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Two-dimensional buoyant plumes in a uniform
co-flow
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The behaviour of turbulent, buoyant, planar plumes is fundamentally coupled to the
environment within which they develop. The effect of a background stratification directly
influences a plumes buoyancy and has been the subject of numerous studies. Conversely,
the effect of an ambient co-flow, which directly influences the vertical momentum of a
plume, has not previously been the subject of theoretical investigation. The governing
conservation equations for the case of a uniform co-flow are derived and the local
dynamical behaviour of the plume is shown to be characterised by the scaled source
Richardson number and the relative magnitude of the co-flow and plume source velocities.
For forced, pure and lazy plume release conditions the co-flow acts to narrow the plume
and reduce both the dilution and the asymptotic Richardson number relative to the classic
zero co-flow case. Analytical solutions are developed for pure plumes from line sources,
and for highly forced and highly lazy releases from sources of finite width in a weak
co-flow. Contrary to releases in quiescent surroundings, our solutions show that all classes
of release can exhibit plume contraction and the associated necking. For entraining plumes,
a dynamical invariance spatially only occurs for pure and forced releases and we derive
the co-flow strengths that lead to this invariance.

Key words: plumes/thermals

1. Introduction

Turbulent, buoyant, planar plumes in a steady co-flowing environment, the basic
configuration for which is depicted in figure 1, have received remarkably little attention.
Consequently, our understanding of these plumes is limited: the sum total of the previous
investigations being those by Anwar (1969) and Rajaratnam & Lal (1983). Whilst these
studies provide a first insight, the technical note of Rajaratnam & Lal (1983) presents
power-law scalings for a uniform co-flow valid only in the far field of the plume and
Anwar (1969) focuses on aqueous plumes in co-flows so weak that he concludes the
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Figure 1. Schematic of a vertical section through a turbulent planar plume in a steady uniform co-flow of
vertical velocity wa and density ρa. The plume source, located at the coordinate origin, spans a width −b0/2 ≤
x ≤ b0/2.

data are well represented by the Lee & Emmons (1961) model for a plume in quiescent
surroundings. Indeed, the velocity of the co-flow that Anwar (1969) considers is just one
tenth of the plumes source velocity. We are unaware of any other published literature
concerning the behaviour of a turbulent planar plume in a co-flow. Given this sparsity of
information, later we appeal to insights that may be garnered from related, but distinct,
problems − specifically, planar plumes in quiescent environments, and axisymmetric
plumes and planar jets in co-flows. We approach literature on the latter with caution given
it is well established that classic axisymmetric and planar plumes can exhibit markedly
different behaviours, both quantitatively and qualitatively, and given that the role of
buoyancy fundamentally distinguishes classic plumes from jets, providing a mechanism
for increasing the momentum flux. We make no attempt to exhaustively review these fields
but instead point to some of the pertinent results.

Our focus herein concerns the fundamental question of how a co-flow affects or controls
planar plume behaviour. The route we take is to develop a simplified theoretical model,
following the essence of the approach that underpins classic plume theory (Morton, Taylor
& Turner 1956). A turbulent plume is intrinsically coupled to the environment within
which it develops through the process of entrainment or detrainment. For the case of
a co-flowing environment of comparable velocity to the plume source, we investigate
theoretically how this coupling fundamentally alters the local dynamical behaviour from
that of the corresponding plume in quiescent surroundings. To do this, we follow the
procedure developed by Hunt & Kaye (2005), and applied by van den Bremer & Hunt
(2014) to planar plumes in quiescent surroundings, in which the governing equations are
expressed and solved in terms of the local Richardson number Γ . Specifically, we are
interested in modelling how the co-flow alters the well-established behaviours of forced
(Γ < 1), pure (Γ = 1) and lazy (Γ > 1) releases. Locally forced releases refer to those
dominated by inertia and lazy releases to those dominated by the buoyancy force.

Turbulent buoyant plumes issuing into quiescent environments, wherein the motion of
the environment is solely that induced by the plume, have been studied for over eight
decades. Building on the early theoretical approach of Zeldovich (1937) and Morton
et al. (1956) for time-averaged axisymmetric plumes from point sources, Lee & Emmons
(1961) extended, what is now widely referred to as classic plume theory, to planar plumes
from line sources. Numerous developments have since followed for both uniform and
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stratified environments. In-depth reviews of this field are given by Turner (1966), Kaye
(2008), Woods (2010) and Hunt & van den Bremer (2011). Of particular relevance to
our work herein is the extension by Morton (1961) to the classic theory which considers
axisymmetric turbulent plumes in a co-flow. Morton (1961) develops equations for the
conservation of mass, momentum and density deficiency, and compares the resulting
solutions for plumes and jets by means of ‘momentum–mass flux’ diagrams. While this
approach is informative for the comparison of plume-like flows, it does not readily enable
the influence of the co-flow on the dynamical state of the plume, i.e. whether it is locally
forced, pure or lazy, to be determined. As this is one of our primary goals we adopt
an alternative approach (§ 2.2), drawing from the pioneering work of Morton (1961) in
developing the conservation equations relevant for a planar plume in a co-flow (§ 2).

