theorem D. Let f = fψ, and suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,

(b) p splits in K,

(c) p does not divide the class number of K,

(d) V ψ
g,h has big image,

(e) ε�(V
ψ
g,h) = +1 for all primes 	 |N ,

(f) gcd(Nψ,Ng,Nh) is squarefree.

If κψ,g,h,∞ is not Λac-torsion, then the module XF (A
†
fgh) is Λac-torsion, and

CharΛac
(XF (A

†
fgh))⊃ (Lp(f,g,h)

2)

in Λac⊗Zp
Qp.

Remark. The classes κψ,g,h,n may be viewed as a counterpart in the study of the

arithmetic of V ψ
g,h to systems of Heegner points and Heegner cycles for individual modular

forms. It would be interesting to see whether the methods of Cornut–Vatsal can be

extended to establish the nontriviality of κψ,g,h,∞.
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Remark. The ‘big image’ hypothesis on V ψ
g,h excludes some cases of arithmetic interest;

notably, the case in which h= g∗ is the dual of g (assuming ψ has trivial central character)
is excluded from our applications in this paper. We study this case in [ACR22], where,

building on (a suitable projection of) the classes κψ,g,g∗,n constructed in this paper,

we obtain a new anticyclotomic Euler system for twists of the three-dimensional GK -
representation ad0(Vg), with applications to the Bloch–Kato conjecture in rank zero and

the Iwasawa main conjecture in this setting.

Remark. As already noted, the anticyclotomic Euler system classes constructed in this

paper arise from diagonal classes attached to triples (f,g,h) of modular forms in which
f varies over certain CM forms by K. A modification of this construction with g and

h varying among certain CM forms for the same imaginary quadratic field K gives rise

to a new anticyclotomic Euler system for twists of Vf |GK
. This construction, and its

arithmetic applications, is studied in [Do22, CD23].

Part 1. The diagonal cycle Euler system

2. Preliminaries

In this section, we begin by discussing our conventions regarding modular curves and

Hecke operators, for which we shall largely follow [Kat04, Section 2] and [BSV22,

Section 2].

2.1. Modular curves

Given integers M ≥ 1, N ≥ 1, m ≥ 1 and n ≥ 1 with M +N ≥ 5, we denote by

Y (M(m),N(n)) the affine modular curve over Z[1/MNmn] representing the functor tak-
ing a Z[1/MNmn]-scheme S to the set of isomorphism classes of 5-tuples (E,P,Q,C,D),

where:

• E is an elliptic curve over S,
• P is an S -point of E of order M,
• Q is an S -point of E of order N,
• C is a cyclic order-Mm subgroup of E defined over S and containing P,
• D is a cyclic order-Nn subgroup of E defined over S and containing Q,

and such that C and D have trivial intersection. If either m= 1 or n= 1, we omit it from

the notation, and we will often write Y1(N) for Y (1,N).
We will denote by

E(M(m),N(n))→ Y (M(m),N(n))

the universal elliptic curve over Y (M(m),N(n)).

Define the modular group

Γ(M(m),N(n)) =

{(
a b

c d

)
∈ SL2(Z) : a≡ 1(M),b≡ 0(Mm),c≡ 0(Nn),d≡ 1(N)

}
.
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Then, letting H be the Poincaré upper half-plane, we have the complex uniformisation

Y (M(m),N(n))(C)∼= (Z/MZ)××Γ(M(m),N(n))\H, (2.1)

with a pair (a,τ) on the right-hand side corresponding to the isomorphism class of the

5-tuple (C/Z+Zτ,aτ/M,1/N,〈τ/Mm〉,〈1/Nn〉).
If r ≥ 1 is an integer, there is an isomorphism of Z[1/MNmnr]-schemes

ϕr : Y (M(m),N(nr))
�−→ Y (M(mr),N(n))

defined in terms of moduli by

(E,P,Q,C,D) �→ (E′,P ′,Q′,C ′,D′),

where E′ = E/NnD, P ′ is the image of P in E′, Q′ is the image of r−1(Q)∩D in E′,
C ′ is the image of r−1(C) in E′ and D′ is the image of D in E′. Under the complex

uniformisations (2.1), the isomorphism ϕr sends (a,τ) �→ (a,r · τ). If

ϕ∗
r(E(M(mr),N(n)))→ Y (M(m),N(nr))

denotes the base change of E(M(mr),N(n)) → Y (M(mr),N(n)) under ϕr, there is a

natural degree-r isogeny

λr : E(M(m),N(nr))→ ϕ∗
r(E(M(mr),N(n))).

2.2. Degeneracy maps

With the same notations as above, we have natural degeneracy maps

Y (M(m),Nr(n))
μr−→ Y (M(m),N(nr))

νr−→ Y (M(m),N(n)),

Y (Mr(m),N(n))
μ̌r−→ Y (M(mr),N(n))

ν̌r−→ Y (M(m),N(n)),

forgetting the extra level structure, for example

μr(E,P,Q,C,D) = (E,P,r ·Q,C,D),

νr(E,P,Q,C,D) = (E,P,Q,C,rD).

We also define degeneracy maps

π1 : Y (M(m),Nrs(nt))→ Y (M(m),N(ns)),

π2 : Y (M(m),Nrs(nt))→ Y (M(m),N(ns)),
(2.2)

acting on the moduli space by

π1(E,P,Q,C,D) = (E,P,rs ·Q,C,rtD),

π2(E,P,Q,C,D) = (E′,P ′,Q′,C ′,D′),

where E′ =E/NnsD, P ′ is the image of P in E′, Q′ is the image of t−1(s ·Q)∩D in E′, C ′

is the image of C in E′ and D′ is the image of D in E′. Under the complex uniformisations
in (2.1), the maps π1 and π2 correspond to the identity and to multiplication by rt,

respectively, on H. It is straightforward to check that the maps π1 and π2 are given by

the compositions
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Y (M(m),Nrs(nt))
μrs−−→ Y (M(m),N(nrst))

νrt−−→ Y (M(m),N(ns)),

Y (M(m),Nrs(nt))
μrs−−→Y (M(m),N(nrst))

ϕrt−−→Y (M(mrt),N(ns))
ν̌rt−−→Y (M(m),N(ns)),

respectively.

2.3. Relative Tate modules

Fix a prime p. Let S be a Z[1/MNmnp]-scheme, and let

v : E(M(m),N(n))S → Y (M(m),N(n))S

be the structural morphism. For every Z[1/MNmnp]-scheme X, denote by A=AX either

the locally constant constructible sheaf Z/pt(j) or the locally constant p-adic sheaf Zp(j)
on Xet, for fixed t≥ 1 and j ∈ Z. Set

TM(m),N(n)(A) =R1v∗Zp(1)⊗Zp
A and T ∗

M(m),N(n)(A) = Hom(TM(m),N(n)(A),A).

In particular, in the case A = Zp, this gives the relative Tate module of the universal
elliptic curve and its dual, respectively; in this case, we will often drop A from the notation.

From the proper base change theorem, both TM(m),N(n)(A) and T ∗
M(m),N(n)(A) are

locally constant p-adic sheaves on Y (M(m),N(n))S of formation compatible with base

changes along morphisms of Z[1/MNmnp]-schemes S′ → S.
For every integer r ≥ 0, define

LM(m),N(n),r(A) = Tsymr
ATM(m),N(n)(A), SM(m),N(n),r(A) = Symmr

AT ∗
M(m),N(n)(A),

where, for any finite free module M over a profinite Zp-algebra R, one denotes by

Tsymr
RM the R-submodule of symmetric tensors in M⊗r and by Symmr

RM the maximal

symmetric quotient of M⊗r.

When the level of the modular curve Y (M(m),N(n))S is clear, we may use the simplified
notations

Lr(A) = LM(m),N(n),r(A), Lr = Lr(Zp), Sr(A) = SM(m),N(n),r(A), Sr = Sr(Zp).

2.4. Hecke operators

Let F r
M(m),N(n) denote either LM(m),N(n),r(A) or SM(m),N(n),r(A), and let q be a

rational prime. Then there are natural isomorphisms of sheaves

ν∗q (F
r
M(m),N(n))

∼= F r
M(m),N(nq) and ν̌∗q (F

r
M(m),N(n))

∼= F r
M(mq),N(n), (2.3)

and therefore pullback morphisms

Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n))

ν∗
q−→Hi

et(Y (M(m),N(nq))S,F
r
M(m),N(nq)),

Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n))

ν̌∗
q−→Hi

et(Y (M(mq),N(n))S,F
r
M(mq),N(n)),
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and traces

Hi
et(Y (M(m),N(nq))S,F

r
M(m),N(nq))

νq∗−−→Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n)),

Hi
et(Y (M(mq),N(n))S,F

r
M(mq),N(n))

ν̌q∗−−→Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n)).

(2.4)

Also, the isogeny λq induces morphisms of sheaves

λq∗ : F
r
M(m),N(nq) → ϕ∗

q(F
r
M(mq),N(n)) and λ∗

q : ϕ
∗
q(F

r
M(mq),N(n))→ F r

M(m),N(nq).

These morphisms allow us to define

Φq∗ :H
i
et(Y (M(m),N(nq))S,F

r
M(m),N(nq))→Hi

et(Y (M(mq),N(n))S,F
r
M(mq),N(n)),

Φ∗
q :H

i
et(Y (M(mq),N(n))S,F

r
M(mq),N(n))→Hi

et(Y (M(m),N(nq))S,F
r
M(m),N(nq)),

as the compositions

Φq∗ = ϕq∗ ◦λq∗ and Φ∗
q = λ∗

q ◦ϕ∗
q .

We define the Hecke operators Tq and the adjoint Hecke operators T ′
q acting on the

étale cohomology groups

Hi
et(Y (M(m),N(nq))S,F

r
M(m),N(nq))

as the compositions

Tq = ν̌q∗ ◦Φq∗ ◦ν∗q and T ′
q = νq∗ ◦Φ∗

q ◦ ν̌∗q .

If we define pullbacks

Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n))

π∗
1−→Hi

et(Y (M(m),N(nq))S,F
r
M(m),N(nq)),

Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n))

π∗
2−→Hi

et(Y (M(mq),N(n))S,F
r
M(mq),N(n)),

and pushforward

Hi
et(Y (M(m),N(nq))S,F

r
M(m),N(nq))

π1∗−−→Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n)),

Hi
et(Y (M(mq),N(n))S,F

r
M(mq),N(n))

π2∗−−→Hi
et(Y (M(m),N(n))S,F

r
M(m),N(n)),

as

π∗
1 = ν∗q , π∗

2 =Φ∗
q ◦ ν̌∗q , π1∗ = νq∗ and π2∗ = ν̌q∗ ◦Φq∗,

then we can write

Tq = π2∗ ◦π∗
1 and T ′

q = π1∗ ◦π∗
2 .

Now we introduce diamond operators. For d ∈ (Z/MNZ)×, these are defined on the

curves Y (M(m),N(n)) as the automorphisms 〈d〉 acting on the moduli space by

(E,P,Q,C,D) �→ (E,d−1 ·P,d ·Q,C,D).

We can also define the diamond operator 〈d〉 on the corresponding universal elliptic curve

as the unique automorphism making the diagram
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E(M(m),N(n))S E(M(m),N(n))S

Y (M(m),N(n))S Y (M(m),N(n))S

〈d〉

〈d〉

v v

cartesian. This, in turn, induces automorphisms 〈d〉= 〈d〉∗ and 〈d〉′ = 〈d〉∗ on the group
Hi

et(Y (M(m),N(n))S,F r
M(m),N(n)) which are inverses of each other. In general, we will be

interested in modular curves of the form Y (1(m),N(n)). In this case, the natural pairing

Lr⊗Zp
Sr → Zp together with cup-product yields a pairing

H1
et(Y (1(m),N(n))S,Lr(1))⊗Zp

H1
et,c(Y (1(m),N(n))S,Sr)→ Zp

which becomes perfect after inverting p. The operators Tq, T
′
q, 〈d〉, 〈d〉′ induce endomor-

phisms on compactly supported cohomology and

(Tq,T
′
q), (T ′

q,Tq), (〈d〉,〈d〉′), and (〈d〉′,〈d〉)

are adjoint pairs under this pairing.

2.5. Galois representations

Let f ∈ Sk(Nf,χf ) be a newform of weight k = r+2≥ 2, level Nf , and character χf . Let

p be a prime, and let E be a finite extension of Qp with ring of integers O containing
the Fourier coefficients of f. By the work of Eichler–Shimura and Deligne, there is a

two-dimensional representation

ρf : GQ −→GL2(E)

unramified outside pNf and characterised by the property that

traceρf (Frq) = aq(f)

for all primes q � pNf , where Frq denotes an arithmetic Frobenius element at q (in fact,

this is the dual of the p-adic representation constructed by Deligne).

It will be convenient for our purposes to work with the following geometric realisation
of ρf . Let

H1
et(Y1(Nf )Q,Lr(1))⊗Zp

E � Vf

be the maximal quotient on which T ′
q and 〈d〉′ act as multiplication by aq(f) and χf (d)

for all primes q �Nf and all d ∈ (Z/NfZ)
×. Then Vf is a two-dimensional E -vector space

affording the p-adic representation ρf , and we let Tf ⊂ Vf be the lattice defined by the
image of

H1
et(Y1(Nf )Q,Lr(1))⊗Zp

O

under the above quotient map.
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3. Hecke algebras and ring class fields

In this section, we extend the results of [LLZ15, Section 5.2], including ring class field
extensions of an imaginary quadratic field K. The resulting Corollary 3.6 will allow us to

obtain classes over ring class field extensions of K from diagonal cycles over Q on triple

products of modular curves of varying levels.
Thus, let K be an imaginary quadratic field of discriminant −D < 0, and let εK be

the corresponding quadratic character. Let ψ be a Grössencharacter of K of infinity type

(−1,0) and conductor f, taking values in a finite extension L/K, and let χ be the unique
Dirichlet character modulo NK/Q(f), such that ψ((n)) = nχ(n) for integers n coprime to

NK/Q(f). Put Nψ =NK/Q(f)D, and let θψ ∈ S2(Nψ,χεK) be the newform attached to ψ,

that is,

θψ =
∑

(a,f)=1

ψ(a)qNK/Q(a).

Fix a prime p≥ 5 unramified in K, a prime p of K above p and a prime P of L above

p. Let E = LP, and let O⊂E be the ring of integers. Let ψP be the continuous E -valued

character of K×\A×
K,f defined by

ψP(x) = x−1
p ψ(x),

where xp is the projection of the idèle x to the component at p. We will also denote
by ψP the corresponding character of GK obtained via the geometric Artin map. Then

IndQKE(ψ−1
P

) is the p-adic representation attached to θψ.

Definition 3.1. For an integral ideal n of K, we denote by Hn the maximal p-quotient

of the corresponding ray class group, and by K(n) the maximal p-extension in the
corresponding ray class field. We similarly define Rn and K[n], for each integer n > 0,

as the maximal p-quotient in the corresponding ring class group and the maximal

p-extension in the corresponding ring class field.

Let n be an integral ideal of K divisible by f, and let N =NK/Q(n)D, which is of course

a multiple of Nψ. Let T
′
1(N) be the algebra generated by all the Hecke operators T ′

q, 〈d〉′
acting on H1(Y1(N)(C),Z).

Proposition 3.2. With the previous definitions and notations, there exists a homomor-

phism φn : T
′
1(N)→O[Hn] defined on generators by

φn(T
′
q) =

∑
q

ψ(q)[q]

for every rational prime q, where the sum runs over ideals coprime to n of norm q; and

φn(〈d〉′) = χ(d)εK(d)[(d)].

Proof. This follows immediately from [LLZ15, Proposition 3.2.1].

Now let n′ = nq for some prime ideal q above a rational prime q. Assume that n′

is coprime to p, and let N ′ = NK/Q(n
′)D. Following [LLZ15, Section 3.3], we define

norm maps
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N n
′

n :O[Hn′ ]⊗(T′
1(N

′)⊗Zp,φn′ )H
1
et(Y1(N

′)Q,Zp(1))−→O[Hn]⊗(T′
1(N)⊗Zp,φn)H

1
et(Y1(N)Q,Zp(1))

by the formulae:

• if q | n,
N n

′

n = 1⊗π1∗;

• if q � n and q is ramified or split,

N n
′

n = 1⊗π1∗−
ψ(q)[q]

q
⊗π2∗;

• if q � n and q is inert,

N n
′

n = 1⊗π1∗−
ψ(q)[q]

q2
⊗π2∗.

More generally, for n′ = nr with r a product of (not necessarily distinct) prime ideals,

we define the map N n
′

n by composing in the natural way the previously defined norm

maps. From now on, we assume that in the case where (p) = pp splits in K, the following
holds: If p | f, then p � f and ψ|O×

K,p
is not congruent to the Teichmüller character

modulo P.

Theorem 3.3. Let A be the set of prime ideals of K coprime to p (respectively, p) if

p splits (respectively, is inert) in K and divisible by f. Then there is a family of GQ-
equivariant isomorphisms of O[Hn]-modules

νn :O[Hn]⊗(T′
1(N)⊗Zp,φn)H

1
et(Y1(N)Q,Zp(1)) IndQK(n)O(ψ−1

P
),

�

for all n ∈A, such that for n | n′ the diagram

O[Hn′ ]⊗(T′
1(N

′)⊗Zp,φn′ )H
1
et(Y1(N

′)Q,Zp(1)) IndQK(n′)O(ψ−1
P

)

O[Hn]⊗(T′
1(N)⊗Zp,φn)H

1
et(Y1(N)Q,Zp(1)) IndQK(n)O(ψ−1

P
)

νn′

�

Nn′
n

νn

�

commutes, where the right vertical arrow is the natural norm map.

Proof. This is [LLZ15, Corollary 5.2.6].

Definition 3.4. For any positive integer n with (n,pf) = 1, we let K(f)[n] be the

compositum of K(f) and K[n], and put Rf,n =Gal(K(f)[n]/K).

Let T′(1,Nψ(n
2)) ⊂ EndZ(H

1(Y (1,Nψ(n
2))(C),Z)) be the subalgebra generated by all

Hecke operators T ′
q and 〈d〉′.

Lemma 3.5. There exists a homomorphism

φn : T′(1,Nψ(n
2))−→O[Rf,n]

defined on generators by the same formula as in Proposition 3.2.
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Proof. Take the modulus n = f(n). By Proposition 5.1.2 and Remark 5.1.3 in [LLZ15],

the kernel I of the composition

T′
1(Nψn

2)
φn−→O[Hn]−→O −→O/P,

where φn is as in Proposition 3.2, is a non-Eisenstein maximal ideal of T′
1(Nψn

2) in
the sense of [op. cit., Definition 4.1.2]. Therefore, denoting I-adic completions with the

subscript I, we have an isomorphism of T′
1(Nψn

2)I-modules

H1(Y1(Nψn
2)(C),Z)I ∼=H1

c (Y1(Nψn
2)(C),Z)I .

On the other hand, as in the proof of [LLZ15, Lemma 4.2.4], the natural pullback map

yields an isomorphism

H1
c (Y (1,Nψ(n

2))(C),Z)∼=H1
c (Y1(Nψn

2)(C),Z)Δ,

where Δ is the set of diamond operators 〈d〉′ with d ≡ 1(mod Nψ). Since Δ maps to 1

under the composition

T′
1(Nψn

2)
φn−→O[Hn]−→O[Rf,n],

the result follows.

Corollary 3.6. Let B be the set of positive integers n coprime to pf. Then there is a

family of GQ-equivariant isomorphisms of O[Rf,n]-modules

νn :O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1)) IndQK(f)[n]O(ψ−1
P

)
�

for all n ∈B, such that for n | n′ the diagram

O[Rf,n′ ]⊗(T′(1,Nψ(n′2))⊗Zp,φn′ )H
1
et(Y (1,Nψ(n

′2))Q,Zp(1)) IndQK(f)[n′]O(ψ−1
P

)

O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1)) IndQK(f)[n]O(ψ−1
P

)

νn′

�

N f,n′
f,n

νn

�

commutes, where N f,n′

f,n is induced by N f(n)
f(n′) and the right vertical arrow is the natural

norm map.