For plumes issuing into an environment in motion, the majority of the research to
date has been restricted to cross-flows, for which there are an abundance of practical
examples. These include a plume from an industrial chimney issuing into a windy
environment (Csanady 1965) and a buoyant discharge of pollutant into a river or an ocean
current (Koh & Brooks 1975; Wood, Bell & Wilkinson 1993). The role of the cross-flow
for an axisymmetric plume has been investigated theoretically by Csanady (1965), and
theoretically and experimentally by Fan (1967), Hoult & Weil (1972) and Wright (1977).
In contrast, there is a sparsity of literature for planar plumes in a cross-flow, however,
Ramaprian & Haniu (1989) provide experimental evidence that the plume exhibits near
self-similar mean profiles of velocity despite the imposed cross-flow. Additionally, Papps
& Wood (1997) consider multiple axisymmetric buoyant jets in a cross-flow which merge
to form a planar plume in a cross-flow. For this geometry an intermittent flapping motion
was observed, increasing the spreading rate of the plume compared with axisymmetric
buoyant jets.

Our focus is on a co-flowing environment of steady and uniform vertical velocity wa and
constant density ρa. As such, a planar plume in quiescent surroundings (wa ≡ 0) provides
a reference case against which the role of the co-flow, that we establish in §§ 3–5, is
readily assessed. Pertinent to this reference case is the work of Lee & Emmons (1961) who
developed and solved the conservation equations for a turbulent plume from a line source
in quiescent surroundings and performed complementary experiments using a thermal
plume in air from a source of high aspect ratio (AR = 138). For the idealised case of a line
source of buoyancy, the power-law solutions based on a constant entrainment coefficient
indicate that the mean plume width scales as b(z) ∝ z, vertical velocity as w(z) ∝ z0, and
buoyancy as g′(z) ∝ z−1, where

g′(z) = g
ρa − ρ(z)

ρa
, (1.1)

z denotes the streamwise distance from the source, ρ(z) is the local density of the plume
and g the acceleration due to gravity. Focusing on planar plumes from area sources,
b(z = 0) = b0 > 0, van den Bremer & Hunt (2014) adopt a variable entrainment model
and examine theoretically the behaviour of forced and lazy releases. They consider both
Boussinesq and non-Boussinesq cases and following the approach proposed by Hunt
& Kaye (2005), in which the conservation equations are re-cast in terms of the local
Richardson number Γ (z), derive analytical solutions for the primary plume quantities of
interest. In §§ 3 and 4 we confirm that our solutions reduce to theirs on setting wa = 0.

A second reference case is that of a turbulent jet issuing from a planar source into a
co-flow. Given the densities of the jet and environment are identical, this represents the
limiting case for which the buoyancy force is zero. The behaviour of these jets has been the
subject of experimental and theoretical study (Hill 1965; Bradbury & Riley 1967; Gaskin

932 A41-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1004


G.R. Hunt and J.P. Webb

& Wood 2001). Hill (1965) assumes self-preserving velocity profiles and successfully
predicts the approximate velocity field using free jet data for U0/(Uc − U0) < 1, where
U0 is the free-stream velocity and Uc is the jet centreline velocity. In the near-field region
of a strong planar jet in a weak co-flow, i.e. where the jet velocity wj � wa, Bradbury
& Riley (1967) use dimensional arguments to show that the jet width scales as bj ∝ z.
Moreover, in the region where wj ∼ wa they show that bj ∝ z1/2, confirming both scalings
experimentally. To allow for the difference in entrainment between what they refer to as a
strong jet and a weak jet, in their theoretical treatment, Gaskin & Wood (2001) introduce
an entrainment function that is proportional to the co-flow momentum and predict mean
quantities that are in agreement with the experimental measurements of Bradbury & Riley
(1967).

Given the dearth of information concerning planar plumes, it has proven informative
to appeal to the literature on axisymmetric plumes in order to ascertain the primary
qualitative influence of a co-flow. These studies characterise the strength of the co-flow
relative to the plume by means of the velocity ratio

Ω0 = wa

wp0
, (1.2)

where wp0 is a characteristic vertical velocity of the plume at the source. In order to
distinguish between the co-flow velocity wa and the dimensionless co-flow velocity Ω0,
hereafter we refer to the latter as the strength of the co-flow.

Subbarao & Cantwell (1992) investigate the streamwise transition, from laminar flow to
turbulence, of a buoyant helium jet from a circular source in a co-flow of strength Ω0 = 0.5
(no explicit measure of the background turbulence is given). They reason that the
underlying instability observed in experiment is an inviscid, buoyancy-driven phenomenon
and suggest the co-flow imposes an ‘unusual’ degree of regularity on the jet by eliminating
random meandering.

For laminar axisymmetric thermal plumes, Riley & Tveitereid (1984) perform a
linear stability analysis, encompassing co-flow strengths in the range 0 < Ω0 < 5.
On dimensional grounds they adopt a characteristic plume velocity of the form
wp0 = f (E, cp, ν, ρ, g, φ), where E denotes the source heat flux, cp the specific heat
capacity, ν the kinematic viscosity and φ the coefficient of cubical expansion. Their
investigation was motivated by the experimental observation of the stabilising effect of a
co-flow on a laminar plume, although they do not state whose observation. Their analysis
confirmed that the co-flow increases the stability of the plume, producing a flattening of
the cross-stream vertical velocity profile combined with a reduction in the temperature
difference across the plume.

Evidently then, even a basic understanding of the consequences of the coupling between
a co-flowing environment and the local behaviour of a planar plume is absent. While
the study of stratified quiescent environments has meant that the transfer of buoyancy
between environment and plume has been examined in depth (see the review of Kaye
2008), the same cannot be stated for exchanges of momentum between an environment
co-flowing with a plume. This paper aims to bridge this gap by modelling the interaction of
a planar plume with a steady co-flowing stream and thereby offering insights into how the
dynamical behaviour of the plume adjusts in response to exchanges with its environment.

In § 2 our theoretical model is presented. At the outset we derive conservation equations
appropriate for a planar plume in a co-flow and establish that the local behaviour of the
plume is characterised by two dimensionless parameters: the scaled source Richardson
number, Γ0, and the ratio of the co-flow and plume source velocities, Ω0. We limit our
model to situations where the plume is entraining, as opposed to situations where fluid is
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detrained from the plume. For the latter, detrained fluid is expected to form a buoyant shell
around the main plume, fundamentally altering the underlying physics from the case we
consider. As § 2 demonstrates, this focus on entraining plumes corresponds to restricting
our attention to flows for which the plume velocity w > wa.

The remainder of the paper is laid out as follows. After developing the governing
equations in § 2, an expression for the variation of streamwise plume velocity with local
Richardson number is derived that holds irrespective of the source conditions. In § 3
the far-field asymptotic behaviour of the plume is investigated. Assuming the plume is
dynamically invariant in the far field, the asymptotic velocity and growth rate are deduced.
A notable consequence of plume–co-flow interaction is then presented. Specifically, the
asymptotic value of the plume Richardson number, Γ = Γf , is not a universal constant
as it is for quiescent surroundings, where Γf → 1 irrespective of the source value Γ0, but
varies with both Ω0 and Γ0. These results are then used to extend the work of Rajaratnam
& Lal (1983) on a plume from a line source in a co-flow, enabling explicit analytical
solutions for the width, vertical velocity and buoyancy to be developed. In § 4 we examine
the streamwise development of the plume, including its dynamical variability. For a pure
plume release, our solutions show that the co-flow can cause the plume width to linearly
decrease or induce necking, the latter giving the flow the appearance of a conventional
contracting lazy plume. Indeed, whilst for a quiescent environment the convergence of the
plume perimeter to a neck (db/dz = 0) is characteristic to lazy releases only, we show that
the co-flow may cause a neck to form for forced releases. In § 5 analytical solutions for
highly forced (Γ0 	 1) and highly lazy (Γ0 � 1) plumes in a weak co-flow (wa/w 	 1)
are presented for the dimensionless streamwise variation of plume velocity, width and
Richardson number. Our conclusions are drawn in § 6.

2. Theoretical modelling

The physical situation considered concerns a steady release of buoyant fluid with vertical
velocity w0 and density ρ0 from a slender rectangular source of width b0 and infinite
length, figure 1. The plume formed by this release issues into an unbounded environment
of uniform density ρa. The plume is assumed to be fully turbulent so that its flow is
independent of the Reynolds number and, as such, the effects of molecular diffusion
and viscous effects are negligible. The process of entrainment into this turbulent flow
gives rise to a horizontal entrainment velocity, ue, across the plume perimeter. The
environment flows smoothly with a uniform vertical velocity wa (= const.) such that the
plume and its environment are co-flowing, i.e. sgn(w0) = sgn(wa). The flow of the plume
and environment are assumed to be incompressible. Following Morton et al. (1956), we
make the standard modelling assumptions for the plume. We consider mean quantities,
i.e. those spatially averaged along the length of the plume (into the page, figure 1) and
in time. Denoting the mean local density of the plume as ρ, we restrict our analysis
to density differences between the plume and the environment that are small relative to
a reference density, i.e. we make the Boussinesq approximation, whereby ρ − ρa 	 ρa.
Accordingly, the buoyancy of the release at the source is g′

0 = g(ρa − ρ0)/ρa. Denoting
the local mean plume width as b and vertical velocity as w, the mean fluxes of volume Q,
(specific) momentum M and buoyancy B per unit length of the source are thus

Q =
∫ ∞

−∞
w dx, M =

∫ ∞

−∞
w2 dx and B =

∫ ∞

−∞
wg′ dx. (2.1a–c)

In terms of the fluxes (2.1a–c), the source conditions for the release are
Q = Q0, M = M0, B = B0 on z = 0. (2.2a–c)
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2.1. Conservation equations for a planar plume in a co-flow
In quiescent surroundings, measurements show that the bell-shaped cross-stream profiles
of velocity and buoyancy are self-similar and well represented by Gaussians (Rouse,
Yih & Humphreys 1952; Lee & Emmons 1961; Chen & Rodi 1980). However, Riley &
Tveitereid (1984) note that a co-flow flattens the velocity profile. A long-standing and
proven approach for modelling plumes in a wide range of settings has been to make
the simplifying assumption that the profiles are top hats. As such, and without clear
justification to choose otherwise, we too adopt this simplification. It is readily shown
(Appendix A) that the respective equations for the conservation of mass, momentum and
buoyancy may then be written

d
dz

[bw] = 2ue,
d
dz

[bw2] = bg′ + 2waue and
d
dz

[bwg′] = 0, (2.3a–c)

where it is clear that the co-flow, manifesting as the second term in (2.3b), serves to
transport momentum into an entraining plume (ue > 0 signifies flow from the environment
across the plume perimeter). To close this system of differential equations, the classic
entrainment assumption as proposed by Taylor (1945) is adopted. Accordingly, the
horizontal velocity at the plume perimeter is assumed to be directly proportional to a
characteristic vertical velocity, in this case, that of the plume relative to the co-flow. Thus,