Proof. Let n= f(n), I and Δ be as in the proof of Lemma 3.5. Since I is non-Eisenstein,
the natural trace map

H1
et(Y1(Nψn

2)Q,Zp(1))Δ −→H1
et(Y (1,Nψ(n

2))Q,Zp(1))

becomes an isomorphism after taking I-adic completions. Since the map φn of Lemma 3.5

is induced by φn (as shown in the proof of that result), it follows that the O[Rf,n]-module

O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1))
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is naturally isomorphic to

O[Rf,n]⊗O[Hn]

(
O[Hn]⊗(T′

1(Nψn2)⊗Zp,φn)H
1
et(Y1(Nψn

2)Q,Zp(1))
)
.

The result now follows from Theorem 3.3.

4. Proof of the tame norm relations

We keep the notations introduced in Section 3. Fix two newforms (g,h) of weights (l,m) of

the same parity, levels (Ng,Nh) and characters (χg,χh), such that χεKχgχh =1. Enlarging
L if necessary, assume that it contains the Fourier coefficients of g and h.

Let N = lcm(Nψ,Ng,Nh), and (since N will be fixed throughout) put Y (m) =

Y (1,N(m)) for every positive integer m.

Definition 4.1. Let r= (r1,r2,r3) be a triple of nonnegative integers, such that

r1+ r2+ r3 = 2r

with r ∈ Z≥0, and ri+ rj ≥ rk for every permutation (i,j,k) of (1,2,3). Put

L[r] = L1,N(m),r1(Zp)⊗Zp
L1,N(m),r2(Zp)⊗Zp

L1,N(m),r3(Zp),

and define

κ(1)
m,r ∈H1

(
Q,H3

et(Y (m)3
Q
,L[r])⊗Zp

Qp(2− r)
)

to be the class κN(m),r = sr∗ ◦HS◦d∗(DetrN(m)) constructed as in [BSV22, Section 3] for

the modular curve Y (m).

Lemma 4.2. Let m be a positive integer, and let q be a prime number. Assume that both

m and q are coprime to p and N. Then

(π2,π1,π1)∗κ
(1)
mq,r = (Tq,1,1)κ

(1)
m,r; (π1,π2,π2)∗κ

(1)
mq,r = qr−r1(T ′

q,1,1)κ
(1)
m,r;

(π1,π2,π1)∗κ
(1)
mq,r = (1,Tq,1)κ

(1)
m,r; (π2,π1,π2)∗κ

(1)
mq,r = qr−r2(1,T ′

q,1)κ
(1)
m,r;

(π1,π1,π2)∗κ
(1)
mq,r = (1,1,Tq)κ

(1)
m,r; (π2,π2,π1)∗κ

(1)
mq,r = qr−r3(1,1,T ′

q)κ
(1)
m,r.

If q is coprime to m, we also have

(π1,π1,π1)∗κ
(1)
mq,r = (q+1)κ(1)

m,r; (π2,π2,π2)∗κ
(1)
mq,r = (q+1)qrκ(1)

m,r.

Proof. The same argument proving equations (174) and (176) in [BSV22] yields these
identities, adding the prime q to the level rather than the prime p.

We next consider the following ‘asymmetric’ diagonal classes.

Definition 4.3. For each squarefree positive integer n coprime to p and N, let

κ(2)
n,r = nr2(1,1,〈n〉′)(1,π1,π2)∗κ

(1)
n2,r ∈H1

(
Q,H3

et(Y (n2)Q×Y (1)2
Q
,L[r])⊗Zp

Qp(2− r)
)
,

where π1,π2 : Y (n2)→ Y (1) are the degeneracy maps in (2.2).
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Lemma 4.4. Let n be as above, and let q be a rational prime coprime to p, N and n.
Then

(π11,1,1)∗κ
(2)
nq,r =

{
qr2(1,1,TqT

′
q)− (q+1)qr2+r3(1,1,1)

}
κ(2)
n,r,

(π21,1,1)∗κ
(2)
nq,r =

{
qr(1,T ′

q,T
′
q)− qr2+r3(T ′

q,〈q〉′,〈q〉′)
}
κ(2)
n,r,

(π22,1,1)∗κ
(2)
nq,r =

{
qr1+r3(1,T ′2

q ,〈q〉′)− (q+1)q2r(1,〈q〉′,〈q〉′)
}
κ(2)
n,r,

where πij : Y (n2q2)→ Y (n2) denotes the composite map

Y (n2q2)
πi−→ Y (n2q)

πj−→ Y (n2).

Proof. To better distinguish between the degeneracy maps πi for different levels, in this

proof, we use �i to denote the map πi descending the level by q, so that �j ◦�i is the
degeneracy map πij in the statement of the lemma. Thus, we find

(�1,1,1)∗κ
(2)
nq,r = nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗(�1,�1,�2)∗κ

(1)
n2q2,r

= nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗(1,1,Tq)κ
(1)
n2q,r,

using Lemma 4.2 for the second equality; and similarly,

(�2,1,1)∗κ
(2)
nq,r = nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗(�2,�1,�2)∗κ

(1)
n2q2,r

= nr2qr(1,1,〈nq〉′)(1,π1,π2)∗(1,T
′
q,1)κ

(1)
n2q,r.

Descending the level again by q, this gives

(π11,1,1)∗κ
(2)
nq,r = nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗(�1,�1,�2)∗(1,1,Tq)κ

(1)
n2q,r

= nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗(�1∗,�1∗,Tq�2∗− qr3〈q〉�1∗)κ
(1)
n2q,r

= nr2qr2(1,1,〈nq〉′)(1,π1,π2)∗
{
(1,1,T 2

q )− (q+1)qr3(1,1,〈q〉)
}
κ
(1)
n2,r

= qr2
{
(1,1,TqT

′
q)− (q+1)qr3(1,1,1)

}
nr2(1,1,〈n〉′)(1,π1,π2)∗κ

(1)
n2,r

=
{
qr2(1,1,TqT

′
q)− (q+1)qr2+r3(1,1,1)

}
κ(2)
n,r,

and similarly

(π21,1,1)∗κ
(2)
nq,r = nr2qr(1,1,〈nq〉′)(1,π1,π2)∗(�1,�1,�2)∗(1,T

′
q,1)κ

(1)
n2q,r

= nr2qr(1,1,〈nq〉′)(1,π1,π2)∗(�1∗,T
′
q�1∗−〈q〉′�2∗,�2∗)κ

(1)
n2q,r

= nr2qr(1,1,〈nq〉′)(1,π1,π2)∗
{
(1,T ′

q,Tq)− qr−r1(T ′
q,〈q〉′,1)

}
κ
(1)
n2,r

= qr
{
(1,T ′

q,T
′
q)− qr−r1(T ′

q,〈q〉′,〈q〉′)
}
nr2(1,1,〈n〉′)(1,π1,π2)∗κ

(1)
n2,r

=
{
qr(1,T ′

q,T
′
q)− qr2+r3(T ′

q,〈q〉′,〈q〉′)
}
κ(2)
n,r,

and

(π22,1,1)∗κ
(2)
nq,r = nr2qr(1,1,〈nq〉′)(1,π1,π2)∗(�2,�1,�2)∗(1,T

′
q,1)κ

(1)
n2q,r

= nr2qr(1,1,〈nq〉′)(1,π1,π2)∗(�2∗,T
′
q�1∗−〈q〉′�2∗,�2∗)κ

(1)
n2q,r
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= nr2qr(1,1,〈nq〉′)(1,π1,π2)∗
{
qr−r2(1,T ′2

q ,1)− (q+1)qr(1,〈q〉′,1)
}
κ
(1)
n2,r

= qr
{
qr−r2(1,T ′2

q ,〈q〉′)− (q+1)qr(1,〈q〉′,〈q〉′)
}
nr2(1,1,〈n〉′)(1,π1,π2)∗κ

(1)
n2,r

=
{
qr1+r3(1,T ′2

q ,〈q〉′)− (q+1)q2r(1,〈q〉′,〈q〉′)
}
κ(2)
n,r,

hence, the result.

Projection of the classes κ
(2)
n,r to the (1,1,1)-component in the Künneth decomposition

yields classes κ
(3)
n,r in

H1
(
Q,H1

et(Y (n2)Q,Lr1(1))⊗H1
et(Y (1)Q,Lr2(1))⊗H1

et(Y (1)Q,Lr3(1))⊗Zp
Qp(−1− r)

)
.

Now set (r1,r2,r3) = (0,l−2,m−2). Fix test vectors

f̆ ∈ Sk(N,χεK)[θψ], ğ ∈ Sl(N,χg)[g], h̆ ∈ Sm(N,χh)[h].

These test vectors determine maps

H1
et(Y (n2)Q,Zp(1))→H1

et(Y (1,Nψ(n
2))Q,Zp(1))

H1
et(Y (1)Q,Lr2(1))→H1

et(Y1(Ng)Q,Lr2(1))

H1
et(Y (1)Q,Lr3(1))→H1

et(Y1(Nh)Q,Lr3(1))

which we use to project the classes κ
(3)
n,r to classes κ

(3)
n,ψgh in

H1(Q,O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1))⊗O Tg ⊗O Th⊗Zp
Qp(−1− r)).

Let

Tψ
g,h = Tg ⊗O Th(ψ

−1
P

)(−1− r), V ψ
g,h = Tψ

g,h⊗Zp
Qp.

Using the isomorphisms

νn :O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1)) IndQK(f)[n]O(ψ−1
P

)
�

of Corollary 3.6, and taking the projection of both sides via the quotient map O[Rf,n]→
O[Rn], we obtain new isomorphisms

ν̃n :O[Rn]⊗(T′(1,Nψ(n2))⊗Zp,φn)H
1
et(Y (1,Nψ(n

2))Q,Zp(1)) IndQK[n]O(ψ−1
P

),
�

so that applying the corresponding projection map to the classes κ
(3)
n,ψgh and using

Shapiro’s lemma, we obtain classes

κ̃ψ,g,h,n ∈H1(K[n],V ψ
g,h).

Proposition 4.5. Let n be as above, and let q be a rational prime coprime to p, N and n.
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(i) If q splits in K as (q) = qq, then

corK[nq]/K[n](κ̃ψ,g,h,nq) = ql+m−4

{
χg(q)χh(q)q

(
ψ(q)

q
Fr−1

q

)2

− aq(g)aq(h)

q(l+m−4)/2

(
ψ(q)

q
Fr−1

q

)

+
χg(q)

−1aq(g)
2

ql−1
+

χh(q)
−1aq(h)

2

qm−2
− q2+1

q

− aq(g)aq(h)

q(l+m−4)/2

(
ψ(q)

q
Fr−1

q

)
+χg(q)χh(q)q

(
ψ(q)

q
Fr−1

q

)2}
κ̃ψ,g,h,n.

(ii) If q is inert in K, then

corK[nq]/K[n](κ̃ψ,g,h,nq) = ql+m−4

{
χg(q)

−1aq(g)
2

ql−1
+

χh(q)
−1aq(h)

2

qm−2
− (q+1)2

q

}
κ̃ψ,g,h,n.

Proof. We have the commutative diagram

H1(K[nq],V ψ
g,h) H1(Q, IndQK[nq]O(ψ−1

P
)⊗O Tg ⊗O Th⊗Zp

Qp(−1− r))

H1(K[n],V ψ
g,h) H1(Q, IndQK[n]O(ψ−1

P
)⊗O Tg ⊗O Th⊗Zp

Qp(−1− r)),

∼=

∼=

corK[nq]/K[n]

where the horizontal isomorphisms are given by Shapiro’s lemma and the right vertical

arrow comes from the natural norm map between induced representations. Using the
isomorphisms ν̃n above, the vertical arrows in the previous diagram correspond to the

map

H1(Q,O[Rnq]⊗φnq
H1

et(Y (1,Nψ(n
2q2))Q,Zp(1))⊗O Tg ⊗O Th⊗Zp

Qp(−1− r))

H1(Q,O[Rn]⊗φn
H1

et(Y (1,Nψ(n
2))Q,Zp(1))⊗O Tg ⊗O Th⊗Zp

Qp(−1− r)).

N f,nq
f,n ⊗ Id⊗ Id

If q splits in K, the map N f,nq
f,n is given by

N f,nq
f,n = π11∗−

(
ψ(q)[q]

q
+

ψ(q)[q]

q

)
π21∗+

χ(q)

q
π22∗,

using the notations introduced in Lemma 4.4 for the degeneracy maps, and from the
relations in that lemma, we find

N f,nq
f,n (κ̃ψ,g,h,nq) =

[
1⊗

{
qr2(1,1,TqT

′
q)− (q+1)qr2+r3(1,1,1)

}
−
(
ψ(q)[q]

q
+

ψ(q)[q]

q

)
⊗
{
qr(1,T ′

q,T
′
q)− qr2+r3(T ′

q,〈q〉′,〈g〉′)
}

+
χ(q)

q
⊗
{
qr1+r3(1,T ′

q
2
,〈q〉′)− (q+1)q2r(1,〈q〉′,〈q〉′)

}]
κ̃ψ,g,h,n
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=

[
χh(q)

−1aq(h)
2qr2 +(q+1)qr2+r3

−
(
ψ(q)[q]

q
+

ψ(q)[q]

q

){
aq(g)aq(h)q

r−χg(q)χh(q)q
r2+r3(ψ(q)[q]+ψ(q)[q])

}
+

χ(q)

q

{
χh(q)aq(g)

2qr1+r3 −χg(q)χh(q)(q+1)q2r
}]

κ̃ψ,g,h,n.

This implies the result in this case. When q is inert in K, we have

N f,nq
f,n = π11∗−

χ(q)

q
π22∗,

and the result in this case follows by a very similar computation that we leave to the

reader.

In particular, restricting to positive integers n as above that are divisible only by
primes q which split in K, Proposition 4.5 yields the following result (note that since in

this section we assume ψ has infinity type (−1,0), the balanced condition forces l =m).

Theorem 4.6. Suppose the weights of g,h are l = m. Let S be the set of squarefree
products of primes q which split in K and are coprime to p and N. Assume that

H1(K[n],Tψ
g,h) is torsion-free for every n ∈ S. There exists a collection of classes{

κψ,g,h,n ∈H1(K[n],Tψ
g,h) : n ∈ S

}
,

such that whenever n,nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,g,h,nq) = Pq(Fr
−1
q )κψ,g,h,n,

where q is any of the primes of K above q, and Pq(X) = det(1−Fr−1
q X|(V ψ

g,h)
∨(1)).

Proof. We begin by noting that the only possible denominators of the classes κ̃ψ,g,h,n

are divisors of (l−2)!(m−2)! (as follows from [BSV22, Remark 3.3]), so after multiplying
them by a suitable power of p, they all have coefficients in Tψ

g,h.

Now given a prime q ∈ S, we note that for any prime v of K above q, we have

Pv(X) = 1− aq(g)aq(h)

q(l+m−2)/2

ψ(v)

q
X

+

(
χg(q)aq(h)

2

qm−1
+

χh(q)aq(g)
2

ql−1
−2χg(q)χh(q)

)
ψ(v)2

q2
X2

− χg(q)χh(q)aq(g)aq(h)

q(l+m−2)/2

ψ(v)3

q3
X3+χg(q)

2χh(q)
2ψ(v)

4

q4
X4.

Writing (q) = qq and using that ψ(q)ψ(q) = χ(q)q and χg(q)χh(q)χ(q) = 1, we therefore

find the congruences

Pq(Fr
−1
q )χg(q)χh(q)ψ(q)

2Fr−2
q

≡ Pq(Fr
−1
q

)χg(q)χh(q)ψ(q)
2Fr−2

q (mod q−1)

≡ χg(q)χh(q)ψ(q)
2Fr−2

q −aq(g)aq(h)ψ(q)Fr
−1
q

+χg(q)
−1aq(g)

2+χh(q)
−1aq(h)

2−2

−aq(g)aq(h)ψ(q)Fr
−1
q

+χg(q)χh(q)ψ(q)
2Fr−2

q
(mod q−1)
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as endomorphisms of H1(K[n],Tψ
g,h). Since these expressions agree modulo q− 1 with

the factor appearing in the norm relation of Proposition 4.5(i), together with [Rub00,
Lemmas 9.6.1 and 9.6.3], the result follows.

Remark 4.7. The condition that H1(K[n],Tψ
g,h) is torsion-free for every n ∈ S holds, for

example, under the assumptions in Lemma 8.9 below. Indeed, since SL2(Zp)×SL2(Zp) has

no proper normal subgroups of finite p-power index, it follows from this lemma that the
residual GK[n]-representation attached to Tψ

g,h is absolutely irreducible for every n ∈ S,
so that H0(K[n],V ψ

g,h/T
ψ
g,h) is trivial for every n ∈ S and the condition follows.

Remark 4.8. In the inert case, writing q= (q), we have

Pq(X) = det(1−Fr−1
q X|(Tψ

g,h)
∨(1))

= 1−
(
aq(g)

2

ql−1
−2χg(q)

)(
ah(q)

2

qm−1
−2χh(q)

)
ψ(q)

q2
X

+

(
χh(q)

2

(
aq(g)

2

ql−1
−2χg(q)

)2

+χg(q)
2

(
aq(h)

2

qm−1
−2χh(q)

)2

−2χg(q)
2χh(q)

2

)
ψ(q)2

q4
X2

−χg(q)
2χh(q)

2

(
aq(g)

2

ql−1
−2χg(q)

)(
aq(h)

2

qm−1
−2χh(q)

)
ψ(q)3

q6
X3+χg(q)

4χh(q)
4ψ(q)

4

q8
X4,

and similarly, as in the proof of Theorem 4.6, we find the congruence

Pq(Fr
−1
q )≡ χg(q)

−2aq(g)
4+χh(q)

−2aq(h)
4+2χg(q)

−1χh(q)
−1aq(g)

2aq(h)
2q

−4
χg(q)

−1aq(g)
2(q+1)

ql−1
−4

χh(q)
−1aq(h)

2(q+1)

qm−1
+8(q+1)(mod q2−1)

as endomorphisms of H1(K[n],Tψ
g,h). Similarly, as above, this expression agrees modulo

q2−1 with the square of the Euler factor appearing in the norm relation of Proposition

4.5(ii).

Now assume that (p) = pp splits in K, with p the prime of K above p induced by our
fixed embedding ιp :Q ↪→Qp, and let f = θψ be the theta series associated to ψ. Assume

also that both g and h are ordinary at p. Then, for φ ∈ {f,g,h}, the GQp
-representation

Vφ admits a filtration

0−→ V +
φ −→ Vφ −→ V −

φ −→ 0,

where V ±
φ is one-dimensional and V −

φ is unramified with Frp acting as multiplication by

αφ, the unit root of the Hecke polynomial of φ at p. Letting Vfgh = Vf ⊗Vg⊗Vh(−1−r),
we can therefore consider the GQp

-subrepresentation

F 2Vfgh = (Vf ⊗V +
g ⊗V +

h +V +
f ⊗Vg ⊗V +

h +V +
f ⊗V +

g ⊗Vh)(−1− r)

and define the balanced local condition H1
bal(Qp,Vfgh)⊂H1(Qp,Vfgh) to be the image of

the natural map H1(Qp,F 2Vfgh)→H1(Qp,Vfgh).
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Setting

F+
p (V ψ

g,h) = (V +
g ⊗Vh+Vg ⊗V +

h )(ψ−1
P

)(−1− r), F+
p
(V ψ

g,h) = (V +
g ⊗V +

h )(ψ−1
P

)(−1− r),

(4.1)

one readily checks that under the isomorphism H1(Q,Vfgh) ∼= H1(K,V ψ
g,h) of Shapiro’s

lemma, the balanced local condition H1
bal(Qp,Vfgh) corresponds to the natural

image of ⊕
v|p

H1(Kv,F+
v (V ψ

g,h))−→
⊕
v|p

H1(Kv,V
ψ
g,h).