ue = α(w − wa), (2.4)

where α(> 0) is the entrainment coefficient.
In his discussion on the development of the entrainment assumption, Turner (1986)

affirms that even the simplest assumption of a constant entrainment coefficient is
surprising in its ability to accurately predict flow behaviours over a wide range of problems
and scales. Indeed in quiescent surroundings, the treatment of pure (Morton et al. 1956),
forced (Morton 1959) and lazy plumes (Hunt & Kaye 2005) by means of a constant
entrainment coefficient has offered much insight. Following in this spirit, we also assume
α = const. in our simplified treatment of a plume in a co-flow. While we acknowledge
that measurements from one of the earliest studies of planar plumes, namely Rouse
et al. (1952), suggest a Gaussian entrainment coefficient of αG = 0.16, a number of other
measurements support a value closer to 0.10. For example, Ramaprian & Chandrasekhara
(1989) report αG = 0.11; both Yuan & Cox (1996) and Paillat & Kaminski (2014) report
αG = 0.126; and Parker et al. (2020) report αG = 0.10. Given that α = √

2αG, a top-hat
entrainment coefficient of α = 0.14 would not appear to be unreasonable for use in
a simplified model. For information on variable entrainment coefficients, the reader is
referred to Kotsovinos & List (1977) and van den Bremer & Hunt (2014).

Substituting for ue = α(w − wa) into (2.3) gives

d
dz

[bw] = 2α(w − wa),
d
dz

[bw2] = bg′ + 2α(w − wa)wa and
d
dz

[bwg′] = 0.

(2.5a–c)
In our framework, αwa > 0 and so the role of a general co-flow is now clear:
the momentum flux increases locally if the term (w − wa) is positive and decreases
if (w − wa) is negative. From the statement of volume conservation in (2.5a–c),
(w − wa) < 0 corresponds to a detrainment of fluid from the plume. Detrained fluid
likely remains in the proximity of the plume perimeter, thereby altering the density of
the environment through which the plume propagates. As such, we restrict our attention
to releases that entrain fluid, i.e. to co-flows for which (w − wa) > 0. Evaluating the
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integrals in (2.1a–c), the respective fluxes per unit length of volume, specific momentum
and buoyancy for top-hat profiles are

Q = bw, M = bw2 and B = bwg′. (2.6a–c)

Accordingly, (2.5a–c) reduces to

dQ
dz

= 2α

[
M
Q

− wa

]
,

dM
dz

= BQ
M

+ 2α

[
M
Q

− wa

]
wa,

dB
dz

= 0. (2.7a–c)

Scaling quantities on the source conditions, we introduce

Q̂ = Q
Q0

, M̂ = M
M0

, B̂ = B
B0

, ζ = αz
b0

, Ω0 = wa

w0
, (2.8a–d)

and define the source Richardson number as

Γ0 = B0Q3
0

2αM3
0
. (2.9)

With reference to § 1, note that wp0 = w0 in our definition (2.8a–d) of the co-flow strength
Ω0. From (2.7c), the buoyancy flux is invariant and in dimensionless form B̂ = 1. As
previously established, in quiescent surroundings Γ0 = 1 corresponds to a pure plume
release, Γ0 < 1 to forced releases and Γ0 > 1 to lazy releases (e.g. van den Bremer &
Hunt 2014). In terms of the dimensionless quantities (2.8a–d) and (2.9), the equations in
(2.7) become

dQ̂
dζ

= 2

[
M̂

Q̂
− Ω0

]
,

dM̂
dζ

= 2Γ0
B̂Q̂

M̂
+ 2

[
M̂

Q̂
− Ω0

]
Ω0,

dB̂
dζ

= 0. (2.10a–c)

As required, (2.10a–c) reduces to the governing equations for a planar plume in quiescent
surroundings (Lee & Emmons 1961) on setting Ω0 = 0. As defined, the Richardson
number and co-flow strength arise naturally through the non-dimensionalisation of the
governing equations.

2.2. Change of variable: Γ -based approach
The local Richardson number

Γ = BQ3

2αM3 = bg′

2αw2 , (2.11)

may be interpreted as a ratio of the local mass, momentum and buoyancy fluxes and,
thereby, offers direct insight into the local dynamical behaviour of the plume. For example,
if Γ decreases in the streamwise direction, as observed in our results in § 4, this trend
signifies that the role of the momentum flux is increasing relative to the buoyancy flux.
Moreover, based on the value of Γ relative to unity, the plume may be classified locally
as forced, pure or lazy. In their study of planar plumes in quiescent surroundings, van den
Bremer & Hunt (2014) adopt the approach developed by Hunt & Kaye (2005) whereby the
conservation equations are recast in terms of Γ , the objective of this change of variable
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being to enable the dynamical variability to be solved for directly. Following this approach,
we first note that

dΓ

dz
= 1

2α

[
Q3

M3
dB
dz

− 3BQ3

M4
dM
dz

+ 3BQ2

M3
dQ
dz

]
. (2.12)

Substituting for dB/dz, dM/dz and dQ/dz from (2.7) into (2.12) and introducing the
dimensionless plume width and velocity as

β = b
b0

and ω = w
w0

, (2.13a,b)

respectively, yields the required differential equation governing the streamwise variation
of Γ , (2.14a). Similar manipulation of the two remaining conservation equations, (2.7a)
and (2.7b), yields the associated differential equations for the streamwise variation of β

and ω

dΓ

dζ
= 6

Γ

β

[
1 − Γ − 2

Ω0

ω
+
(

Ω0

ω

)2
]

, (2.14a)

dβ

dζ
= 2

[
2 − Γ − 3

Ω0

ω
+
(

Ω0

ω

)2
]

, (2.14b)

dω

dζ
= 2

ω

β

[
Γ − 1 + 2

Ω0

ω
−
(

Ω0

ω

)2
]

. (2.14c)

The dimensionless source conditions become

Γ = Γ0, β = 1, ω = 1 on ζ = 0. (2.15a–c)

On setting Ω0 = 0, (2.14) reduce to the governing equations derived by van den Bremer
& Hunt (2014) − the sole differences are factors of two which result from our scaling
being based on the full width of the plume, rather than the half-width. For the purpose of
reference the solutions for a quiescent environment (Ω0 = 0) are given in Appendix C.

To solve for the streamwise velocity, dividing (2.14a) by (2.14c) yields
dΓ/dω = −3Γ/ω, which may be integrated straightforwardly to give

ω =
(

Γ0

Γ

)1/3

. (2.16)

The corresponding solutions of (2.14a)–(2.14c) for Γ and β are dealt with in § 4. Whilst Ω0
does not appear explicitly in (2.16), whose forms appears identical to the solution derived
for the Ω0 = 0 case (Appendix C), the effect of a co-flow is to modify the variation of
Γ (ζ ) relative to the Ω0 = 0 case.

3. Asymptotic solutions

Prior to investigating the near-source behaviour (§§ 4 and 5), we examine the effect of
Γ0 and Ω0 on the far-field behaviour of plumes from sources of finite width and develop
solutions for the plume from an idealised line source in § 3.4.
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Buoyant plumes in a uniform co-flow

3.1. Asymptotic velocity ωf

In the far field, Γ remains positive and it is expected that dΓ/dζ → 0, i.e. the plume
approaches a dynamically invariant behaviour. Thus, while (2.14b) and (2.14c) are
unchanged, (2.14a) reduces to

0 = 1 − Γ − 2
Ω0

ω
+ Ω2

0
ω2 . (3.1)

Substituting (3.1) into (2.14c) gives

dω

dζ
= 0 =⇒ ω = ωf = const., (3.2)

where the subscript f is used to denote the far-field value of a quantity. On physical grounds
ωf > 0 as the plume and the environment are co-flowing. Substituting (2.16) into (3.1)
leads to the following cubic polynomial in ωf :

ω3
f − 2Ω0ω

2
f + Ω2

0ωf − Γ0 = 0, (3.3)

whose discriminant can be written as

Δ = Γ0(4Ω3
0 − 27Γ0). (3.4)

The asymptotic velocity is, in general, not equal to the co-flow velocity. Indeed, these
velocities are equal only for a true jet (Γ0 = 0), as is readily confirmed on substituting
ωf = Ω0 into (3.3). With k ∈ {0, 1, 2} and defining the constant Ck as

Ck = 1
3√2

3

√
(2Ω3

0 − 27Γ0 −
√

Γ0(729Γ0 − 108Ω3
0 ))

(
−1 + √−3

2

)k

, (3.5)

where 3
√

() indicates the principal root, the roots of (3.3) are

ωf = 1
3

(
2Ω0 − Ck − Ω2

0
Ck

)
. (3.6)

For Γ0 > 4Ω3
0/27, (3.3) has one real-valued root as the discriminant is strictly

negative. Moreover, this root is positive as may be reasoned as follows: the curve
y = ω3

f − 2Ω0ω
2
f + Ω2

0ωf − Γ0 intersects the ordinate at y = −Γ0 and, as there is a
single real root and limwf →+∞( y) = +∞, the curve must intersect the abscissa once,
at a positive value of wf . The other two roots are complex conjugates and are therefore
discounted on physical grounds, leaving a single admissible root for the far-field velocity.
In this case, the valid root is obtained on setting k = 1. Noting that the local co-flow
strength Ω can be expressed as

Ω = Ω0/ω, (3.7)

figure 2 plots the direction of the vector {dΓ/dζ, dΩ/dζ } in (Γ, Ω) space. This vector
plot demonstrates that the stable solutions of (3.3) are those for which Ω = Ω0/ω < 1 as,
in this region, the vectors point towards these solutions.

For Γ0 < 4Ω3
0/27, there are three real-valued roots which, by Descartes sign theorem,

may all be positive. The valid root in this case is identified by insisting Ω0/wf ≤ 1
(equivalently (wf − wa) ≥ 0), i.e. that there is no detrainment, which figure 2 demonstrates
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Figure 2. Vector plot showing the direction of the vector {dΓ/dζ, dΩ/dζ } in (Γ, Ω) space. Locations where
dΓ/dζ = dΩ/dζ = 0 are shown in red. These locations are (0,0), (1,0), (0,1) and points satisfying the equation
Γ = Ω2 − 2Ω + 1 as shown by the red curve. Vectors have been normalised by their magnitude so as to aid
interpretation of the plot.
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Figure 3. Variation of asymptotic vertical velocity and Richardson number with Γ0 and Ω0. (a) Contours
of constant ωf with colour bar indicating the magnitude of ωf . (b) Contours of constant Γf with colour bar
indicating the magnitude of Γf .

is a necessary condition for a stable solution in the far field. In this case, the valid root is
obtained on setting k = 2.