This motivates the following definition. Let L/K be a finite extension, and for every finite

prime v of L, put

H1
bal(Lv,V

ψ
g,h) =

{
im

(
H1(Lv,F+

v (V ψ
g,h))→H1(Lv,V

ψ
g,h)

)
if v | p,

ker
(
H1(Lv,V

ψ
g,h)→H1(Lnr

v ,V ψ
g,h)

)
if v � p,

where Lnr
v is the maximal unramified extension of Lv. We then let H1

bal(Lv,T
ψ
g,h) be the

inverse image of H1
bal(Lv,V

ψ
g,h) under the natural map H1(Lv,T

ψ
g,h)→H1(Lv,V

ψ
g,h), and

let Selbal(L,T
ψ
g,h) ⊂ H1(L,Tψ

g,h) be the Greenberg Selmer group cut out by these local

conditions (note that this is a special case of the more general construction discussed in

Section 8.1).

Proposition 4.9. For every n ∈ S, the class κψ,g,h,n lies in the group Selbal(K[n],Tψ
g,h).

Proof. Fix n ∈ S and v a finite prime of K[n]. If v � p, then it follows from the Weil

conjectures that V ψ
g,h is pure of weight −1, and hence

H1
ur(K[n]v,V

ψ
g,h) := ker

(
H1(K[n]v,V

ψ
g,h)→H1(K[n]nrv ,V ψ

g,h)
)
= 0. (4.2)

By [Rub00, Corollary 1.3.3(i)] and local Tate duality (using the fact that the GK -

representation V ψ
g,h is conjugate self-dual), it follows that

H0(K[n]v,V
ψ
g,h) =H2(K[n]v,V

ψ
g,h) = 0.

Repeating the argument with the roles of v and v reversed, from (4.2) and [Rub00,

Corollary 1.3.3(ii)], we conclude that

H1(K[n]v,V
ψ
g,h) =H1

ur(K[n]v,V
ψ
g,h) = 0,

and so the inclusion resv(κψ,g,h,n) ∈H1
bal(K[n]v,T

ψ
g,h) is automatic.

Now suppose v | p. As noted in [BSV22, Proposition 3.2], it follows from the results of

[NN16] that the classes κ
(1)
m,r are geometric at p, and therefore the class resv(κψ,g,h,n) ∈

H1(K[n]v,T
ψ
g,h) lands in the inverse image of

H1
geo(K[n]v,V

ψ
g,h) = ker

(
H1(K[n]v,V

ψ
g,h)→H1(K[n]v,V

ψ
g,h⊗Qp

BdR)
)
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under the natural map H1(K[n]v,T
ψ
g,h)→H1(K[n]v,V

ψ
g,h). Since H

1
geo(K[n]v,V

ψ
g,h) agrees

with the Bloch–Kato finite subspace H1
fin(K[n]v,V

ψ
g,h) (see [Nek93, Proposition 1.24(2)]),

and the latter agrees with H1
bal(K[n]v,V

ψ
g,h) (see Lemma 9.1 below), the result follows.

5. Hida families and Galois representations

In the next section, we will prove that the classes κψ,g,h,n of Theorem 4.6 extend along the
anticyclotomic Zp-extension of K, that is, they are anticyclotomic universal norms and

explain the construction of κψ,g,h,n for more general weights. In this section, we collect

the background results we shall need, closely following the treatment in [BSV22].

5.1. Hida families

Let Λ = Zp[[1+pZp]], and let

W = Spf(Λ)

be the weight space. Then, for any extension E of Qp, we have W(E) = Homcont(1+
pZp,E

×). Points of the form νr,ε(n) = ε(n)nr, where r is a nonnegative integer and ε is

a finite order character, will be called arithmetic. We refer to k = r+2 as the weight of

νr,ε. Arithmetic points of the form νr = νr,1 will be called classical.
More generally, let R be a normal domain finite flat over Λ, and let WR = Spf(R).

Then, a point x ∈WR(Qp) will be called arithmetic if it lies above an arithmetic point

νr,ε of W(Qp), and classical if it lies above a classical point νr of W(Qp). Again, we refer

to k = r+2 as the weight of x.
Let M be a positive integer coprime to p. A Hida family of tame level M and character

χ : (Z/MpZ)× →Q
×
p is a formal q-expansion

f =
∑
n≥1

an(f)q
n ∈ Λf [[q]],

where Λf is a normal domain finite flat over Λ, such that, for any arithmetic point x ∈
WΛf

(Qp) lying over some νr,ε, the corresponding specialisation is a p-ordinary eigenform
fx ∈ Sk(Mps,χεω−r). As above, we have denoted by k the weight of x, and we can take

s=max{1,ordp(cond(ε))}. We say that a Hida family f is primitive if the specialisations

fx at arithmetic points x are p-stabilised newforms. We say that it is normalised if

a1(f) = 1.
Let f be a normalised primitive Hida family of tame level M. For each arithmetic

point x ∈ WΛf
(Qp), let fx denote the specialisation of f at x, and let fx be the

corresponding newform. There exists a locally free rank-two Λf -module Vf equipped
with a continuous action of GQ, such that, for any arithmetic point x ∈ WΛf

(Qp), the

corresponding specialisation Vf ⊗Λf ,x Qp recovers the GQ-representation Vfx attached

to fx. In particular, the representation Vf is unramified at any prime q � Mp and
Tr(Frq) = aq(f). We refer to Vf as the big Galois representation attached to f . If for some

(equivalently all) arithmetic point x0 ∈WΛf
(Qp) the GQ-representation Tfx0

attached to

fx0
is residually irreducible, then Vf is a free Λf -module.
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5.2. Continuous functions and distributions

Define the semigroups

Σ0(p) =

(
Z×
p Zp

pZp Zp

)
and Σ′

0(p) =

(
Zp Zp

pZp Z×
p

)
.

The sets T = Z×
p × Zp and T′ = pZp × Z×

p bear a right action of Σ0(p) and Σ′
0(p),

respectively.
Let ν be a character of Z×

p taking values in a finite extension E of Qp. Let O be the ring

of integers of E and denote by m its maximal ideal. Let Cont(Zp,O) denote the module

of continuous functions on Zp with values in O. Define O-modules

Aν =
{
f : T→O | f(1,z) ∈ Cont(Zp,O) and f(a · t) = ν(a) ·f(t) for all a ∈ Z×

p , t ∈ T
}
,

A′
ν =

{
f : T′ →O | f(pz,1) ∈ Cont(Zp,O) and f(a · t) = ν(a) ·f(t) for all a ∈ Z×

p , t ∈ T′}
equipped with the m-adic topology, and O-modules

Dν =Homcont,O(Aν,O), D′
ν =Homcont,O(A′

ν,O)

equipped with the weak-∗ topology. The right Σ·
0(p)-action on T· yields naturally a left

Σ·
0(p)-action on A·

ν and a right Σ·
0(p)-action on D·

ν .

5.3. Group cohomology and étale cohomology

Let N and m be coprime positive integers which are also coprime to p, let Y =

Y (1,N(pm)), and let Γ be the corresponding modular group. Let E → Y be the universal
elliptic curve over Y, and denote by Cp the canonical cyclic p-subgroup. Let T be the

relative p-adic Tate module of E over Y. Fix a geometric point η : Spec(Q) → Y , and

choose an isomorphism Tη
∼= Zp⊕Zp, such that the Weil pairing on Tη corresponds to

the natural determinant map on the right and the reduction modulo p of the element

(0,1) generates Cp,η.

Let G = πet
1 (Y ,η). The action of G on T yields an action of G on Zp⊕Zp, and hence a

continuous representation ρ : G →GL2(Zp). More precisely, for any g ∈ G,

g · (a,b) = (a,b)ρ(g)−1.

In fact, since the action of G preserves the canonical subgroup, we have a continuous
representation ρ : G → Γ0(pZp), where

Γ0(pZp) =

{(
a b

c d

)
∈GL2(Zp) : p | c

}
.

The anti-involution of GL2(Zp) given by γ �→ γι = det(γ)γ−1 restricts to Γ0(pZp) and
allows us to think of this group as acting on the right or left as convenient.

Taking the stalk at η gives an equivalence of categories between the category Sf (Yet)

of locally constant constructible sheaves with finite stalk of p-power order at η and the
category Mf (G) of finite G-sets of p-power order. For any topological group G, define

Mf (G) as we did for G. Let Mcont(G) be the category of G-modules which are filtred

unions ∪i∈IMi with Mi ∈Mf (G), and let M(G)⊂Mcont(G)N be the category of inverse
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systems of objects in Mcont(G). Define S(Yet) similarly. Then, there is an equivalence of

categories between M(G) and S(Yet). Moreover, the representation ρ defined above yields

a functor M(Γ0(pZp))→M(G). Regarding this functor, we adopt the following criterion:
if an object F ∈M(Γ0(pZp)) is given as a left Γ0(pZp)-module, we define the left G-action
via the map ρ : G → Γ0(pZp); if it is given as a right Γ0(pZp)-module, we define the left G-
action via the map g �→ ρ(g)−1. Given an inverse system of sheaves F = (F i)i∈N ∈ S(Yet),
we use the notation Hj

et(Y ,F) for continuous étale cohomology as defined by Jannsen

[Jan88], and write H
j
et(Y ,F) = lim←−i

Hj
et(Y ,F i). There is a natural surjective morphism

Hj
et(Y ,F) → H

j
et(Y ,F). The compactly supported cohomology groups Hj

et,c(Y ,F) and

H
j
et,c(Y ,F) are defined similarly.

There is an isomorphism πet
1 (YQ,η)

∼= Γ̂. Thus, if F ∈Mf (G) is a discrete G-module and

F is the corresponding object in Sf (Yet), there are natural isomorphisms

H1
et(YQ,F)∼=H1(Γ̂,F)∼=H1(Γ,F). (5.1)

Let F ∈Mf (Γ0(pZp)) be a left Γ0(pZp)-module, and assume that the Γ0(pZp)-action

on F extends to a left action of Σ·
0(p). Let S = Σ·

0(p)∩GL2(Q). The pair (Γ,S) is then

a Hecke pair in the sense of [AS86a, Section 1.1], and there is a covariant (left) action of
the Hecke algebra D(Γ,S) on H1(Γ,F). For each g ∈ S, let T (g) = ΓgΓ. Following [GS93,

Section 1], we define, for each positive integer n, the Hecke operators

Tn = T

((
1

n

))
, T ′

n = T

((
n

1

))
.

Also, for each positive integer a coprime to p, let

[a]p = T

((
a

a

))
, [a]′p = T

((
a

a

))
.

Finally, for each positive integer a coprime to N, choose βa (respectively, β′
a) in Γ0(Npm)

whose lower right entry is congruent to a (respectively, a−1) modulo N, and let

[a]N = T (βa), [a]′N = T (β′
a).

The isomorphism (5.1) is compatible with Hecke actions in the following sense. To

distinguish between different levels, we shall now write Ỹ (m) and Γ̃(m) for the above

Y and Γ, respectively. Let s be a positive integer. Choose, as above, a geometric point
η : Spec(Q)→ Ỹ (m), and let ηs : Spec(Q)→ Ỹ (ms) be a geometric point lying above η. Let

r = 1+ordp(s), and choose an isomorphism Tηs
∼= Zp⊕Zp, such that the Weil pairing on

Tηs
corresponds to the natural determinant map on the right, and the reduction modulo

pr of the element (0,1) generates the canonical subgroup Cpr,ηs
. Using these choices to

define the corresponding isomorphisms between group cohomology and étale cohomology,

there are commutative diagrams
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H1
et(Ỹ (ms)Q,F) H1

et(Ỹ (m)Q,F) H1
et(Ỹ (m)Q,F) H1

et(Ỹ (ms)Q,F)

H1(Γ̃(ms),F) H1(Γ̃(m),F) H1(Γ̃(m),F) H1(Γ̃(ms),F).

π1∗ π∗
1

cor res

∼= ∼= ∼= ∼=

Also, if (s 1) ∈ Σ·
0(p), we have the commutative diagram

H1
et(Ỹ (ms)Q,F) H1

et(Ỹ (ms)Q,ϕ
∗
s(F)) H1

et(Y (1(s),N(pm)Q,F) H1
et(Ỹ (m)Q,F)

H1(Γ̃(ms),F) H1(Γ̃(ms),ϕ∗
s(F)) H1(Γ(1(s),N(pm)),F) H1(Γ̃(m),F),

λs∗ ϕs∗ ν̌s∗

λs∗ ϕs∗ cor

∼= ∼= ∼= ∼=

and, if (1 s) ∈ Σ·
0(p), the commutative diagram

H1
et(Ỹ (m)Q,F) H1

et(Y (1(s),N(pm))Q,F) H1
et(Ỹ (ms)Q,ϕ

∗
s(F)) H1

et(Ỹ (m)Q,F)

H1(Γ̃(m),F) H1(Γ(1(s),N(pm)),F) H1(Γ̃(ms),ϕ∗
s(F)) H1(Γ̃(m),F).

ν̌∗
s ϕ∗

s λ∗
s

res ϕ∗
s λ∗

s

∼= ∼= ∼= ∼=

In the bottom lines of the previous two diagrams, ϕ∗
s(F) is F with the action of Γ0(p

rZp)
conjugated by (s 1); the map λs∗ is induced by the map F →ϕ∗

s(F) defined by c �→ (s 1)c;

ϕs∗ is induced by the pair of compatible maps Γ(1(s),N(pm))→ Γ̃(ms) and ϕ∗
s(F)→F

defined by γ �→
(
s−1

1

)
γ (s 1) and c �→ c, respectively; λ∗

s is induced by the map ϕs(F)→
F defined by c �→ (1 s)c and ϕ∗

s is induced by the pair of compatible maps Γ̃(m) →
Γ(1(s),N(pm)) and F → ϕ∗

s(F) defined by γ �→
(
1
s−1

)
γ (1 s) and c �→ c, respectively.

We shall denote by π2∗ and π∗
2 , respectively, the composition of the maps in the rows of

the previous two diagrams, both in étale cohomology and in group cohomology. Similarly,

we shall also use π1∗ and π∗
1 to denote the corresponding corestriction and restriction

maps.
For any rational prime q, a simple calculation shows that the following identities hold

in group cohomology whenever the maps involved are defined:

Tq = π1∗ ◦π∗
2, T ′

q = π2∗ ◦π∗
1 .

Therefore, under the isomorphism (5.1), the covariant action of the operators Tq, T
′
q on

étale cohomology corresponds to the covariant action of the operators Tq, T
′
q on group

cohomology, whenever defined. Similarly, the covariant action of the operators 〈d〉, 〈d〉′
on étale cohomology corresponds to the covariant action of the operators [d]N , [d]′N on
group cohomology.

The anti-involution ι extends to Mat2×2(Zp) in the obvious way, and turns a left

(respectively, right) action of Σ0(p) into a right (respectively, left) action of Σ′
0(p). Thus,
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given an object F ∈ M(Γ0(pZp)) whose right Γ0(pZp)-action extends to a right Σ·
0(p)-

action, there is an isomorphism H1
et(YQ,F) ∼= H1(Γ,F) under which the contravariant

action of the operators Tq, T ′
q, 〈d〉, 〈d〉′ on étale cohomology corresponds to the

contravariant action of the operators Tq, T
′
q, [d]N , [d]′N on group cohomology, whenever

defined.

Consider the modules A·
ν and D·

ν defined earlier in this section. The action of Γ0(pZp)
on T′ is transitive and the stabiliser of the element (0,1) ∈ T′ is the subgroup

P (Zp) =

{(
a b

0 1

)
∈GL2(Zp)

}
,

so we can identify T′ with P (Zp)\Γ0(pZp). Similarly, the action of Γ0(pZp) on T is

transitive and the stabiliser of the element (1,0) ∈ T is the subgroup

P (Zp)
w =

{(
1 0

pc d

)
∈GL2(Zp)

}
,

so we can identify T with P (Zp)
w\Γ0(pZp). For any positive integer j, let

Γ1(p
jZp) =

{(
a b

c d

)
∈GL2(Zp) : c≡ 0 (mod pj), d≡ 1 (mod pj)

}
,

Γ1(p
jZp)

w =

{(
a b

pc d

)
∈GL2(Zp) : a≡ 1 (mod pj), b≡ 0 (mod pj−1)

}
.

Then, for any positive integers i,j, we can define

A′
ν,i,j =

{
f : Γ1(p

jZp)\Γ0(pZp)→O/mi | f(a ·γ) = ν(a) ·f(γ)
for all a ∈ Z×

p , γ ∈ Γ1(p
jZp)\Γ0(pZp)

}
,

Aν,i,j =
{
f : Γ1(p

jZp)
w\Γ0(pZp)→O/mi | f(a ·γ) = ν(a) ·f(γ)
for all a ∈ Z×

p , γ ∈ Γ1(p
jZp)

w\Γ0(pZp)
}
.

The objects A·
ν,i,j can be regarded as left O[Σ·

0(p)]-modules. Let A·
ν,i = lim−→j

A·
ν,i,j .

Then A·
ν
∼= lim←−i

A·
ν,i. We denote by A·

ν the object in S(Yet) corresponding to {A·
ν,i}i ∈

M(Γ0(pZp)). We also define D·
ν,i =HomO(A·

ν,i,i,O/mi). These objects can be regarded as
rightO[Σ·

0(p)]-modules, and we have D·
ν
∼= lim←−i

D·
ν,i. We denote byD·

ν the object in S(Yet)

corresponding to {D·
ν,i}i ∈M(Γ0(pZp)). There are natural morphisms of O-modules

H1
et(YQ,A

·
ν)→ H1et(YQ,A

·
ν)

∼=H1(Γ,A·
ν)

and

H1
et(YQ,D

·
ν)

∼= H1et(YQ,D
·
ν)

∼=H1(Γ,D·
ν)

compatible with the action of Hecke operators. We also have Hecke-equivariant isomor-

phisms

H1
et,c(YQ,D

·
ν)

∼= H1et,c(YQ,D
·
ν)

∼=H1
c (Γ,D·

ν),
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whereHj
c (Γ,−) =Hj−1(Γ,HomZ(Div0(P1(Q)),−)). These isomorphisms allow us to define

continuous GQ-actions on the groups H1(Γ,A·
ν), H

1(Γ,D·
ν) and H1

c (Γ,D·
ν).

Given a character χ : Z×
p → O×, let O(χ) be the module O with Γ0(pZp) acting via

χ◦det, where det : Γ0(pZp)→ Z×
p is the determinant map.

The natural G-equivariant evaluation map A·
ν ⊗OD·

ν →O yields a GQ-equivariant cup-

product pairing

H1(Γ,A·
ν)⊗OH1

c (Γ,D·
ν)−→O(−1), (5.2)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right.

Let det : T′ ×T → Z×
p be the function defined by det((x1,x2),(y1,y2)) = x1y2 − x2y1,

and let detν be the composition of this function with ν : Z×
p → O. Evaluation at this

function defines a G-equivariant map D′
ν ⊗O Dν →O(−ν) which yields a GQ-equivariant

cup-product pairing

H1(Γ,D′
ν)⊗OH1

c (Γ,Dν)−→O(ν)(−1), (5.3)

where ν = ν ◦ εcyc : GQ → O×. Under this pairing, the Hecke operators Tq, T ′
q, [d]N ,

[d]′N acting contravariantly on the left, whenever defined, are adjoint to the Hecke
operators T ′

q, Tq, [d]′N , [d]N acting contravariantly on the right. We obtain a similar

pairing interchanging the roles of Dν and D′
ν .