Point A at (Γ0 = 0, Ω = Ω0 = 0) in figure 2 marks the classic jet solution for
which any incremental increase in the buoyancy of the release (corresponding to an
increase in Γ ) or co-flow strength (corresponding to an increase in Ω) drives the flow
away from this unstable solution. The stable classic pure plume solution at Point B
(Γ0 = 1, Ω = Ω0 = 0) and all points along the red curve, which plots Γ = Ω2 − 2Ω + 1
from (3.1), are the coordinates in (Γ, Ω) space where dΓ/dζ = dΩ/dζ = 0. Note that for
Ω = Ω0/ω ≤ 1 the arrows point towards the curve, indicating that those solutions are
stable.

3.2. Asymptotic growth rate
Subtracting (3.1) from (2.14b) gives

dβ

dζ
= 2

(
1 − Ω0

ωf

)
= const., (3.8)
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Buoyant plumes in a uniform co-flow

and, hence, the relative asymptotic growth rates in co-flowing and quiescent environments
are

dβ

dζ

/
dβ

dζ

∣∣∣∣
Ω0=0

= 1 − Ω0

ωf
. (3.9)

For the reference case of a zero co-flow, (3.8) reduces to the positive growth rate
dβ/dζ = 2 in accordance with the predictions of Lee & Emmons (1961) and van den
Bremer & Hunt (2014). Integrating (3.8) gives the far-field width as

β = b
b0

= f (ζ ) + 2ζ − 2
Ω0

ωf
ζ, (3.10)

with f (0) = 1 and f (ζ ) → C = const. for ζ → ∞. While presented here as an asymptotic
solution, (3.10) is valid for all ζ for the special case of a linearly expanding plume
(analogous to a pure release in zero co-flow). Further consideration of this special case
(§ 4.2) offers additional insight into the role of the co-flow. Given Ω0 and ωf are positive
constants, Ω0/ωf > 0, and it is clear that the third term in (3.10) acts to reduce the plumes
width, cf. the expression for β in (C 1).

3.2.1. The case Ω0/ωf > 1
Equation (3.8) shows that dβ/dζ is negative in the far field and, thus, the plume contracts.
Given Ω0/ωf > 1 is equivalent to (w − wa) < 1, this reduction in width is due to
detrainment. This detrainment causes the plume width to reduce to zero, (3.10), implying
a contradiction of the current model and is not considered further.

3.2.2. The case Ω0/ωf = 1
From (3.10), dβ/dζ = 0 and hence the asymptote has constant width. Substitution of
Ω0/ωf = 1 into (2.14b) shows that this far-field solution requires Γ0 = 0. Furthermore,
setting Γ0 = 0 and Ω0/ωf = 1 in (2.14a) shows that dΓ/dζ = 0 =⇒ Γ (ζ ) = Γ0, i.e. the
flow is dynamically invariant. From (2.16), ω = (Γ0/Γ )1/3 = 1 and thus Ω0 = 1. In other
words, it is only possible for the release and co-flow to have an identical velocity in the far
field (Ω0/ωf = 1) for a non-buoyant release into a co-flow with an identical velocity, i.e.
w0 = wa, the release simply forming a continuation of the co-flowing environment.

3.2.3. The case 0 < Ω0/ωf < 1
The plume expands, although at a reduced rate than in quiescent surroundings, see (3.9).
The resulting linearly increasing width and constant vertical velocity asymptotes, (3.2),
are consistent with the far-field scalings of Rajaratnam & Lal (1983). The flows that lead
to the far-field behaviours 0 < Ω0/ωf < 1 form the focus of the remainder of this paper.

3.3. Asymptotic Richardson number
The far-field Richardson number Γ = Γf is obtained on substitution of ωf from (3.6) into
(2.16)

Γf = Γ0

ω3
f

= 27Γ0

(
2Ω0 − Ck − Ω2

0
Ck

)−3

where k =
{

1, if Γ0 > 4Ω3
0/27

2, if Γ0 < 4Ω3
0/27.

(3.11)

The variation of the far-field velocity (3.6) and Richardson number (3.11) with Γ0 and Ω0
is shown on the contour plots in figure 3. It is apparent that the velocity in the far field
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ωf increases as either the strength of the co-flow or source Richardson number increases
(figure 3a).

On the abscissa Ω0 = 0 of figure 3(b), Γf = 1 irrespective of the source Richardson
number as was to be expected based on existing results for plumes in quiescent
surroundings. Clearly, the effect of the co-flow is to reduce the far-field value of Γf
relative to the reference case of a zero co-flow. In other words, the co-flow increases the
‘forced-ness’ of the far-field plume.

3.4. Power-law solutions for a line source
On dimensional grounds, power-law solutions for the plume that develops from a line
source take the form

w − wa = c1, b = c2z, g′ = c3z−1, (3.12a–c)

for the unknown coefficients c1, c2 and c3. Rajaratnam & Lal (1983) provide implicit
relationships for the coefficients and comment that if the value of one is known, say from
experiment, then the other two may be determined. We show below how each coefficient
can be determined explicitly with reference to the results developed above.