5.4. Ordinary cohomology

For any Zp-algebra B, let Sr(B) be the set of two-variable homogeneous polynomials of

degree r in B[x1,x2]. It is a left B[Σ·
0(p)]-module with the action of Σ·

0(p) defined by

gP (x1,x2) = P ((x1,x2) ·g)

for all g ∈Σ·
0(p) and P (x1,x2)∈Sr(B). To the p-adic Γ0(pZp)-representation Sr =Sr(Zp),

there corresponds the locally constant p-adic sheaf Sr on Yet defined in Section 2.3.

Therefore, we have an isomorphism

H1
et(YQ,Sr)∼=H1(Γ,Sr)

which is Hecke-equivariant when we consider the covariant action of Hecke operators on

both sides, and we use this isomorphism to define an action of GQ on H1(Γ,Sr).
We also define Lr(B) = HomB(Sr(B),B), which we regard as a right B[Σ·

0(p)]-module

defining the Σ·
0(p)-action by

(μ ·g)(P (x1,x2)) = μ(gP (x1,x2))

for all g ∈Σ·
0(p), μ ∈ Lr(B) and P (x1,x2) ∈ Sr(B). To the p-adic Γ0(pZp)-representation

Lr = Lr(Zp), there corresponds the locally constant p-adic sheaf Lr on Yet. Therefore,

we have an isomorphism

H1
et(YQ,Lr)∼=H1(Γ,Lr)

https://doi.org/10.1017/S1474748023000221 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000221


The diagonal cycle euler system for GL2×GL2 27

which is Hecke-equivariant when we consider the contravariant action of Hecke operators
on both sides, and we use this isomorphism to define an action of GQ on H1(Γ,Lr).

The natural Γ0(pZp)-equivariant evaluation map Sr ⊗Zp
Lr → Zp yields a GQ-

equivariant cup-product pairing

H1(Γ,Sr)⊗Zp
H1

c (Γ,Lr)−→ Zp(−1), (5.4)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right. This
pairing becomes perfect after inverting p.

Let νr : Z
×
p → Z×

p be the character defined by νr(z) = zr. Evaluation at the polynomial

(x1y2−x2y1)
r ∈ Sr ⊗Zp

Sr defines a Γ0(pZp)-equivariant map Lr ⊗Zp
Lr → Zp(−νr) and

thus yields a GQ-equivariant cup-product pairing

H1(Γ,Lr)⊗Zp
H1

c (Γ,Lr)−→ Zp(r−1), (5.5)

under which the Hecke operators Tq, T ′
q, [d]N , [d]′N acting contravariantly on the

left, whenever defined, are adjoint to the Hecke operators T ′
q, Tq, [d]′N , [d]N acting

contravariantly on the right. This pairing becomes perfect after inverting p.

Combining these two pairings, we can define a morphism

sr∗ :H
1(Γ,Sr(Qp))−→H1(Γ,Lr(Qp))(−r).

This map is GQ-equivariant and intertwines the covariant action of the operators Tq,

[d]N , [a]p on the source with the contravariant action of the operators T ′
q, [d]

′
N , [a]′p on

the target. We can also define sr∗ directly via the isomorphism Sr(Qp) ∼= Lr(Qp)(νr)

arising from the perfect pairing Lr(Qp)⊗Qp
Lr(Qp)→Qp(−νr) defined by evaluation at

(x1y2−x2y1)
r. Therefore, the denominators introduced by this map are bounded by r!,

that is, an element in

im
(
H1(Γ,Sr)→H1(Γ,Sr(Qp))

)
is mapped to an element in

1

r!
im

(
H1(Γ,Lr)→H1(Γ,Lr(Qp))

)
,

as follows from [BSV22, Remark 3.3].
To slightly simplify the notation, we will write A·

r and D·
r for A·

νr
and D·

νr
, respectively.

Regarding two-variable polynomials as functions on T·, we obtain a natural morphism

of left Zp[Σ
·
0(p)]-modules Sr → A·

r. Also, dualizing this map, we obtain a morphism of

right Zp[Σ
·
0(p)]-modules D·

r → Lr. Thus, we have GQ-equivariant and Hecke-equivariant
morphisms

H1(Γ,Sr)→H1(Γ,A·
r) and H1(Γ,D·

r)→H1(Γ,Lr).

Applying Hida’s (anti-)ordinary projector e·ord := limn→∞(T ·
p)

n!, the previous mor-

phisms become isomorphisms

e·ordH
1(Γ,Sr)∼= e·ordH

1(Γ,A·
r), e·ordH

1(Γ,D·
r)

∼= e·ordH
1(Γ,Lr).
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Under these isomorphisms, the pairings (5.4) and (5.5) correspond to the pairings (5.2)

and (5.3), respectively, after applying the corresponding (anti-)ordinary projector to every

term involved.

5.5. Λ-adic Poincaré pairing

It will be convenient to write 〈a;b〉, with a∈ (Z/NZ)× and b∈ (Z/prZ)×, for the diamond

operator 〈d〉, where d ∈ (Z/Npr)× is congruent to a modulo N and to b modulo pr. We

also write εN :GQ → (Z/NZ)× for the mod N cyclotomic character.

For any positive integer r, let

Gr = 1+p(Z/prZ), G̃r = (Z/prZ)×,

and define

Λr = Zp[Gr], Λ̃r = Zp[G̃r], Λ = lim←−
r

Λr = Zp[[1+pZp]], Λ̃ = lim←−
r

Λ̃r = Zp[[Z
×
p ]].

We have natural factorisations (Z/prZ)× =μp−1×(1+pZ/prZ) and Z×
p =μp−1×(1+pZp)

which give natural embeddings Λr ↪−→ Λ̃r and Λ ↪−→ Λ̃. We define idempotents

ei =
1

p−1

∑
ζ∈μp−1

ζ−i[ζ]

for any integer i modulo p−1. Let κi :Z
×
p →Λ× be the character defined by z �→ωi(z)[〈z〉],

and let κi = κi ◦ εcyc :GQ → Λ×.
We will shorten notation by writing

Xr(m) =X(1,Npr(m)), H1
et(X∞(m)Q,Zp) = lim←−

r

H1
et(Xr(m)Q,Zp). (5.6)

We have a natural action of Λ̃r and Λ̃ on the previous groups defined by letting group-like

elements [u] act like the diamond operators 〈1;u〉′.
Fix compatible primitive p-power roots of unity ζpr and a primitive N -th root of unity

ζN . Then one can define Atkin–Lehner automorphisms wr and w for the curve Xr(m)

similarly as in [DR17, Section 1.2]. More precisely, Xr(m) parameterises quadruples
(E,P,Q,C), where E is an elliptic curve, P is a point of order N, Q is a point of order pr

and C is a cyclic subgroup of E of order Nm containing P. Then, we define

wr(E,P,Q,C) = (E/CQ,P +CQ,Q
′+CQ,C+CQ/CQ),

where CQ ⊆ E is the subgroup generated by Q, and Q′ ∈ E[pr] satisfies 〈Q,Q′〉 = ζpr .

Similarly, we define

w(E,P,Q,C) = (E/C,P ′+C,Q+C,E[Nm]/C),

where P ′ ∈ E[N ] satisfies 〈P,P ′〉 = ζN . These Atkin–Lehner automorphisms satisfy, for

any σ ∈GQ,

wσ
r = 〈1;εcyc(σ)〉wr, wσ = 〈εN (σ);1〉w.

We let w and wr act on cohomology via pullback.
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Define GQ-equivariant pairings

〈,〉Gr
: eiH

1
et(Xr(m)Q,Zp)× e−iH

1
et(Xr(m)Q,Zp)−→ Λr(−1)

by the formula

〈a,b〉Gr
=

∑
σ∈Gr

〈aσ,b〉r ·σ−1,

where 〈,〉r stands for the natural Poincaré pairing. These pairings are Λr-linear and

antilinear in the first and second argument, respectively. Then we get GQ-equivariant

Λr-pairings

[,]Gr
: eiH

1
et(Xr(m)Q,Zp)× eiH

1
et(Xr(m)Q,Zp)(〈ε−1

N ;1〉′)−→ Λr(κi)(−1)

via the following modification of the previous pairing:

[a,b]Gr
= 〈a,wwr · (T ′

p)
r · b〉Gr

.

These pairings are compatible in the sense that the diagram

eiH
1
et(Xr+1(m)Q,Zp)× eiH

1
et(Xr+1(m)Q,Zp)(〈ε−1

N ;1〉′) Λr+1(κi)(−1)

eiH
1
et(Xr(m)Q,Zp)× eiH

1
et(Xr(m)Q,Zp)(〈ε−1

N ;1〉′) Λr(κi)(−1)

[,]Gr+1

π1∗ ×π1∗

[,]Gr

commutes, which can be proved as in [DR17, Lemma 1.1]. This yields a Λ-adic perfect

GQ-equivariant pairing

eiH
1
et(X∞(m)Q,Zp)

ord× eiH
1
et(X∞(m)Q,Zp)

ord(〈ε−1
N ;1〉′)−→ Λ(κi)(−1), (5.7)

where H1
et(X∞(m)Q,Zp)

ord = e′ordH
1
et(X∞(m)Q,Zp). All Hecke operators are self-adjoint

for this pairing.

5.6. Big Galois representations

Let mΛ be the maximal ideal of Λ, let Cont(Zp,Λ) be the Λ-module of continuous functions

on Zp with values in Λ and let κ be any of the κi above. Define the Λ-module

A′
κ =

{
f : T′ → Λ | f(pz,1) ∈ Cont(Zp,Λ) and f(a ·γ) = κ(a) ·f(γ) for all a ∈ Z×

p , γ ∈ T′},
equipped with the mΛ-adic topology, and the Λ-module

D′
κ =Homcont,Λ(A′

κ,Λ),

equipped with the weak-∗ topology. As in Section 5.2, we can regard A′
κ (respectively,

D′
κ) as a left (respectively, right) Λ[Σ′

0(p)]-module.

Similarly to what we did in Section 5.3, define, for any positive integers j,r,

A′
κ,j,r =

{
f : Γ1(p

rZp)\Γ0(pZp)→ Λ/mj
Λ | f(a ·γ) = κ(a) ·f(γ)

for all a ∈ Z×
p , γ ∈ Γ1(p

rZp)\Γ0(pZp)
}
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and A′
κ,j = lim−→r

A′
κ,j,r. Then A′

κ = lim←−j
A′

κ,j . We denote by A′
κ the object in S(Yet)

corresponding to {A′
κ,j}j ∈M(Γ0(pZp)). We also define D′

κ,j = HomΛ(A′
κ,j,j,Λ/m

j
Λ), so

that D′
κ = lim←−j

D′
κ,j , and denote by D′

κ the object in S(Yet) corresponding to {D′
κ,j}j ∈

M(Γ0(pZp)). There are natural Hecke-equivariant morphisms of Λ-modules

H1
et(YQ,A

′
κ)→ H1et(YQ,A

′
κ)

∼=H1(Γ,A′
κ),

H1
et(YQ,D

′
κ)

∼= H1et(YQ,D
′
κ)

∼=H1(Γ,D′
κ),

H1
et,c(YQ,D

′
κ)

∼= H1et,c(YQ,D
′
κ)

∼=H1
c (Γ,D′

κ),

which allow us to define continuous GQ-actions on the groups H1(Γ,A′
κ), H

1(Γ,D′
κ) and

H1
c (Γ,D′

κ).
The evaluation map A′

κ⊗ΛD′
κ → Λ yields a GQ-equivariant cup-product pairing

H1(Γ,A′
κ)⊗ΛH1

c (Γ,D′
κ)−→ Λ(−1), (5.8)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right.

Recall that in this section, we have set Γ = Γ(1,N(pm)), and let S = Σ′
0(p)∩GL2(Q).

For any positive integer r, define

Σ′
1(p

r) =

(
Zp Zp

prZp 1+prZp

)
, Sr =Σ′

1(p
r)∩GL2(Q), Γr = Γ(1,Npr(m)).

We define compatibility of Hecke pairs as in [AS86a, Definition 1.1.2] but changing
left-right conventions. More precisely, we say that the Hecke pair (Γα,Sα) is compatible

to the Hecke pair (Γβ,Sβ) if (Γα,Sα)⊆ (Γβ,Sβ), SαΓβ = Sβ and Γβ ∩S−1
α Sα = Γα. With

this definition, the Hecke pair (Γr,Sr) is compatible to the Hecke pair (Γt,St), if r ≥ t,

and to the Hecke pair (Γ,S).
Suppose that the Hecke pair (Γα,Sα) is compatible to (Γβ,Sβ), and that Γα has finite

index in Γβ . For any right Sα-module E, we define

Ind
Γβ

Γα
E =

{
ϕ : Γβ → E | ϕ(xy) = ϕ(y)x−1 for all x ∈ Γα, y ∈ Γβ

}
.

This module is equipped with a right action of Sβ : given ϕ ∈ Ind
Γβ

Γα
E and g ∈ Sβ

(ϕg)(x) =
∑

ϕ(γ)γgx−1,

where the sum is over representatives γ for the cosets in Γα\Γ∩Sαxg
−1.

Now define

A′
κ,r =

{
f : Γ1(p

rZp)\Γ0(pZp)→ Λr | f(a ·γ) = κ(a) ·f(γ)
for all a ∈ Z×

p , γ ∈ Γ1(p
rZp)\Γ0(pZp)

}
,

and let D′
κ,r = HomΛr

(A′
κ,r,Λr). With these definitions, D′

κ = lim←−r
D′

κ,r. Let Sr act

trivially on Zp and consider the right Zp[S1]-module IndΓ1

Γr
Zp. Let R be a set of

representatives for the cosets in Γr\Γ1. The map IndΓ1

Γr
Zp →D′

κ,r defined by
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ϕ �→
[
f �→

∑
r∈R

ϕ(r)f(r)
]

is an isomorphism of right Zp[S1]-modules. Therefore, there are natural isomorphisms

H1(Γ1,D′
κ)

∼= lim←−
r

H1(Γ1,D
′
κ,r)

∼= lim←−
r

H1(Γr,Zp).

According to [AS86a, Lemma 1.1.3] and [AS86a, Lemma 1.1.4], both corestriction and

the Shapiro isomorphism commute with the action of D(Γ,S) via restriction of Hecke
algebras, so the previous isomorphisms are Hecke-equivariant.

Similarly to (5.6), but omitting m from the notation, we let Yr = Y (1,Npr(m)) and put

H1
et(Y∞,Q,Zp) := lim←−

r

H1
et(Yr,Q,Zp),

where the inverse limit is with respect to the maps π1∗. Then

H1(Γ1,D′
κ)

∼= lim←−
r

H1(Γr,Zp)∼=H1
et(Y∞,Q,Zp),

where the last isomorphism is defined by choosing a compatible system of geometric points

for the curves Yr and suitable compatible bases for the corresponding Tate modules.
Under the isomorphisms above, the contravariant operators T ′

q, [d]
′
N , [a]′p on the first

term correspond to the contravariant operators T ′
q, 〈d;1〉′, 〈1;a〉′ defined on the last term

via the compatibility of these operators with the pushforward maps π1∗.
Also, according to [AS86a, Lemma 1.1.5], the restriction map yields a Hecke-equivariant

isomorphism

H1(Γ,D′
κ)

∼= eiH
1(Γ1,D′

κ)

(recall that we have set κ= κi). Combining this isomorphism with the previous ones, we
obtain a Hecke-equivariant isomorphism

H1(Γ,D′
κ)

∼= eiH
1
et(Y∞,Q,Zp).

Similarly, using [AS86b, Proposition 4.2], one proves that there is a Hecke-equivariant

isomorphism

H1
c (Γ,D′

κ)
∼= eiH

1
et,c(Y∞,Q,Zp). (5.9)

6. Proof of the wild norm relations

Assume that p splits in K as (p) = pp, and that it does not divide the class number hK .

We keep most of the notations from Section 4. In particular, (g,h) is a pair of newforms
of weights (l,m) of the same parity, levels (Ng,Nh) and characters (χg,χh), and we assume

that the ring of integers O ⊂ E = LP contains the Fourier coefficients of g and h. In

addition, we assume that p does not divide Ng nor Nh, and that both g and h are
ordinary at p.

We now allow the Grössencharacter ψ to have infinity type (1−k,0) for any even integer

k ≥ 2, and let f be the conductor of ψ, which we assume to be coprime to p. Let χ be the
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unique Dirichlet character modulo NK/Q(f), such that ψ((n)) = nk−1χ(n) for integers n
coprime to NK/Q(f).

As in [BL18, Section 3.2.1], we denote by ψ0 the unique Grössencharacter of infinity

type (−1,0), conductor p and whose associated p-adic Galois character factors through

Γp, the Galois group of the unique Zp-extension of K unramified outside p. Then we
can uniquely write ψ = αψk−1

0 , where α is a ray class character of conductor dividing fp.

Since (f,p) = 1 and k is even, it easily follows that ψ is non-Eisenstein and p-distinguished,

meaning that

αψ0|O×
K,p

�≡ ω (modP), (6.1)

where ω is the Teichmüller character.

Let ψP be the continuous E -valued character of K×\A×
K,f defined by

ψP(x) = x1−k
p ψ(x),

where xp is the projection of the idèle x to the component at p. We will also denote
by ψP the corresponding character of GK obtained via the geometric Artin map. Then

IndQKE(ψ−1
P

) is the p-adic representation attached to θψ, and we note that by (6.1),

the associated residual representation is absolutely irreducible and p-distinguished (see
[LLZ15, Remark 5.1.4]).

Consider the q-expansion

Θ =
∑

(a,fp)=1

[a]qNK/Q(a) ∈ O[[Hfp∞ ]][[q]],

where Hfp∞ denotes the maximal pro-p quotient of the ray class group of K of conductor

fp
∞, and [a] is the image of a in Hfp∞ under the geometric Artin map. Since we assume

that p does not divide hK , we can factor Hfp∞ ∼=Hf×Γp. Hence, we have Θ ∈O[Hf]⊗O
O[[Γp]][[q]], and we can specialise this to

f =
∑

(a,fp)=1

α([a])ψ0([a])[a]q
NK/Q(a) ∈ Λf [[q]], (6.2)

where Λf =O[[Γp]]. We identify Γp with Γ = 1+pZp via the isomorphism Γ∼=O(1)
K,p → Γp

defined by u �→ artp(u)
−1, where artp stands for the geometric local Artin map, and in

this way, we identify Λf with ΛO = Λ⊗Zp
O. We can therefore regard f as a primitive

Hida family specialising to

fk′ =
∑

(a,fp)=1

α([a])ψ0([a])
k′−1qNK/Q(a) ∈ Sord

k′ (Nψp,χαεKω1−k′
)

at the arithmetic point νk′−2, where Nψ = DNK/Q(f) and χα(n) = α((n)). Note that f

has character χ= χαω
1−k, and fk = θ

(p)
ψ is the ordinary p-stabilisation of θψ.

Let χQ be the adelic character attached to χ, let χK = χQ ◦NK/Q and let ψ∗ = χ−1
K ψ.

We can define a primitive Hida family f∗ attached to the Grössencharacter ψ∗ in the

same way that we defined the Hida family f attached to ψ. This is just the Hida family

f ⊗χ−1.
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We assume that χεKχgχh = 1, that is, the product of the characters of θψ, g and h
is trivial. Similarly to what we did in Section 4, set (r1,r2,r3) = (k− 2,l− 2,m− 2). For

every positive integer m, let

Ỹ (m) = Y (1,N(pm)), where N = lcm(Nψ,Ng,Nh),

and denote by Γ̃(m) the corresponding modular group. Let κ= κr1 :Z
×
p →Λ×, and choose

a square root of this character defined by κ1/2(u) = ω(u)(k−2)/2[〈u〉1/2].
We can define classes

Detfghm ∈H0
et(Ỹ (m),A′

κ⊗Ar2 ⊗Ar3(−κ1/2−ν(r2+r3)/2)),

as in [BSV22, Section 8.1], but replacing the Hida families g,h in their construction

by our g,h and working with modules of continuous functions instead of modules of
locally analytic functions. Similarly to what is done in loc. cit., and adopting some of the

notations there, we define the cohomology classes

κ
(1)
m,fgh = (e′ord⊗ eord⊗ eord)◦K◦HS◦d∗(Detfghm ),

inside the group

H1
(
Q,H1(Γ̃(m),A′

κ)
ord⊗̂H1(Γ̃(m),Ar2)

ord⊗̂H1(Γ̃(m),Ar3)
ord(κ1/2+2+(r2+ r3)/2)

)
,

where κ1/2 = κ1/2 ◦ εcyc; and, for each squarefree positive integer n coprime to p and N,

we define

κ
(2)
n,fgh = χεK(n)κ(n)−1nr2(Id⊗ Id⊗[n]N )(Id⊗π1∗⊗π2∗)κ

(1)
n2,fgh

lying in the group

H1
(
Q,H1(Γ̃(n2),A′

κ)
ord⊗̂H1(Γ̃(1),Ar2)

ord⊗̂H1(Γ̃(1),Ar3)
ord(κ1/2+2+(r2+ r3)/2)

)
.

Now we can prove norm relations for Λ-adic classes, as we did for the classes in the

previous section.

Lemma 6.1. Let m be a positive integer, and let q be a prime number. Assume that both

m and q are coprime to p and N. Then

(π2∗⊗π1∗⊗π1∗)κ
(1)
mq,fgh = (T ′

q ⊗ Id⊗ Id)κ
(1)
m,fgh;

(π1∗⊗π2∗⊗π2∗)κ
(1)
mq,fgh = κ−1/2(q)q(r2+r3)/2(Tq ⊗ Id⊗ Id)κ

(1)
m,fgh;

(π1∗⊗π2∗⊗π1∗)κ
(1)
mq,fgh = (Id⊗T ′

q ⊗ Id)κ
(1)
m,fgh;

(π2∗⊗π1∗⊗π2∗)κ
(1)
mq,fgh = κ1/2(q)q(r3−r2)/2(Id⊗Tq ⊗ Id)κ

(1)
m,fgh;

(π1∗⊗π1∗⊗π2∗)κ
(1)
mq,fgh = (Id⊗ Id⊗T ′

q)κ
(1)
m,fgh;

(π2∗⊗π2∗⊗π1∗)κ
(1)
mq,fgh = κ1/2(q)q(r2−r3)/2(Id⊗ Id⊗Tq)κ

(1)
m,fgh.
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If q is coprime to m, we also have

(π1∗⊗π1∗⊗π1∗)κ
(1)
mq,fgh = (q+1)κ

(1)
m,fgh;

(π2∗⊗π2∗⊗π2∗)κ
(1)
mq,fgh = (q+1)κ1/2(q)q(r2+r3)/2κ

(1)
m,fgh.

Proof. As in Lemma 4.2, the same arguments proving equations (174) and (176) in
[BSV22] apply mutatis mutandis to yield the proof of these identities.

Lemma 6.2. Let n be a squarefree positive integer coprime to p and N, and let q be a

rational prime coprime to p, N and n. Then

(π11∗⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)κ(q)−1qr2(Id⊗ Id⊗[q]−1

N T 2
q )

−χ(q)κ(q)−1(q+1)qr2+r3(Id⊗ Id⊗ Id)
}
κ
(2)
n,fgh,

(π21∗⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)κ−1/2(q)q(r2+r3)/2(Id⊗Tq ⊗Tq)

−χ(q)κ(q)−1qr2+r3(([q]′N )−1T ′
q ⊗ [q]N ⊗ [q]N )

}
κ
(2)
n,fgh,

(π22∗⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)qr3(Id⊗T 2

q ⊗ [q]N )

−χ(q)(q+1)qr2+r3(Id⊗[q]N ⊗ [q]N )
}
κ
(2)
n,fgh,

where πij∗ denotes the composition

H1(Γ̃(n2q2),F)
πi∗−→H1(Γ̃(n2q),F)

πj∗−→H1(Γ̃(n2),F).

Proof. This can be deduced from Lemma 6.1 by the same calculation as in

Lemma 4.4.

Let Γ(m) = Γ(1,Np(m)), and write Y (m) and X(m) for the corresponding affine and

projective modular curves. The pairing in equation (5.8) yields a map

H1(Γ̃(m),A′
κ)→HomΛ(H

1
c (Γ(m),D′

κ),Λ)(−1)∼=HomΛ(er1H
1
et,c(Y∞(m)Q,Zp),Λ)(−1),

where the isomorphism comes from equation (5.9). Let In be the maximal ideal in Hida’s

big ordinary Hecke algebra T(1,Np∞(n2))′ord corresponding to the Hida family f∗; by (6.1)

this ideal corresponds to a non-Eisenstein maximal ideal in T(1,Np(n2))′, so there are

isomorphisms

H1
et,c(Y∞(n2)Q,Zp)

ord
In

∼=H1
et(X∞(n2)Q,Zp)

ord
In

∼=H1
et(Y∞(n2)Q,Zp)

ord
In

.

Hence, the pairings (5.7) and (5.8) together with the isomorphism (5.9) yield a morphism

sf,n∗ :H
1(Γ̃(n2),A′

κ)
ord −→ er1H

1
et(Y∞(n2)Q,Zp)

ord
In

(〈ε−1
N ;1〉′)(−κ).

This map is GQ-equivariant and intertwines the covariant action of the operators T ′
q, [d]

′
N ,

[a]′p on the source with the contravariant action of the operators T ′
q, 〈d;1〉′, 〈1;a〉′ on the

target.
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Fix a level-N test vector f̆ for f , and let f̆∗ = f̆ ⊗χ−1εK . Fix also test vectors

ğ ∈ Sl(N,χg)[g], h̆ ∈ Sm(N,χh)[h],

and write ğα and h̆α for the corresponding ordinary p-stabilisations.

Define maps

φn,r : T(1,Nψp
r(n2))′ord −→O[R

fpr,n]

attached to the Grössencharacter αχ−1
K ψ0 as in Lemma 3.5, and let

φn,∞ : T(1,Nψp
∞(n2))′ord −→O[[R

fp∞,n]] =O[R
f,n]⊗OO[[Γp]]

be the inverse limit lim←−r
φn,r. The test vector f̆∗ determines a degeneracy map

H1
et(Y∞(n2)Q,Zp(1))

ord →H1
et(Y (1,Nψp

∞(n2))Q,Zp(1))
ord.

Composing this degeneracy map with the natural quotient map, we get a morphism

πf∗ : er1H
1
et(Y∞(n2)Q,O(1))ordIn

→ (O[Rn]⊗O O[[Γp]])⊗φn,∞ H1
et(Y (1,Nψp

∞(n2))Q,O(1))ord.

The test vectors ğα and h̆α determine degeneracy maps

H1
et(Ỹ (1)Q,Lr2(1))

μ∗
p−→H1

et(Y1(Np)Q,Lr2(1))→H1
et(Y1(Ng)Q,Lr2(1))

H1
et(Ỹ (1)Q,Lr3(1))

μ∗
p−→H1

et(Y1(Np)Q,Lr3(1))→H1
et(Y1(Nh)Q,Lr3(1)).

Composing these maps with projection to the g-isotypic and h-isotypic quotient,

respectively, we obtain

πg : e
′
ordH

1(Γ̃(1),Lr2(1))⊗Zp
O −→ Tg

πh : e′ordH
1(Γ̃(1),Lr3(1))⊗Zp

O −→ Th.

For the ease of notation, we write

H1(ψ,f,n) = (O[R
f,n]⊗OO[[Γp]])⊗φn,∞ H1

et(Y (1,Nψp
∞(n2))Q,O)ord(〈ε−1

N ;1〉′)(κ−1/2)

and put H1(ψ,n) =O[Rn]⊗O[R
f,n]

H1(ψ,f,n). Then we define the class

κ
(3)
n,fgh = (πf∗ ⊗πg ⊗πh)◦ (sf∗⊗sr2∗⊗sr3∗)κ

(2)
n,fgh (6.3)

lying in the group

H1
(
Q,H1(ψ,n)⊗̂O(Tg ⊗O Th)⊗Zp

Qp(−1− (r2+ r3)/2)
)
.

Let Γac be the Galois group of the anticyclotomic Zp-extension of K. We can

identify this group with the antidiagonal in (1 + pZp)× (1 + pZp) ∼= O(1)
K,p ×O(1)

K,p
via

the geometrically normalised Artin map. Let κac : Γac → Z×
p be the character defined by

mapping ((1+p)−1/2,(1+p)1/2) to 1+p, and let κac : Γac → Λ× be the character defined

by mapping ((1+ p)−1/2,(1+ p)1/2) to the group-like element [1+ p]. We use the same
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notation for the corresponding characters of GQ. There is a GQ-equivariant isomorphism
of ΛO[Rn]-modules

H1(ψ,n)∼= IndQK[n]ΛO(ψ
−1
P

κr1/2
ac κ−1

ac )(−r1/2). (6.4)

Let

Tψ
g,h = Tg ⊗O Th(ψ

−1
P

)(−1− r), V ψ
g,h = Tψ

g,h⊗Zp
Qp.

In light of the isomorphism (6.4), using Shapiro’s lemma, the classes κ
(3)
n,fgh yield classes

κ̃ψ,g,h,n,∞ ∈H1(K[n],ΛO(κ
−1
ac )⊗̂OT

ψ
g,h(κ

r1/2
ac ))⊗OE (6.5)

for every squarefree integer n coprime to p and N.

Proposition 6.3. Let n be as above, and let q be a rational prime coprime to p, N and n.

Then:

(i) If q splits in K as (q) = qq,

corK[nq]/K[n](κ̃ψ,g,h,nq,∞) = ql+m−4

{
χg(q)χh(q)q

(
κ
−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q

)2

− aq(g)aq(h)

q(l+m−4)/2

(
κ
−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q

)

+
χg(q)

−1aq(g)
2

ql−2
+

χh(q)
−1aq(h)

2

qm−1
− q2+1

q

− aq(g)aq(h)

q(l+m−4)/2

(
κ
−(k−2)/2
ac ψP(Fr−1

q
)

qk−1
Fr−1

q

)

+χg(q)χh(q)q

(
κ
−(k−2)/2
ac ψP(Fr−1

q
)

qk−1
Fr−1

q

)2}
κ̃ψ,g,h,n,∞.

(ii) If q is inert in K,

corK[nq]/K[n](κ̃ψ,g,h,nq,∞)

= ql+m−4

{
χg(q)

−1aq(g)
2

ql−2
+

χh(q)
−1aq(h)

2

qm−1
− (q+1)2

q

}
κ̃ψ,g,h,n,∞.

Proof. The proof of this proposition is similar to the proof of Proposition 4.5. We just

remark that the maps sf,n∗ interchange the degeneracy maps π1 and π2, and under the

isomorphism

H1(K[n],ΛO(κ
−1
ac )⊗̂OT

ψ
g,h(κ

(k−2)/2
ac ))⊗OE

∼=H1(Q,H1(ψ,n)⊗̂O(Tg ⊗O Th)⊗Zp
Qp(−1− (r2+ r3)/2))
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arising from (6.4), the corestriction corK[nq]/K[n] corresponds, in the case where (q) = qq

splits in K, to the map

Nnq
n = π11∗−χ−1(q)ω(k−2)/2(q)

(
κ
−(k−2)/2
ac ψP(Fr−1

q )[q]

qk/2
+

κ
−(k−2)/2
ac ψP(Fr−1

q
)[q]

qk/2

)
π21∗

+
χ−1(q)ωk−2(q)

q
π22∗,

and similarly in the case where q is inert in K. Since the result can be deduced from

Lemma 6.1 by virtually the same calculation as in the proof of Lemma 4.4, we omit the

details.

Definition 6.4. For any E -valued GK-representation V, put

H1
Iw(K[np∞],T ) := lim←−

r

H1(K[npr],T ), H1
Iw(K[np∞],V ) :=H1

Iw(K[np∞],T )⊗OE,

where T ⊂ V is a Galois stable O-lattice.

By another application of Shapiro’s lemma, the classes κψ,g,h,n,∞ in (6.5) naturally live

in H1
Iw(K[np∞],V ψ

g,h(κ
(k−2)/2
ac )). We thus arrive at the following theorem, which is the

main result of this section.

Theorem 6.5. Suppose that:

• l ≥m≥ 2 have the same parity and k ≥ 2 is even,
• p splits in K,
• p does not divide the class number of K.

Let S be the set of squarefree products of primes q which split in K and are coprime to p

and N. Assume that H1(K[nps],Tψ
g,h) is torsion-free for every n ∈ S and for every s≥ 0.

There exists a collection of classes{
κψ,g,h,n,∞ ∈H1

Iw(K[np∞],Tψ
g,h) : n ∈ S

}
,

such that whenever n,nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,g,h,nq,∞) = Pq(Fr
−1
q )κψ,g,h,n,∞,

where q is any of the primes of K above q, and Pq(X) = det(1−Fr−1
q X|(V ψ

g,h)
∨(1)).

Proof. The same argument as in the proof of Theorem 4.6 (but using Proposition 6.3)

yields a system of Iwasawa cohomology classes with the stated norm-compatibilities for

the representation V ψ
g,h(κ

(k−2)/2
ac ). By the twisting result of [Rub00, Theorem 6.3.5], the

theorem follows.

We conclude this section by proving that the classes κψ,g,h,n,∞ land in the balanced

Selmer group

Selbal(K[np∞],Tψ
g,h) := lim←−

r

Selbal(K[npr],Tψ
g,h);
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in the terminology introduced in Section 8.1 below, this is the same as the Greenberg
Selmer group SelGr(K[np∞],Tψ

g,h) associated to the GKv
-invariant subspaces F+

v (V ψ
g,h)⊂

V ψ
g,h in (4.1) at the primes v | p.

Proposition 6.6. For all n ∈ S, we have κψ,g,h,n,∞ ∈ Selbal(K[np∞],Tψ
g,h).

Proof. Let v � p be a finite prime of K[np∞], and for every r ≥ 0, denote also by v the

prime of K[npr] below v. As in the proof of Proposition 4.9, we have

H1(K[npr]v,V
ψ
g,h) =H1

Gr(K[npr]v,V
ψ
g,h) = 0,

and hence

H1(K[npr]v,T
ψ
g,h) =H1(K[npr]v,T

ψ
g,h)tors =H1

Gr(K[npr]v,T
ψ
g,h),

where the first equality follows from the local Euler characteristic formula. Hence,

the inclusion resv(κψ,g,h,n,∞) ∈ lim←−r
H1

Gr(K[npr]v,T
ψ
g,h) follows. Since, by [BSV22,

Corollary 8.2], it follows that the classes κψ,g,h,n,∞ satisfy the balanced local condition

at the primes above p, this concludes the proof.

Part 2. Arithmetic applications

7. Iwasawa main conjectures

In this section, we formulate Iwasawa main conjectures (IMCs) for triple products of

modular forms. We give two formulations: one in terms of the triple product p-adic
L-function (Conjecture 7.7) and another in terms of diagonal cycle classes (Conjec-

ture 7.9). In Theorem 7.15, we establish the equivalence of the two formulations.

7.1. Triple product p-adic L-function

Fix a triple (f,g,h) consisting of a primitive Hida family f of tame level Nf and character
χf and two p-ordinary newforms g,h of weights l,m ≥ 2, levels Ng,Nh prime-to-p and

nebentypus χg,χh. Assume that f has coefficients in a ring Λf as in Section 5.1. Assume

that χfχgχh = ωr1 for some even integer r1, and put

N = lcm(Nf ,Ng,Nh).

Let g and h be primitive Hida families with coefficients in Λg and Λh passing through g

and h, respectively. More precisely, there exist arithmetic points y0 ∈WΛg(Qp) and z0 ∈
WΛh

(Qp), such that gy0
and hz0 are the ordinary p-stabilisations of g and h, respectively.

The rings Λg and Λh need not be regular. However, for our purposes, we can consider

the Λ-adic families, denoted again g and h, that result from embedding Λg and Λh in
the rings of functions of suitable wide open connected subsets Ug and Uh of W(Qp) =

Spf(Λ)(Qp) defined over some finite extension E of Qp and containing the points y0
and z0, respectively. From now on, it is these rings of functions that we will denote by Λg
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and Λh. These rings are now noncanonically isomorphic to O[[T ]], where O is the ring

of integers of E ; in particular, they are regular. Let l− l and m−m be generators in Λg

and Λh of the prime ideals corresponding to the points y0 and z0, respectively.
We can and will assume that Λf is a finite flat extension of ΛO, and we will only consider

arithmetic points in WΛf
(Qp) lying in Homcont,O(Λf ,Qp)

Recall that in Section 5.5, we defined a character κr1 : Z×
p → Λ× given by u �→

ωr1(u)[〈u〉], and in Section 6, we fixed a square root κ
1/2
r1 of this character given by

u �→ ωr1/2(u)[〈u〉1/2]. We let κf and κ
1/2
f be the composition of κr1 and κ

1/2
r1 , respectively,

with the embedding Λ× ↪−→ Λ×
f . We also define a character κgh : Z×

p → (Λg⊗̂OΛh)
× by

κgh(u) = ω(u)l+m−4〈u〉l+m−4

and choose a square root of this character defined by κ
1/2
gh (u)=ω(u)(l+m−4)/2〈u〉(l+m−4)/2.

Let Λfgh = Λf ⊗̂OΛg⊗̂OΛh, and consider the Λfgh[GQ]-module

V†
fgh := Vf ⊗̂OVg⊗̂OVh(Ξfgh), where Ξfgh = ε−1

cycκ
−1/2
f κ

−1/2
gh (7.1)

and Vf , Vg and Vh are the big Galois representations attached to f , g and h, respectively.

Then V†
fgh is a self-dual twist of the tensor product of these representations. Consider

also the Λf [GQ]-module

V†
fgh := Vf ⊗O Tg ⊗O Th(Ξfgh), where Ξfgh = ε(2−l−m)/2

cyc κ
−1/2
f .

Given test vectors (f̆,ğ,h̆) for (f,g,h) of level N, as explained in [HT01] and [DR14,

Section 4.2], a generalisation of Hida’s p-adic Rankin–Selberg convolution produces an
element Lp(f̆,ğ,h̆) in the fraction field of Λf whose specialisations to arithmetic points

x ∈ WΛf
(Qp) of even weight k ≥ l+m recover (a square root of) the central critical

values of the triple product L-function L(V†
fxgh

,s) for the specialisation of V†
fgh at x by

virtue of Harris–Kudla’s proof of Jacquet’s conjecture, [HK91]. A recent result by Hsieh

[Hsi21] constructs test vectors (f̆,ğ,h̆) for which a precise interpolation property for the

resulting Lp(f̆,ğ,h̆) is proved. To recall the result in the form that will be used here, for

any arithmetic point x ∈WΛf
(Qp) as above, we set

fk := fx, αk := ap(fk), βk := χf (p)p
k−1α−1

k ,

let αg,βg be the roots of the Hecke polynomial of g at p with ordp(αg) = 0, and

define αh,βh similarly. As recalled in [op. cit., Section 1.4], when the residual Galois
representation ρ̄f associated to f is absolutely irreducible and p-distinguished, the local

ring Λf is known to be Gorenstein and, by a result of Hida’s the congruence module of

f , is isomorphic to Λf/(ξ) for some nonzero ξ ∈ Λf . We call (ξ) the congruence ideal of f .