Substituting for w = wf from (3.6) into (3.12a–c) leads to

c1 = w0(ωf − Ω0) = −w0

3

(
Ω0 + Ck + Ω2

0
Ck

)
. (3.13)

Substituting for ζ = αz/b0 in (3.10) gives

b = b0f (ζ ) + 2α

(
1 − Ω0

ωf

)
z. (3.14)

Asymptotically far from the source, the first term in (3.14) is diminishingly small relative
to the second, and, hence, equating (3.14) with b = c2z from (3.12a–c) gives

c2 = 2α

(
1 − Ω0

ωf

)
. (3.15)

In the far field, Γ = Γf = Γ0/ω
3
f from (2.16) and b = 2α(1 − Ω0/ωf )z from (3.14).

Thus, given g′ = 2αw2Γ/b from (2.11), the buoyancy in the far field may be written as
g′ = c3z−1 where

c3 = Γ0w2
0(

1 − Ω0

ωf

)
ωf

. (3.16)

As an aside, we note from (3.13) that c1/w0 = (1 − Ω0/ωf )ωf and, hence, c3 = Γ0w3
0/c1.

The variation of the non-dimensional coefficients k1 = c1/w0, k2 = c2/α and k3 = c3/w2
0

with the co-flow strength and source Richardson number are plotted in figure 4. As
expected, for Γ0 = 1 and Ω0 = 0, k1 = 1, i.e. the vertical velocity above a line source
is invariant.
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Figure 4. The variation of the non-dimensional coefficients k1 = c1/w0, k2 = c2/α and k3 = c3/w2
0 with

(a) Ω0 and (b) Γ0 for the example values of Γ0 = 1 and Ω0 = 0.5, respectively.

4. Streamwise variation for general source conditions

Prior to examining the behaviours that are specific to the individual class of release,
namely, forced (§ 4.2), pure (§ 4.3) and lazy (§ 4.4), we first remark on the trends common
to all. For each class, figure 5 plots the streamwise variation of plume width and
Richardson number for different strengths of co-flow, and figure 6 plots the streamwise
variation of the plume velocity ω and dilution g′/g′

0. The solutions shown in these plots
were obtained by numerically integrating (2.14) subject to the relevant source conditions.
In each subplot, the solid line depicts the reference case of a co-flow with zero velocity.
Re-plotted on logarithmic scales in Appendix B, these solutions confirm the anticipated
far-field power-law dependencies (Rajaratnam & Lal 1983) and enable an assessment of
whether the near-source variations approximate to power laws. As Ω0 increases, common
to each class of release there is:

(i) a narrowing of the plume relative to the zero co-flow reference case and, for
a sufficiently strong co-flow, the formation of a ‘neck’ at which the width is a
minimum; the conditions that result in necking behaviour are determined in § 4.1;

(ii) a reduction in the asymptotic value of the Richardson number Γf as is indicative
of a far-field plume with an excess of momentum flux relative to the reference
case. For the co-flows of interest, the fluid entrained enhances the vertical gradient
of momentum in the plume (2.5a–c) and it is therefore not surprising that these
co-flows lead to a reduction in Γf compared with the reference case. The asymptotic
behaviour of Γ relative to the source value Γ0 is more nuanced, varying with the
class of release, and is considered in §§ 4.2–4.4; and

(iii) a reduction in dilution; the reasons underpinning this characteristic behaviour are
discussed below.

Regarding (i) and (ii), a narrowing in width is also a feature shared by plumes subjected
to off-source heating (Bhat & Narasimha 1996; Agrawal & Prasad 2004; Hunt & Kaye
2005). The similarity, however, extends no further. By contrast to the far-field ‘forced’
behaviour in the presence of a co-flow, plumes with off-source heating asymptote to ‘lazy’
behaviour. Consistent with the resulting streamwise variations in Richardson number,
these contrasting dynamical behaviours were to be expected as the co-flow provides
‘off-source’ momentum rather than buoyancy.

Regarding (iii), given the entrainment velocity ue = α(w − wa), an increase in the
velocity of the co-flow relative to the plume reduces ue and, hence, the flow rate entrained
into the plume. Thus, the dilution of the buoyancy or a tracer transported by the plume
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Figure 5. The effect of the co-flows Ω0 = {0, 0.5, 1} on the streamwise variation of plume width β (left
column) and local Richardson number Γ (right column) for (a–b) forced (Γ0 = 0.2), (c–d) pure (Γ0 = 1) and
(e–f ) lazy (Γ0 = 20) release conditions.

is reduced on account of a co-flowing environment. For a given Ω0, it is apparent from
figure 6 that releases with a greater source Richardson number dilute over a shorter
streamwise distance. The trends predicted for the three classes of release are, however,
qualitatively similar. This similarity becomes clear with the aid of successively magnified
views of the near-source region of figure 6(f ) (see Appendix D); as this region is magnified,
the trends predicted for pure releases (figure 6d) and forced releases (figure 6b) are
immediately apparent.