Finally, denote by ε�(V
†
fkgh

) ∈ {±1} the epsilon factor of the Weil–Deligne representation

attached to the restriction of V†
fkgh

to GQ�
.
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Theorem 7.1. In addition to χfχgχh = ωr1 , assume that:

(a) ρ̄f is absolutely irreducible and p-distinguished,

(b) for some arithmetic point x∈WΛf
(Qp), we have ε�(V

†
fkgh

) =+1 for all primes 	 |N ,

(c) gcd(Nf ,Ng,Nh) is squarefree.

Let ξ be a generator of the congruence ideal of f . There exist test vectors (f̆,ğ,h̆) for

(f,g,h) of level N, and an element

L ξ
p (f̆,ğ,h̆) ∈ Λf ,

such that for all arithmetic points x ∈WΛf
(Qp) of even weight k ≥ l+m with k ≡ r1+2

(mod 2(p−1)) we have(
L ξ

p (f̆,ğ,h̆)(x)

ξx

)2

=
Γ(k,l,m)

2α(k,l,m)
· E(fk,g,h)2
E0(fk)2 · E1(fk)2

·
∏
�|N

τ� ·
L(V†

fkgh
,0)

π2k · 〈f �k,f
�
k〉2

,

where:

• Γ(k,l,m) = (c−1)! · (c−m)! · (c− l)! · (c+1− l−m)!, with c= (k+ l+m−2)/2,
• α(k,l,m) ∈ Λf is a linear form in the variables k, l, m,

• E(fk,g,h) = (1− βkαgαh

pc )(1− βkβgαh

pc )(1− βkαgβh

pc )(1− βkβgβh

pc ),

• E0(fk) = (1− βk

αk
), E1(fk) = (1− βk

pαk
),

• τ� is an explicit nonzero rational number independent of k,
• f �k is the newform associated to the p-stabilised newform fk,

and ‖f �k‖2 is the Petersson norm of f �k.

Proof. Letting g,h be the primitive Hida families of tame level Ng,Nh passing through

the ordinary p-stabilisations of g,h, this follows by specialising the three-variable p-

adic L-function in [Hsi21, Theorem A] attached to (f,g,h) and the congruence ideal
generator ξ.

Definition 7.2. For the test vectors (f̆,ğ,h̆) of level N provided by Theorem 7.1, we set

Lp(f,g,h) := L ξ
p (f̆,ğ,h̆)

2,

where ξ is any fixed generator of the congruence ideal of f .

Note that Lp(f,g,h) depends on the choice of ξ, but the principal ideal in Λf it generates

is of course independent of that choice.

7.2. Reciprocity law for diagonal cycles

Keep the notations in the previous subsection and without loss of generality assume that
l ≥m (reordering g and h if necessary).

Assume that the Galois representations attached to f , g and h are all residually

irreducible and p-distinguished. Let φ ∈ {f,g,h}. As a GQp
-representation, Vφ admits

a filtration

0→ V+
φ → Vφ → V−

φ → 0 (7.2)
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with each V±
φ free of rank one over Λφ, and with the GQp

-action on V−
φ given by the

unramified character sending Frp �→ ap(φ). This induces an obvious three-step filtration

0⊂ F 3V†
fgh ⊂ F 2V†

fgh ⊂ F 1V†
fgh ⊂ V†

fgh

by GQp
-stable Λfgh-submodules of ranks 1, 4 and 7, respectively, given by

F 1V†
fgh = (Vf ⊗̂OVg⊗̂OV

+
h +Vf ⊗̂OV

+
g ⊗̂OVh+V+

f ⊗̂OVg⊗̂OVh)(Ξfgh),

F 2V†
fgh = (Vf ⊗̂OV

+
g ⊗̂OV

+
h +V+

f ⊗̂OVg⊗̂OV
+
h +V+

f ⊗̂OV
+
g ⊗̂OVh)(Ξfgh),

F 3V†
fgh = V+

f ⊗̂OV
+
g ⊗̂OV

+
h (Ξfgh).

(7.3)

The middle term F 2V†
fgh will play a special role in the following, and we note that

F 2V†
fgh/F

3V†
fgh

∼= Vgh
f ⊕Vfh

g ⊕Vfg
h , (7.4)

where Vgh
f := (V−

f ⊗̂OV
+
g ⊗̂OV

+
h )(Ξfgh) and similarly for the other two direct summands.

We similarly denote the induced subquotients on the specialisations of V†
fgh (that is,

F iV†
fgh,V

gh
f , etc.).

Consider the class κ
(3)
1,fgh defined in (6.3) for the choice of level-N test vectors (f̆,ğ,h̆)

given by Theorem 7.1, and let κ(f,g,h) ∈H1(Q,V†
fgh) be the image of this class via the

morphism obtained from the augmentation map O[R1]→O. By [BSV22, Corollary 8.2],

the image of κ(f,g,h) under the restriction map at p is contained in

H1
bal(Qp,V

†
fgh) := im

(
H1(Qp,F

2V†
fgh)→H1(Qp,V

†
fgh)

)
.

It is easily seen that this map is an injection, so we may and will view resp(κ(f,g,h)) as

a class in H1(Qp,F 2V†
fgh). Let

pr(f,g,h) : F
2V†

fgh −→ Vgh
f

be the map induced by the projection onto the first direct summand in (7.4). The

‘reciprocity law’ from [BSV22, DR22] recalled in Theorem 7.4 below relates the image of
resp(κ(f,g,h)) under the natural projection

pr(f,g,h)∗ :H
1
bal(Qp,V

†
fgh)−→H1(Qp,V

gh
f )

to the triple product p-adic L-function of Section 7.1. Recall that ξ ∈ Λf denotes a

generator of the congruence ideal of f .

Proposition 7.3. There is an injective Λf -module homomorphism with pseudo-null

cokernel

Log
ξ :H1(Qp,V

gh
f )−→ Λf

characterised by the following interpolation property: for all Z ∈ H1(Qp,V
gh
f ) and all

classical points x ∈WΛf
(Qp) of weight k ≥ l+m with k ≡ r1+2(mod 2(p−1)), we have
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Log
ξ(Z)(x)

ξx
= (p−1)αk

(
1− βkαgαh

pc

)(
1− αkβgβh

pc

)−1

×

⎧⎨
⎩

(−1)c−k

(c−k)! ·
〈
logp(Zk),ηfk ⊗ωgl

⊗ωhm

〉
dR

, if l−m< k < l+m,

(k− c−1)! ·
〈
exp∗p(Zk),ηfk ⊗ωgl

⊗ωhm

〉
dR

, if k ≥ l+m,

where c= (k+ l+m−2)/2.

Proof. The construction of Log
ξ will follow by specialising the three-variable p-adic

regulator constructed in [BSV22, Section 7.1] (building on a generalisation of the

construction in [LZ14] given by Kings–Loeffler–Zerbes [KLZ17]).

Let ϑgh : Λfgh → Λf be the map given by reduction modulo (l− l,m−m). This induces

isomorphisms

V†
fgh⊗Λfgh

Λf
∼= V†

fgh, Vgh
f ⊗Λfgh

Λf
∼= Vgh

f ,

and a natural map

ϑgh∗ :H
1(Qp,V

gh
f )⊗Λfgh

Λf −→H1(Qp,V
gh
f ).

This map is clearly injective, and its surjectivity can be shown easily by an application of

local Tate duality and the Ramanujan–Petersson conjecture (cf. proof of [BSV22, (154)]).
Letting

L ξ
f :H1(Qp,V

gh
f )−→ Λfgh

be the p-adic regulator Lf defined as in [BSV22, Proposition 7.3] and multiplied by ξ,

the map defined by the composition

Log
ξ :H1(Qp,V

gh
f )

ϑ−1
gh∗−−−→H1(Qp,V

gh
f )⊗Λfgh

Λf
L ξ

f ⊗id−−−−→ Λf

satisfies the interpolation properties in the statement of the proposition.

It remains to see that Log
ξ is injective with pseudo-null cokernel. By definition, we

have

Vgh
f = Ugh

f (εcycκ
−1/2
f κ

1/2
gh ),

where Ugh
f is an unramified GQp

-module on which an arithmetic Frobenius Frp acts as

multiplication by χ−1
f (p)ap(f)ap(g)

−1ap(h)
−1, and Lf is obtained by specialising the

four-variable p-adic regulator map in [KLZ17, Theorem 8.2.3] for the module Ugh
f , paired

against the differential ηf ⊗ωg⊗ωh. In light of [KLZ17, Remark 8.2.4], the fact that Logξ

has the above properties can therefore be deduced from the vanishing of H0(Qp,U
gh
f ),

where Ugh
f is the image of Ugh

f under ϑgh.

Theorem 7.4 (Reciprocity law). We have the following equality

Log
ξ(resp(κ(f,g,h))) = L ξ

p (f̆,ğ,h̆).

Proof. This is the specialisation of the three-variable reciprocity law of Theorem A in

[BSV22] to (f,g,h) (see also [DR22, Theorem 10]).
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7.3. Selmer groups and formulation of the main conjectures

Let (f,g,h) be as in the preceding subsection. Throughout the rest of this section, we

assume that hypotheses (a)–(c) in Theorem 7.1 hold, so the p-adic L-function Lp(f,g,h)

in Definition 7.2 is available.

Recall the GQp
-stable rank-four Λfgh-submodule F 2V†

fgh ⊂ V†
fgh in (7.3), and set

Vf
fgh := V+

f ⊗̂OVg⊗̂OVh(Ξfgh).

As before, we let F 2Vfgh and Vf
fgh denote the corresponding specialisations.

Fix a finite set Σ of places of Q containing ∞ and the primes dividing Np, and let QΣ

be the maximal extension of Q unramified outside Σ.

Definition 7.5. For L ∈ {bal,F} define the Selmer group SelL(V
†
fgh) by

SelL(V
†
fgh) = ker

(
H1(QΣ/Q,V†

fgh)−→
H1(Qp,V

†
fgh)

H1
L(Qp,V

†
fgh)

)
,

where

H1
L(Qp,V

†
fgh) =

⎧⎨
⎩
ker

(
H1(Qp,V

†
fgh)−→H1(Qp,V

†
fgh/F

2V†
fgh)

)
if L= bal,

ker
(
H1(Qp,V

†
fgh)−→H1(Qp,V

†
fgh/V

f
fgh)

)
if L= F .

We call Selbal(V
†
fgh) (respectively, SelF (V

†
fgh)) the balanced (respectively, f-unbalanced)

Selmer group.

Remark 7.6. The pairs(
F 2V†

fgh,{k ∈ Z≥2 : l−m< k < l+m}
)
,

(
Vf

fgh,{k ∈ Z : k ≥ l+m}
)

satisfy the Panchishkin condition in [Gre94]. Thus, Selbal(V
†
fgh) and SelF (V

†
fgh) may be

viewed as instances of Greenberg’s Selmer groups attached to different ranges of critical

specialisations of V†
fgh.

Let

A†
fgh =HomZp

(V†
fgh,μp∞).

Then for L ∈ {bal,F}, we define the Selmer groups SelL(A
†
fgh) as above, taking

H1
L(Qp,A

†
fgh) to be the orthogonal complement of H1

L(Qp,V
†
fgh) under the local Tate

duality

H1(Qp,V
†
fgh)×H1(Qp,A

†
fgh)−→Qp/Zp,

and set

XL(A
†
fgh) := Homcont(SelL(A

†
fgh),Qp/Zp).

In light of Remark 7.6, the next conjecture may be viewed as an instance of the

Iwasawa–Greenberg main conjectures [Gre94]. In the two formulations below, we also
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assume conditions (b) and (c) from Theorem 7.1, so that the p-adic L-function Lp(f,g,h)

in (7.2) is defined.

Conjecture 7.7 (IMC ‘with p-adic L-functions’). The modules SelF (V
†
fgh) and

XF (A
†
fgh) are both Λf -torsion, and

CharΛf
(XF (A

†
fgh)) = (Lp(f,g,h))

in Λf ⊗Zp
Qp.

Remark 7.8. An integral formulation of the equality of ideals in Conjecture 7.7 would, in

general, involve certain Tamagawa factors, accounting for the fact that the construction of

Lp(f,g,h) uses Hida’s congruence number, while, by definition, the classes in the Selmer

group XF (A
†
fgh) are trivial at the places v ∈ Σ \ {p,∞}, rather than just unramified

(cf. [PW11]).

Under the local root number hypothesis (b) in Theorem 7.1, for all arithmetic point

x ∈ WΛf
(Qp) of even weight k ≥ 2 with l−m < k < l−m, the sign in the functional

equation for L(V†
fxgh

,s) is −1, so that the central value L(V†
fxgh

,0) vanishes. Therefore, in
the spirit of Perrin-Riou’s main conjecture [PR87, Conjecture B] in the setting of Heegner

points, a natural formulation of the Iwasawa main conjecture for Selbal(V
†
fgh) takes the

following form.

Note that it follows from [BSV22, Corollary 8.2] that κ(f,g,h) lands in Selbal(V
†
fgh).

Conjecture 7.9 (IMC ‘without p-adic L-functions’). Suppose κ(f,g,h) ∈ Selbal(Q,V
†
fgh)

is not Λf -torsion. Then the modules Selbal(V
†
fgh) and Xbal(A

†
fgh) have both rank one, and

CharΛf
(Xbal(A

†
fgh)tors) = CharΛf

(
Selbal(V

†
fgh)

Λf ·κ(f,g,h)

)2

in Λf ⊗Zp
Qp, where the subscript tors denotes the Λf -torsion submodule.

Remark 7.10. Working under different hypotheses on the local signs ensuring that

L(V†
fkgh

,s) has sign +1 (rather than −1) for weights k ≥ 2 with l−m < k < l−m,

the Iwasawa main conjecture would relate the characteristic ideal of Xbal(A
†
fgh) to the

balanced triple product p-adic L-function constructed in [Hsi21, Theorem B] (see also

[GS20]), rather than diagonal classes. In this setting, the f -unbalanced Selmer group
SelF (V

†
fgh) should have Λf -rank one, but the expected nontorsion Selmer class seems to

not have been constructed yet.

7.4. Equivalence of the formulations

In this subsection, we show that the two formulations of the Iwasawa main conjecture

in the previous subsection are essentially equivalent, focusing on the case where f is a
CM Hida family1 as in Section 6. Similar equivalences between IMC ‘with’ and ‘without’

1This case will suffice for our applications in this paper, and makes some of the arguments
simpler, but we expect the equivalence to hold in general.
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p-adic L-functions appear in [Kat04, Section 17], [KLZ17, Section 11] and, in a setting

more germane to ours, [Wan20] and [Cas17, Appendix].

The following intermediate Selmer groups will allow us to bridge between Selbal(V
†
fgh)

and SelF (V
†
fgh) in the comparison. Set

Vf∩+
fgh = Vf

fgh∩F 2V†
fgh, Vf∪+

fgh = Vf
fgh+F 2V†

fgh,

which are GQp
-stable Λf -submodules of V†

fgh of ranks 3 and 5, respectively. Define

SelL(V
†
fgh) for L ∈ {F ∩+,F ∪+} by the same recipe as in Definition 7.5, with

H1
L(Qp,V

†
fgh) =

⎧⎨
⎩
ker

(
H1(Qp,V

†
fgh)→H1(Qp,V

†
fgh/V

f∩+
fgh )

)
if L= F ∩+,

ker
(
H1(Qp,V

†
fgh)→H1(Qp,V

†
fgh/V

f∪+
fgh )

)
if L= F ∪+.

We define the Selmer groups SelF∩+(A
†
fgh) and SelF∪+(A

†
fgh) taking H1

F∩+(Qp,A
†
fgh)

and H1
F∪+(Qp,A

†
fgh) to be the orthogonal complements of H1

F∪+(Qp,V
†
fgh) and

H1
F∩+(Qp,V

†
fgh), respectively. As in the preceding section, we also define the

corresponding XF∩+(A
†
fgh) and XF∪+(A

†
fgh).

Throughout this subsection, we keep the setting from Section 6. In particular, f ∈Λf [[q]]
is the CM Hida family in (6.2) associated with the Hecke character ψ of conductor f. In

addition, we assume conditions (b) and (c) from Theorem 7.1, so the p-adic L-function

Lp(f,g,h) ∈ Λf is defined, and let κ(f,g,h) ∈H1(Q,V†
fgh) be as above.

For every height one prime Q of Λf away from p, let SQ be the integral closure of

Λf/Q, and let ΦQ be the fraction field of SQ. Let V†
fgh,Q be the extension of scalars of

V†
fgh/QV†

fgh to SQ, and let A†
fgh,Q =Hom(V†

fgh,Q,μp∞). Following [MR04], define

H1
bal(Qv,V

†
fgh,Q) :=

⎧⎨
⎩
ker

(
H1(Qv,V

†
fgh,Q)→H1(Qnr

v ,V†
fgh,Q⊗ΦQ)

)
, if v � p,

ker
(
H1(Qv,V

†
fgh,Q)→H1(Qv,(V

†
fgh,Q/F 2V†

fgh,Q)⊗ΦQ)
)
, if v | p,

(7.5)

and let H1
bal(Q,V

†
fgh,Q) be the associated Selmer group. Taking H1

bal(Qv,A
†
fgh,Q) to be

the orthogonal complement of H1
bal(Qv,V

†
fgh,Q) under local Tate duality, we define the

Selmer group H1
bal(Q,A

†
fgh,Q) similarly.

Define Vψ
g,h =ΛO(κ

−1
ac )⊗̂OT

ψ
g,h(κ

r1/2
ac ), and let Aψ

g,h =Hom((Vψ
g,h)

c,μp∞), where (Vψ
g,h)

c

denotes Vψ
g,h with the GK -action twisted by complex conjugation. Note that V†

fgh =

IndQKVψ
g,h, so we can define Selmer conditions for Vψ

g,h using Shapiro’s lemma and for

Aψ
g,h by duality. Define Aψ

g,h,Q =Hom((Vψ
g,h,Q)c,μp∞). We have natural maps

Vψ
g,h/QVψ

g,h → Vψ
g,h,Q, Aψ

g,h,Q → Aψ
g,h[Q] (7.6)

preserving both the GK and the Λ-modules structure in the same way as in [How04,

p. 1461]. Note that in the quotient Vψ
g,h/QVψ

g,h and in the submodule Aψ
g,h[Q], we can
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define Selmer conditions by propagating the balanced conditions for Vψ
g,h and Aψ

g,h,

respectively, and we denote these conditions in the same way.

Lemma 7.11. For every height one prime Q⊂ Λf as above and every place v of K, the

maps (7.6) induce natural maps

H1
bal(Kv,V

ψ
gh/QVψ

gh)−→H1
bal(Kv,V

ψ
gh,Q),

H1
bal(Kv,A

ψ
gh,Q)−→H1

bal(Kv,A
ψ
gh[Q])

with finite kernel and cokernel, of order bounded by constants depending only on [SQ :

Λf/Q].

Proof. For the primes v � p, the same argument as in the proof of [MR04, Lemma 5.3.13]
applies, so it remains to consider the case v | p. Put

F+
p (Tψ

g,h) = (T+
g ⊗Th+Tg ⊗T+

h )(ψ−1
P

)(−1− r),

F+
p
(Tψ

g,h) = (T+
g ⊗T+

h )(ψ−1
P

)(−1− r).

Under the isomorphism H1(Q,V†
fgh)

∼= H1(K,ΛO(κ
−1
ac )⊗̂OT

ψ
g,h(κ

r1/2
ac )) coming from

Shapiro’s lemma, the balanced local condition H1
bal(Qp,V

†
fgh) corresponds to

H1(Kp,ΛO(κ
−1
ac )⊗̂OF+

p (Tψ
g,h)(κ

r1/2
ac ))⊕H1(Kp,ΛO(κ

−1
ac )⊗̂OF+

p
(Tψ

g,h)(κ
r1/2
ac )).

Let A−
g = T−

g ⊗Qp/Zp, and define A+
g , A

−
h and A+

h similarly. Arguing as in the proof of

[How04, Lemma 2.2.7], we reduce to showing that the groups

H0(K∞,p,(A
−
g ⊗A−

h )(ψ
−1
P

κr1/2
ac )(−1− r)), H0(K∞,p,(A

+
g ⊗A−

h )(ψ
−1
P

κr1/2
ac )(−1− r))

are both finite, which follows from the fact that αgαhψ(p)/p
k−1 �= 1 and βgαhψ(p) �= 1,

and this is a consequence of the Ramanujan–Petersson conjecture since we are assuming

that p � N . Note that the other pieces in the quotient decomposition can be treated
similarly. This yields the required bounds on the kernel and cokernel of the first map in

the statement of the lemma, and the result for the second map follows as well by local

duality.

Let ΣΛ be the set of height one primes of Λf consisting of p and those for which either

H2(QΣ/Q,V†
fgh)[Q] is infinite or H2(Qp,V

†
fgh)[Q] is infinite. Since H2(QΣ/Q,V†

fgh) and

H2(Qp,V
†
fgh) are both finitely generated Λ-modules, the set ΣΛ is finite.

Proposition 7.12. For every height one prime Q �∈ ΣΛ, the maps (7.6) induce natural

maps

Selbal(V
†
fgh)/QSelbal(V

†
fgh)−→ Selbal(V

†
fgh,Q),

Selbal(A
†
fgh,Q)−→ Selbal(A

†
fgh)[Q]

with finite kernel and cokernel bounded by a constant depending only on [SQ : Λf/Q].
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Proof. This follows from Lemma 7.11 as in the proof of [MR04, Proposition 5.3.14] (see

also [How04, Lemma 2.2.8] and [How07, Lemma 3.2.10]).

For every height one prime Q⊂Λf as above, let mQ = (πQ) be the maximal ideal of SQ.

Lemma 7.13. Assume that there is a perfect pairing Tψ
g,h × Tψ

g,h → O(1), such that

〈xσ,ycσc〉 = 〈x,y〉σ for all x,y ∈ Tψ
g,h and for all σ ∈ GK , where c stands for complex

conjugation. The following hold:

(1) rankΛf
Selbal(V

†
fgh) = rankΛf

Xbal(A
†
fgh),

(2) rankΛf
SelF (V

†
fgh) = rankΛf

XF (A
†
fgh),

(3) rankΛf
XF∪+(A

†
fgh) = 1+rankΛf

XF∩+(A
†
fgh) and

CharΛf
(XF∪+(A

†
fgh)tors) = CharΛf

(XF∩+(A
†
fgh)tors),

in Λf ⊗Zp
Qp.

Proof. For part (1), it suffices to show that for all height one primes Q⊂Λf with Q �∈ΣΛ,
the modules Selbal(V

†
fgh)/QSelbal(V

†
fgh) and Selbal(A

†
fgh)[Q] have the same rank over

Λf/Q. Since Selbal(V
†
fgh,Q) is the πQ-adic Tate module of Selbal(A

†
fgh,Q) (indeed, this is

a consequence of [How04, Lemma 1.3.3] since A†
fgh,Q

∼= V†
fgh,Q⊗Qp/Zp), the result thus

follows from Proposition 7.12.
For part (2), under the isomorphism H1(Q,V†

fgh)
∼=H1(K,ΛO(κ

−1
ac )⊗̂OT

ψ
g,h(κ

r1/2
ac )), the

f -unbalanced local condition H1
F (Qp,V

†
fgh) corresponds to

H1(Kp,ΛO(κ
−1
ac )⊗̂OT

ψ
g,h)⊕{0},

and hence an analogue of Lemma 7.11 for the f -unbalanced Selmer groups follows from

the finiteness of H0(K∞,p,Ag⊗Ah(ψ
−1
P

κ
r1/2
ac )(−1−r)). By the same reason as above, this

yields the equality of ranks in part (2).

Finally, for the proof of part (3), we can argue similarly as in [AH06, Theorem 1.2.2].

Keeping with the above notations, let SelF∪+(A
†
fgh,Q) and SelF∩+(A

†
fgh,Q) be the Selmer

groups defined by the obvious analogues of (7.5), so from another application of the

argument in Lemma 7.11, we obtain natural maps

SelF∪+(A
†
fgh,Q)−→ SelF∪+(A

†
fgh)[Q],

SelF∩+(A
†
fgh,Q)−→ SelF∩+(A

†
fgh)[Q]

with finite kernel and cokernel bounded by a constant depending only on [SQ : Λf/Q].

Since the local condition F ∩+ is the orthogonal complement of F ∪+ under the local
Tate pairing at p induced by the self-duality of V†

fgh, from [MR04, Theorem 4.1.13], we

obtain

SelF∪+(A
†
fgh,Q)[πi

Q]∼= (ΦQ/SQ)r[πi
Q]⊕SelF∩+(A

†
fgh,Q)[πi

Q] (7.7)
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for all i, where r is given (by the Greenberg–Wiles formula in [MR04, Proposition 2.3.5])

by

corankSQ
H1(Qp,A

f∪+
fgh,Q)− corankSQ

H0(R,A†
fgh,Q),

so r = 5− 4 = 1. The proof of part (3) now follows from (7.7) as in [AH06, Lemma
1.2.6].

Remark 7.14. The existence of the pairing in the previous lemma is not too restrictive.

In particular, this holds automatically if g and h are non-Eisenstein.

We are now ready to establish that both formulations of the Iwasawa main conjecture

are equivalent.

Theorem 7.15. Keep the assumptions of the previous lemma and suppose κ(f,g,h) is
not Λf -torsion. Then the following are equivalent:

(1) rankΛf
Selbal(V

†
fgh) = rankΛf

Xbal(A
†
fgh) = 1;

(2) rankΛf
SelF (V

†
fgh) = rankΛf

XF (A
†
fgh) = 0;

and, in that case, we have Selbal(V
†
fgh) = SelF∪+(V

†
fgh) and

CharΛf
(XF (A

†
fgh)) ·CharΛf

(
Selbal(V

†
fgh)

Λf ·κ(f,g,h)

)2

=CharΛf
(Xbal(A

†
fgh)tors) · (Lp(f,g,h))

in Λf ⊗Zp
Qp. In particular, Conjectures 7.7 and 7.9 are equivalent.

Proof. The Poitou–Tate global duality gives rise to the exact sequence

0−→ SelF∩+(V
†
fgh)−→ Selbal(V

†
fgh)

resp−→H1(Qp,V
gh
f )

−→XF∪+(A
†
fgh)−→Xbal(A

†
fgh)−→ 0.

(7.8)

Assume that Selbal(V
†
fgh) and Xbal(A

†
fgh) have both Λf -rank one. Since H1(Qp,V

gh
f )

has Λf -rank one, from (7.8) and Theorem 7.4, we see that SelF∩+(V
†
fgh) is Λf -torsion

and XF∪+(A
†
fgh) has Λf -rank one. By Lemma 7.13(3), it follows that XF∩+(A

†
fgh) is

Λf -torsion, and from the exact sequence

0−→ SelF (V
†
fgh)−→ SelF∪+(V

†
fgh)

resp−→H1(Qp,V
gh
f )

−→XF (A
†
fgh)−→XF∩+(A

†
fgh)−→ 0

, (7.9)

we get that XF (A
†
fgh) and SelF (V

†
fgh) are both Λf -torsion by Lemma 7.13(2). This

proves the implication (1) ⇒ (2) in the statement of the theorem, and the converse

is shown similarly. Moreover, from (7.9), we see that rankΛf
SelF∪+(V

†
fgh) = 1, and

hence the quotient SelF∪+(V
†
fgh)/Selbal(V

†
fgh) is a torsion Λf -module injecting into

H1(Qp,V
f∪+
fgh /F 2V†

fgh); since this is Λf -torsion free by Proposition 7.3, it follows that

Selbal(V
†
fgh) = SelF∪+(V

†
fgh). (7.10)
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Now suppose that either (1) or (2) in the statement of theorem holds. Since ρ̄f is

absolutely irreducible by our hypotheses, the moduleH1(QΣ/Q,V†
fgh) is Λf -torsion free by

[PR00, Section 1.3.3]. Being Λf -torsion, it follows that the module SelF∩+(V
†
fgh) vanishes,

and therefore from (7.8), we deduce the exact sequence

0−→
Selbal(V

†
fgh)

Λf ·κ(f,g,h)
−→ H1(Qp,V

gh
f )

Λf ·pf∗(resp(κ(f,g,h)))
−→ coker(resp)−→ 0. (7.11)

Together with Theorem 7.4, it follows that

CharΛf

(
Selbal(V

†
fgh)

Λf ·κ(f,g,h)

)
·CharΛf

(coker(resp)) = (L ξ
p (f̆,ğ,h̆)). (7.12)

On the other hand, in light of (7.10), from (7.8) and (7.9), we deduce exact sequences

0−→ coker(resp)−→XF∪+(A
†
fgh)−→Xbal(A

†
fgh)−→ 0,

0−→ coker(resp)−→XF (A
†
fgh)−→XF∩+(A

†
fgh)−→ 0.

Taking characteristic ideals, these imply

CharΛf
(XF (A

†
fgh) = CharΛf

(XF∩+(A
†
fgh)) ·CharΛf

(coker(resp))

= CharΛf
(XF∪+(A

†
fgh)tors) ·CharΛf

(coker(resp))

= CharΛf
(Xbal(A

†
fgh)tors) ·CharΛf

(coker(resp))
2,

(7.13)

using Lemma 7.13(3) for the second equality. Multiplying (7.13) by the square of a
generator of the characteristic ideal of Selbal(V

†
fgh)/Λf · κ(f,g,h) and using (7.12), the

result follows.

8. Anticyclotomic Euler systems

In this section, we highlight results from the recent work of Jetchev–Nekovář–Skinner

[JNS], where a general theory of Euler systems germane to [Rub00] is developed in the
anticyclotomic setting.

8.1. The general theory

Let K be an imaginary quadratic field, and let p be an odd prime. If n is an integral

prime ideal of K, we denote by K(n)◦ the ray class field of conductor n; as in the previous

sections, we write K(n) for the maximal p-subextension in K(n)◦. For any positive
integer n, we denote by K[n] the maximal p-subextension in the ring class field of K

of conductor n. We denote by K∞ the anticyclotomic Zp-extension of K.

Let E be a finite extension of Qp with ring of integersO and maximal ideal m. Let T be a
free O-module of finite rank endowed with a continuous GK -action unramified outside

a finite set of primes, and let V = T ⊗O E. Assume that there exists a nondegenerate

symmetric O-bilinear pairing

〈, 〉 : T ×T −→O(1),
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such that 〈xσ,ycσc〉= 〈x,y〉σ for all x,y ∈ T and σ ∈GK , where c is complex conjugation.

Thus, V c � V ∨(1), where V c denotes the representation V with the GK -action twisted

by c, and, if the above pairing is perfect, we also have T c � T∨(1). We also define the
GK -module A= V/T .

If L is a finite extension of K and v is a finite place of L, we write v = vc. Then, the

pairing above induces a local pairing

H1(Lv,V )×H1(Lv,V )−→ E,

and similarly replacing V by T and E by O. The pair of compatible maps GLv
→

GLv and V → V c defined by σ �→ cσc and w �→ w, respectively, induces an isomorphism
H1(Lv,V ) ∼= H1(Lv,V

c) ∼= H1(Lv,V
∨(1)), whereby the above local pairing is just the

natural cup-product pairing.

For the results we shall discuss, we consider two different types of ‘big image’ hypotheses,
(HW) for the weaker ones, and (HS) for the stronger ones.

Hypothesis (HW).

(1) V is absolutely irreducible as a GK -representation.

(2) There exists an element σ0 ∈Gal(K̄/K(1)◦K(μp∞)), such that the E -dimension of

V/(σ0−1)V is one.

Hypothesis (HS).

(1’) The residual representation T̄ = T/mT is absolutely irreducible.

(2’) There exists an element σ0 ∈Gal(K̄/K(p∞)◦), such that T/(σ0−1)T �O is a free

O-module of rank one.

(3’) There exists an element τ0 ∈GK , such that τ0−1 acts on T as multiplication by
a unit aτ0 ∈ O× with aτ0 −1 ∈ O×.

(4’) The above pairing T ×T −→O(1) is perfect.

For each prime p of K above p, choose a GKp
-stable O-submodule F+

p (T ) of T, and let
F−

p (T ) = T/F+
p (T ). We also define F+

p (V ) = F+
p (T )⊗OE ⊆ V and F−

p (V ) = V/F+
p (V ).

Let L be a finite extension of K. For each place v of L, we define a local condition

H1
Gr(Lv,V ) =

⎧⎨
⎩
ker

(
H1(Lv,V )→H1(Lnr

v ,V )
)

if v � p,

ker
(
H1(Lv,V )→H1(Lv,F−

p (V ))
)

if v | p for some p | p.

We define the Greenberg Selmer group

SelGr(L,V ) = ker
(
H1(L,V )→

∏
v

H1(Lv,V )/H1
Gr(Lv,V )

)
,

where the product is over all finite places of L.

We also define local conditions for T and A by propagation of the local conditions

for V, that is, for each place v of L, we define
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• H1
Gr(Lv,T ) as the preimage of H1

Gr(Lv,V ) by the map H1(Lv,T ) → H1(Lv,V ),
and

• H1
Gr(Lv,A) as the image of H1

Gr(Lv,V ) by the map H1(Lv,V )→H1(Lv,A),

and use these to define the Selmer groups SelGr(L,T ) and SelGr(L,A) as above. Finally,
for each positive integer n, we also put

SelGr(K[np∞],T ) = lim←−
r

SelGr(K[npr],T ) and SelGr(K[np∞],A) = lim−→
r

SelGr(K[npr],A),

where the limits are with respect to the corestriction and restriction maps, respectively,

and we define

XGr(K[np∞],A) = Homcont(SelGr(K[np∞],A),Qp/Zp).

Let N be an ideal of K divisible by p and all the primes at which T is ramified, and let

S be the set of all squarefree products of primes of Q which split in K and are coprime

to N .

Definition 8.1. A ‘split’ anticyclotomic Euler system for (T,{F+
p (T )}p|p,N ) is a

collection of classes

κ= {κn ∈ SelGr(K[n],T ) : n ∈ S},

such that, whenever q is a rational prime and n,nq ∈ S,

corK[nq]/K[n](κnq) = Pq(Fr
−1
q )κn, (8.1)

where q is any of the primes of K above q and Pq(X) = det(1−Fr−1
q X|T∨(1)).

Similarly, a ‘split’ Λ-adic anticyclotomic Euler system for (T,{F+
p (T )}p|p,N ) is a

collection of classes

κ∞ = {κn,∞ ∈ SelGr(K[np∞],T ) : n ∈ S}

satisfying the previous norm relations. In this case, the classes

κn = prK[n](κn,∞) ∈ SelGr(K[n],T )

form an anticyclotomic Euler system in the previous sense, and we say that the Euler

system κ= {κn}n extends along the anticyclotomic Zp-extension.

A (Λ-adic) anticyclotomic Euler system for (T,{F+
p (T )}p|p) is just a (Λ-adic) anticy-

clotomic Euler system for (T,{F+
p (T )}p|p,N ) for some N as above. We shall usually drop

{F+
p (T )}p|p if there is no risk of confusion.

If κ is an anticyclotomic Euler system for T, we define

κ0 := corK[1]/K(κ1) ∈ SelGr(K,T ).

If it extends along the anticyclotomic Zp-extension, we similarly define

κ∞ := corK[1]/K(κ1,∞) ∈ SelGr(K∞,T ),

where κ∞ = {κn,∞} is the Λ-adic anticyclotomic Euler system extending κ.
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When we have an Euler system as above, we will be interested in ensuring that the
following orthogonality hypothesis holds.

Hypothesis (HO). For all n∈S and for all places v of K[n] above p, the local conditions
H1

Gr(K[n]v,V ) and H1
Gr(K[n]v,V ) are orthogonal complements under the local pairing

H1(K[n]v,V )×H1(K[n]v,V )−→ E.

Remark 8.2. The condition in hypothesis (HO) holds automatically for all places away
from p, by [Rub00, Proposition 1.4.2]. Observe also that if (HO) holds, then for all n ∈ S
and for all places v of K[n], the local conditions H1

Gr(K[n]v,T ) and H1
Gr(K[n]v,T ) are

also orthogonal complements under the local pairing

H1(K[n]v,T )×H1(K[n]v,T )−→O,

as follows easily from the definitions using [Rub00, Proposition B.2.4] and the commuta-
tive diagram

H1(K[n]v,T )×H1(K[n]v,T )

��

�� O

��
H1(K[n]v,V )×H1(K[n]v,V ) �� E.

We assume in the rest of this subsection that hypothesis (HO) holds for our choice of

local conditions at p.

Theorem 8.3 [JNS]. Assume that p splits in K and that Hypothesis (HW) is satisfied,

and let κ = {κn}n be an anticyclotomic Euler system for T which extends along the
anticyclotomic Zp-extension. If κ0 �= 0, then the Selmer group SelGr(K,T ) has O-rank

one.

Remark 8.4. One can replace the assumptions that p splits in K and the Euler system

extends along the anticyclotomic Zp-extension by the assumption that there exists an

element γ ∈ GK fixing the extension K(1)◦(μp∞,(O×
K)1/p

∞
) and such that γ − 1 acts

invertibly on V.

Under the stronger Hypothesis (HS), granted the nontriviality of a Λ-adic anticyclo-

tomic Euler system, the results of [JNS] yield a divisibility towards a corresponding
Iwasawa main conjecture.

Theorem 8.5 [JNS]. Assume that p splits in K and that Hypothesis (HS) is satisfied,
and let κ be a Λ-adic anticyclotomic Euler system for T.

(a) If κ0 �= 0, then SelGr(K,A) has O-corank one, SelGr(K,T ) has O-rank one and

lengthO(SelGr(K,A)/div)≤ 2 lengthO

(
SelGr(K,T )

O ·κ0

)
,

where (−)/div denotes the quotient of (−) by its maximal divisible submodule.
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(b) If κ∞ is not Λac-torsion, then XGr(K∞,A) and SelGr(K∞,T ) have both Λac-rank

one, and

CharΛac
(XGr(K∞,A)tors)⊃ CharΛac

(
SelGr(K∞,T )

Λac ·κ∞

)2

,

where (−)tors denotes the maximal Λac-torsion submodule of (−).

8.2. Big image results

We now give conditions under which the hypotheses in the general results of Section 8.1

are verified in our setting. To that end, we shall build on [Loe17].

As before, let K/Q be an imaginary quadratic field of discriminant −D, let (g,h) be

a pair of newforms of weights (l,m) of the same parity, levels (Ng,Nh) and characters
(χg,χh), and let ψ be a Grössencharacter of K of infinity type (1−k,0) for some positive

even integer k and of conductor f. We denote by χ the unique Dirichlet character modulo

NK/Q(f), such that ψ((n)) = nk−1χ(n) for integers n coprime to NK/Q(f), and we assume
that χεKχgχh = 1.

We now make the further assumptions that:

• neither g nor h are of CM type,
• g is not Galois-conjugate to a twist of h.

As in [Loe17, Section 3.1], we define the open subgroups Hg and Hh of GQ, the
quaternion algebras Bg and Bh and the algebraic groups Gg and Gh, and put

B =Bg ×Bh, G=Gg ×Gm
Gh.

We define H to be the intersection of Hg, Hh and GK(f)◦ (note that in loc. cit., H is

defined to be the intersection of Hg and Hh, so our H might be a finite index subgroup
of his H, but this will not affect the results that follow). We have an adelic representation

ρ̃g,h :H →G(Q̂), and representations

ρ̃g,h,p :H −→G(Qp)

for every rational prime p, and, by [Loe17, Theorem 3.2.2], ρ̃g,h,p(H) =G(Zp) for all but
finitely many p.

Remark 8.6. Note that the representations studied in [Loe17] are the dual to the ones
studied in this paper, but as pointed out in [Loe17, Remark 2.1.2], this difference is

unimportant when considering the image.

Let L be a finite extension of K containing the Fourier coefficients of g and h and the

image of ψ. Let P be a prime of L above some rational prime p, and let E = LP.

Definition 8.7. We say that the prime P is good if the following conditions hold:

• p≥ 7;
• p is unramified in B ;
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• p is coprime to f, Ng and Nh;
• ρ̃g,h,p(H) =G(Zp);
• E =Qp.

Remark 8.8. Observe that all but the last condition exclude only finitely many primes.

The last condition could be somewhat relaxed in some cases, and will be used largely for

simplicity. Note also that the above set of conditions holds for a set of primes of positive
density.

From now on, we assume that both g and h are ordinary, non-Eisenstein and

distinguished with respect to P.

Lemma 8.9. Assume that there is at least one prime which divides D but not Ng and
one prime which divides D but not Nh. Then, if P is a good prime,

(ρg,P×ρh,P)(H ∩GK(p∞)◦) = SL2(Zp)×SL2(Zp).

Proof. Let Q(ρg) and Q(ρh) be the Galois extensions of Q cut out by the representations

ρg and ρh attached to g and h, respectively. These extensions are unramified outside pNg

and pNh, respectively. Therefore, the condition on D implies that K ∩Q(ρg) = Q and

K ∩Q(ρh) = Q. Moreover, since any Galois extension of Q contained in K∞ must itself

contain K, we also have K∞∩Q(ρg) =Q and K∞∩Q(ρh) =Q.
The conditions on P imply that

(ρg,P×ρh,P)(H ∩GQ(μp∞ )) = SL2(Zp)×SL2(Zp),

and, from the remarks in the previous paragraph, it follows that

(ρg,P×ρh,P)(H ∩GK∞(μp∞ )) = SL2(Zp)×SL2(Zp).

Finally, since H ∩GK(p∞)◦ is a normal subgroup of H ∩GK∞(μp∞ ) of index dividing p−1
and there are no such subgroups in SL2(Zp)×SL2(Zp), the lemma follows.

Now we are able to give conditions under which the results of [JNS] can be applied to

our setting, that is, to the representation Tψ
g,h defined above.

Proposition 8.10. Assume that there is at least one prime which divides D but not Ng

and one prime which divides D but not Nh. Let P be a good prime. Suppose that there

exists σ ∈ GK(p∞)◦ , such that ψP(σ) �= ψc
P(σ) modulo p. Then, hypotheses (HS) hold

for Tψ
g,h.

Proof. Since ψP is trivial when restricted to H ∩GK(p∞)◦ , condition (1’) follows easily
from the previous lemma.

To prove condition (2’), we closely follow the proof of [Loe17, Proposition 4.2.1].

Write χg(σ) and χh(σ) for the images of σ by χg and χh via the natural identifications
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Gal(Q(μNg
)/Q) ∼= (Z/NgZ)

× and Gal(Q(μNh
)/Q) ∼= (Z/NhZ)

×. Then, by the previous

lemma, the image of σH∩GK(p∞)◦ under ρg,P×ρh,P contains all the elements of the form((
x 0

0 x−1χg(σ)

)
,

(
y 0

0 y−1χh(σ)

))
, x,y ∈ Z×

p .

Now choose x ∈ Z×
p , such that x−2χg(σ) �= 1 (mod p) and x2χh(σ)ψP(σ)−2 �= 1 (mod p),

which is possible since p ≥ 7, and let y = x−1ψP(σ). Choose σ0 ∈ σH ∩GK(p∞)◦ whose

image under ρg,P × ρh,P is given by the element above, with the choices of x and y

which we have just specified. Then, the eigenvalues of σ0 acting on Tψ
g,h are 1, x−2χg(σ),

x2χh(σ)ψP(σ)−2 and ψc
P(σ)ψP(σ)−1, which proves condition (2’).

To check condition (3’), we can argue as in [KLZ17, Remark 11.1.3]. By the previous
lemma, we can find an element τ0 ∈H ∩GK(p∞)◦ , such that

(ρg,P×ρh,P)(τ0) =

((
−1 0

0 −1

)
,

(
1 0

0 1

))
,

so τ0 acts on Tψ
g,h as multiplication by −1.

Finally, condition (4’) follows from the assumption that g and h are non-Eisenstein and

p-distinguished.

Remark 8.11. If we are just interested in ensuring that hypotheses (HW) hold for Tψ
g,h,

we can relax some of the assumptions above. For example, we do not need to require g

and h to be non-Eisenstein, and we can require that there exist σ ∈ GK(1)◦(μp∞ ), such

that ψP(σ) �= ψc
P(σ), without requiring this inequality to hold modulo p.

9. Proof of Theorems B, C and D

Let the setting be as in the Introduction. In particular, g ∈ Sl(Ng,χg) and h∈ Sm(Nh,χh)
are newforms of weights l ≥ m ≥ 2 of the same parity, K/Q is an imaginary quadratic

field of discriminant −D < 0, ψ is a Grössencharacter for K of infinity type (1−k,0) for

some even integer k ≥ 2 and we consider the GK -representation

V ψ
g,h = Vg ⊗E Vh(ψ

−1
P

)(1− c),

where c= (k+ l+m−2)/2.

Lemma 9.1. The Bloch–Kato Selmer group of V ψ
g,h is given by

Sel(K,V ψ
g,h)

∼=
{
Selbal(K,V ψ

g,h) if l−m< k < l+m,

SelF (K,V ψ
g,h) if k ≥ l+m.

Proof. Note that by Shapiro’s lemma H1(K,V ψ
g,h)

∼= H1(Q,Vfgh), where f = θψ is the

theta series of ψ, and Vfgh is the specialisation of the big Galois representation V†
fgh in

(7.1) to weights (k,l,m). One immediately checks that the Hodge–Tate weights of the GQp
-

subrepresentation F 2Vfgh ⊂ Vfgh (respectively, V f
fgh ⊂ Vfgh) are all < 0 (with the p-adic
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cyclotomic character εcyc having Hodge–Tate weight −1) if and only if l−m< k < l+m

(respectively, k ≥ l+m). The result follows.

Here, we collect a set of hypotheses for our later reference. For any nonzero m ∈ Z,

prime(m) denotes the set of primes that divide m, and primec(m) its complement.

Hypotheses 9.2.

(h1) g and h are ordinary at p, non-Eisenstein and p-distinguished.

(h2) p splits in K,

(h3) p does not divide the class number of K,

(h4) ψP|GK(p∞)◦ �= ψc
P|GK(p∞)◦ modulo p,

(h5) neither g nor h are of CM type,

(h6) g is not Galois-conjugate to a twist of h.

(h7) prime(D)∩primec(Ng) �= ∅, and prime(D)∩primec(Nh) �= ∅,
(h8) P is a good prime in the sense of Definition 8.7.

9.1. Proof of Theorem B

Let κψ,g,h,1,∞ ∈ H1
Iw(K[p∞],Tψ

g,h) be the Iwasawa cohomology class of conductor n = 1

from Theorem 6.5, and set

κψ,g,h = κψ,g,h,1 ∈H1(K,Tψ
g,h), (9.1)

where κψ,g,h,1 = prK(κψ,g,h,1,∞).
If l−m < k < l+m, the next result recovers Theorem B in the Introduction. Note,

however, that the result does not require these inequalities to hold.

Theorem 9.3. Assume hypotheses (h1)–(h8). Then the following implication holds:

κψ,g,h �= 0 =⇒ dimE Selbal(K,V ψ
g,h) = 1.

In particular, if l−m < k < l+m and κψ,g,h �= 0, then the Bloch–Kato Selmer group

Sel(K,V ψ
g,h) is one-dimensional.

Proof. By Proposition 6.6, the classes κψ,g,h,n := prK[n](κψ,g,h,n,∞) land in

Selbal(K[n],Tψ
g,h), and by Theorem 6.5, they form an anticyclotomic Euler system for

V ψ
g,h. Therefore, the result follows from Theorem 8.3 and Proposition 8.10.

Remark 9.4. If k=2 and l=m≥ 2, working with the classes κψ,g,h,n from Theorem 4.6,

rather than those from Theorem 6.5 as above, hypotheses (h2)–(h3) in Theorem 9.3 can be

replaced by the assumption that there exists an element γ ∈GK satisfying the conditions
in Remark 8.4. Further, (h1) and (h4) can be relaxed as discussed in Remark 8.11.

9.2. Proof of Theorem C

Recall that θψ ∈ Sk(Nψ,χεK) is the theta series attached to ψ, and put N =

lcm(Nψ,Ng,Nh).
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The next theorem, establishing cases of the Bloch–Kato conjecture for V ψ
g,h in analytic

rank zero, recovers Theorem C in the Introduction.

Theorem 9.5. Assume hypotheses (h1)–(h8), and, in addition, that:

• ε�(θψ,g,h) = +1 for all primes 	 |N ,
• gcd(Nψ,Ng,Nh) is squarefree.

If k ≥ l+m, then the following implication holds:

L(V ψ
g,h,0) �= 0 =⇒ Sel(K,V ψ

g,h) = 0.

Proof. We continue to denote by κψ,g,h the image of the class in (9.1) under the

isomorphism

H1(K,V ψ
g,h)

∼=H1(Q,Vfgh)

coming from Shapiro’s lemma. If k ≥ l+m, the central value L(V ψ
g,h,0) is in the range

of interpolation of the triple product p-adic L-function of Theorem 7.1, and so by

Proposition 7.3 and Theorem 7.4, its nonvanishing implies that the image of κψ,g,h under
the natural map

resp : Selbal(Q,Vfgh)−→H1(Qp,V
gh
f )

is nonzero. In particular, κψ,g,h �= 0, and therefore by Theorem 9.3, the balanced Selmer

group Selbal(K,V ψ
g,h) = Selbal(Q,Vfgh) is one-dimensional.

From the exact sequence

0−→ SelF∩+(Q,Vfgh)−→ Selbal(Q,Vfgh)
resp−→H1(Qp,V

gh
f )

−→ SelF∪+(Q,Vfgh)
∨ −→ Selbal(Q,Vfgh)

∨−→0

coming from global duality (adopting notations similar to those in Theorem 7.15), we

thus see that SelF∩+(Q,Vfgh) = 0 and that SelF∪+(Q,Vfgh) = Selbal(Q,Vfgh). Together
with the exact sequence

SelF∪+(Q,Vfgh)
resp−−→H1(Qp,V

gh
f )−→ SelF (Q,Vfgh)

∨ −→ SelF∩+(Q,Vfgh)
∨ −→ 0,

it follows that SelF (Q,Vfgh) = 0, and combined with Lemma 9.1, this concludes the proof.

Refining the proof of Theorem 9.5, we can further bound the size of the Bloch–Kato

Selmer group for the discrete module Aψ
g,h = V ψ

g,h/T
ψ
g,h in terms of L-values. For the

statement, let f be the Hida family associated to ψ as in Section 6, so that fk is the

ordinary p-stabilisation of θψ, and, keeping with the notations in Theorem 7.1, put αk =

ψ(p) and βk = ψ(p). Let also ε�(θψ,g,h) = ε�(Vfgh) denote the epsilon factor associated

to Vfgh|GQ�
, where f = θψ.

Theorem 9.6. Assume hypotheses (h1)–(h8), and, in addition, that:

• ε�(θψ,g,h) = +1 for all primes 	 |N ,
• gcd(Nψ,Ng,Nh) is squarefree,
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• H1(Qp,T
gh
f ) is torsion-free,

• H1
L(Qp,Tfgh) is torsion-free for L ∈ {bal,F,F ∩+,F ∪+}.

If k ≥ l+m and L(V ψ
g,h,0) �= 0, then the O-module SelF (K,Aψ

g,h) is finite and

lengthO(SelF (K,Aψ
g,h))≤ 2vP

(
(l−2)!(m−2)!

(k− c−1)!
· E1(fk)
E(fk,g,h)

·L ξ
p (f̆,ğ,h̆)(k)

)
,

where E1(fk) =
(
1− βk

pαk

)
, E(fk,g,h) =

(
1− αkαgαh

pc

)(
1− βkβgαh

pc

)(
1− βkαgβh

pc

)(
1− βkβgβh

pc

)
and c= (k+ l+m−2)/2.

Proof. As in the proof of Theorem 9.5, if k ≥ l+m and L(V ψ
g,h,0) �= 0, then the class

κψ,g,h is nonzero. Since by Theorem 6.5 this is the bottom class of an anticyclotomic Euler

system for V ψ
gh, from Theorem 8.5 and Proposition 8.10, we deduce that Selbal(K,Aψ

g,h)

has O-corank one, with

lengthO(Selbal(K,Aψ
g,h)/div)≤ 2 lengthO

(
Selbal(K,Tψ

g,h)

O ·κψ,g,h

)
. (9.2)

By the exact sequence (7.8) specialised to weight k, it follows that SelF∪+(K,Aψ
g,h) has

also O-corank one. Thus, both Selbal(K,Tψ
g,h) ⊂ SelF∪+(K,Tψ

g,h) have O-rank one, and

therefore

Selbal(K,Tψ
g,h) = SelF∪+(K,Tψ

g,h), (9.3)

since their quotient is O-torsion free. Moreover, letting π ∈O be a uniformiser, as in the

proof of Lemma 7.13, we find that

SelF∪+(K,Aψ
g,h)[π

i]∼= E/O[πi]⊕SelF∩+(K,Aψ
g,h)[π

i]

for all i, and hence lengthO(SelF∪+(K,Aψ
g,h)/div) = lengthO(SelF∩+(K,Aψ

g,h)).

The finiteness of SelF (K,Aψ
g,h) with the stated bound on its O-length thus follows from

(9.2) by the same argument as in the proof of Theorem 7.15, noting that by Theorem 7.4

and the same calculation as in [BSV22, Section 8.5] (see especially, the equality following
[op. cit., (189)]), the map

ξk ·
〈
exp∗p(−),ηf̆ ⊗ωğ ⊗ωh̆

〉
,

where f = θψ and ξk is the weight k specialisation of the congruence ideal generator

ξ ∈ Λf , gives an isomorphism H1(Qp,T
gh
f )→O taking κψ,g,h to

(l−2)! · (m−2)!

(k− c−1)!
· E0(fk) · E1(fk)E(fk,g,h)

·L ξ
p (f̆,ğ,h̆)(k),

where E0(fk) =
(
1− βk

αk

)
is a p-adic unit.
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More precisely, under the freeness assumption in the statement, the weight k speciali-
sations of (7.8) and (7.9) yield the exact sequences

0−→ coker(resp)−→ SelF∪+(K,Aψ
g,h)

∨ −→ Selbal(K,Aψ
g,h)

∨ −→ 0, (9.4)

0−→ coker(resp)−→ SelF (K,Aψ
g,h)

∨ −→ SelF∩+(K,Aψ
g,h)

∨ −→ 0,

where the two terms coker(resp) are equal in light of (9.3). Thus, we find

ltO(SelF (K,Aψ
g,h)) = ltO(SelF (K,Aψ

g,h)
∨) = ltO(SelF∩+(K,Aψ

g,h)
∨)+ ltO(coker(resp))

= ltO((SelF∪+(K,Aψ
g,h)/div)

∨)+ ltO(coker(resp))

= ltO((Selbal(K,Aψ
g,h)/div)

∨)+2ltO(coker(resp))

= ltO(Selbal(K,Aψ
g,h)/div)+2ltO(coker(resp)),

where the third equality follows from (9.4) and Lemma 9.7 below, concluding the

proof.

Lemma 9.7. Let 0 → A
j−→ B → C → 0 be an exact sequence of finitely generated

O-modules, and assume that A is finite. Then Btors/j(A)∼= Ctors.

In particular, if B′,C ′ are cofinitely generated O-modules, and we have an exact

sequence 0→A
j−→ (B′)∨ → (C ′)∨ → 0 with A finite, then

(B′
/div)

∨/j(A)∼= (C ′
/div)

∨,

and so ltO((B
′
/div)

∨) = ltO(A)+ ltO((C
′
/div)

∨).

Proof. Writing B ∼=Or⊕Btors, C ∼=Os⊕Ctors, we have, by the finiteness of A, r= s and

j(A)⊂Btors, so

Or⊕Ctors
∼= C ∼=B/j(A)∼=Or⊕ (Btors/j(A)),

which implies the result.

Remark 9.8. The condition that H1(Qp,T
gh
f ) is torsion-free is equivalent to the

vanishing of H0(Qp,A
gh
f ), which is satisfied if k + 2 �= l +m modulo 2(p− 1) or if

χf (p)αgαh/αk �=1 modulo p. Similarly, the last condition in the statement of Theorem 9.6
can be recast in terms of the vanishing of the corresponding 0-th cohomology groups.

Remark 9.9. By Theorem 7.1, the nonvanishing of L(V ψ
g,h,0) implies that

L ξ
p (f̆,ğ,h̆)(x) �= 0, so the upper bound provided by Theorem 9.6 is nontrivial. Moreover,

by the interpolation formula in Theorem 7.1, this upper bound can be expressed in terms

of the central L-value L(V ψ
g,h,0), thus giving a result towards the Tamagawa number

conjecture of [BK90].
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9.3. Proof of Theorem D

As before, let f be the Hida family attached to ψ as in Section 6. Let κψ,g,h,1,∞ be the

Λ-adic class of conductor n= 1 constructed in Theorem 6.5, and set

κψ,g,h,∞ := κψ,g,h,1,∞ ∈H1
Iw(K∞,Tψ

g,h).

As noted before the proof of Proposition 6.6, under the Shapiro isomorphism

H1(Q,V†
fgh)

∼=H1(K,ΛO(κ
−1
ac )⊗̂OT

ψ
g,h)

∼=H1
Iw(K∞,Tψ

g,h),

the balanced Selmer group Selbal(Q,V
†
fgh) of Section 7.3 is identified with the Greenberg

Selmer group SelGr(K∞,Tψ
g,h) of Section 8.1 attached to GKv

-invariant subspaces

F+
v (V ψ

g,h)⊂ V ψ
g,h in (4.1) at the primes v | p. Moreover, under this isomorphism, the class

κ(f,g,h) in Section 7.2 corresponds to the class κψ,g,h,∞.

The next result, establishing one of the divisibilities predicted by the Iwasawa main
conjectures from Section 7.3, recovers Theorem D in the Introduction.

Theorem 9.10. Assume hypotheses (h1)–(h8), and, in addition, that:

• ε�(θψ,g,h) = +1 for all primes 	 |N ,
• gcd(Nψ,Ng,Nh) is squarefree.

If κ(f,g,h) is not Λf -torsion, then the following hold:

(a) The modules Selbal(V
†
fgh) and Xbal(A

†
fgh) have both Λf -rank one and

CharΛf
(Xbal(A

†
fgh)tors)⊃ CharΛf

(
Selbal(V

†
fgh)

Λf ·κ(f,g,h)

)2

.

(b) The modules SelF (V
†
fgh) and XF (V

†
fgh) are both Λf -torsion and

CharΛf
(XF (A

†
fgh))⊃ (Lp(f,g,h))

in Λf ⊗Zp
Qp.

Proof. The nontriviality assumption on κ(f,g,h) implies that κψ,g,h,∞ is not Λf -torsion.

Since, by Theorem 6.5, the class κψ,g,h,∞ is the bottom class of a Λ-adic Euler system

for V ψ
g,h, part (a) follows from Theorem 8.5 and Proposition 8.10. By Theorem 7.15, part

(b) of the theorem follows from part (a), so this concludes the proof.
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