The co-flow Ω0 = 1 is unique in that it eliminates the shear between the release and
co-flow at the level of the source. A particularly striking feature is apparent for this co-flow,
namely, there is almost no dilution of the released fluid in the immediate near-source
region. This region of weak dilution, most evident in figure 6(b) (see also Appendix D), can
be explained by considering the entrainment velocity at, and near, the source. Noting the
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Figure 6. The effect of the co-flows Ω0 = {0, 0.5, 1} on the streamwise variation of vertical velocity ω (left
column) and dilution g′/g′

0 (right column) for (a–b) forced (Γ0 = 0.2), (c–d) pure (Γ0 = 1) and (e–f ) lazy
(Γ0 = 20) release conditions.

dimensionless entrainment velocity may be expressed as

ue

wa
= α

(
w
wa

− 1
)

= α

(
1 − Ω

Ω

)
, (4.1)

it is clear that a zero entrainment velocity and, hence, an absence of dilution at the source is
unique to the co-flow Ω = Ω0 = 1. Given the absence of a velocity differential, the release
is entirely buoyancy dominated on entering the co-flow and, thus, contracts (dβ/dζ < 0)

immediately upon release. This contraction is readily confirmed on noting that for Ω0 = 1,
Ω0/ω|ζ=0 = 1 and, hence, from (2.14b)

dβ

dζ

∣∣∣∣
ζ=0

= 2

[
2 − Γ − 3

Ω0

ω
+
(

Ω0

ω

)2
]∣∣∣∣∣

ζ=0

= −2Γ0 for Ω0 = 1. (4.2)
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The gradient (4.2) is negative for all Γ0 /= 0. Thus, all releases contract under conditions
of no shear at source, while releases with a greater source Richardson number exhibit a
more pronounced contraction.

4.1. Plume contraction
In the above, plume contraction (dβ/dζ < 0) has been considered only for the co-flow
Ω0 = 1. Contraction in the absence of a co-flow occurs on account of the streamwise
acceleration of the plume when the local Richardson number Γ > 2 (van den Bremer &
Hunt 2014). It is clear from figure 5 that a contraction and the associated necking can also
occur for both forced and pure releases for a sufficiently strong co-flow. This behaviour is
of particular note as only lazy plumes can exhibit a contraction in the absence of a co-flow.
From (2.14b), a contraction requires that locally

Γ > 2 − 3
Ω0

ω
+
(

Ω0

ω

)2

. (4.3)

As ζ → 0, ω → 1 and so a contraction immediately above the source requires

Γ0 > 2 − (3Ω0 − Ω2
0 ). (4.4)

For the co-flows of interest, i.e. 0 < Ω0 ≤ 1, (3Ω0 − Ω2
0 ) > 0 and, hence, a co-flow

lowers the threshold source Richardson number above which contraction occurs. For
the strongest co-flow considered (Ω0 = 1) this threshold is Γ0 > 0, indicating that
contraction would occur irrespective of the class of release. Setting Γ0 = 1 reveals that
Ω0 = 3/2 − √

5/4 is the minimum co-flow strength which causes a pure release to
contract at source.

That the co-flow causes plume contraction at a lower source Richardson number than in
quiescent surroundings can be explained by considering the acceleration of the released
fluid adjacent to the source. A defining characteristic of a co-flow is the production of a
strong positive streamwise velocity gradient in the near-source region for pure and lazy
releases (figures 6c and 6e) a gradient that increases with Ω0 and decreases downstream.
As ζ → 0, β → 1, ω → 1 and Γ → Γ0, and so (2.14c) reduces to

dω

dζ

∣∣∣∣
ζ=0

= 2(Γ0 − 1) + 2(2Ω0 − Ω2
0 ). (4.5)

Inspection of the second term of (4.5) reveals 2(2Ω0 − Ω2
0 ) > 0 for 0 < Ω0 ≤ 1 and that

its magnitude increases with Ω0. Thus, the presence of a co-flow enhances the acceleration
of the release and a maximum acceleration occurs for Ω0 = 1, i.e. for a co-flow that
produces no shear at the source. Whether or not the release contracts is determined by
the interplay between entrainment (which acts to increase plume width) and acceleration
(which, by conservation of mass, acts to decrease plume width). At the source, (2.14b)
reduces to

dβ

dζ

∣∣∣∣
ζ=0

= 2(2 − Γ0 − 3Ω0 + Ω2
0 ), (4.6)

which, combined with (4.5) yields
dβ

dζ

∣∣∣∣
ζ=0

= 2(1 − Ω0) − dω

dζ

∣∣∣∣
ζ=0

. (4.7)

Given that 2(1 − Ω0) → 0 and dω/dζ |ζ=0 increases as Ω0 → 1, (4.7) demonstrates
that the acceleration dominates the interplay as the co-flow strengthens, leading to
dβ/dζ |ζ=0 < 0, i.e. to plume contraction.
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As a final remark on plume contraction, it is readily shown (Appendix E) that the
Richardson number at the neck Γn reduces with increasing Ω0, the magnitude of the
reduction decreasing as Γ0 increases.

4.2. The case Γ0 < 1
The solutions plotted in figure 5(a) show a pronounced reduction in the width of the forced
release as the co-flow increases in strength, and the appearance of a local minimum, i.e.
of a neck. The accompanying plot, figure 5(b) showing the streamwise variation of Γ ,
reveals the profound influence a co-flow has on the dynamical behaviour. In the absence
of a co-flow, Γ increases monotonically towards unity as is well documented. However, for
a sufficiently weak co-flow, Γ (ζ ) is an increasing function of ζ and leads to Γ0 < Γf < 1.
In other words, the relative excess of momentum flux introduced at the source is reduced
downstream, where the plume is locally less forced than at the source. By contrast, for
both pure and lazy releases into non-zero co-flows, Γ (ζ ) decreases towards the far-field
value Γf < 1 following similar trends (figures 5d and 5f ). Thus, their far-field behaviour
is ‘forced’, characterised by a relative excess of momentum flux.

Returning to forced releases, given dΓ/dζ |ζ=0 > 0 for Ω0 = 0 and dΓ/dζ |ζ=0 < 0 for
Ω0 = 1, see (2.14a) and figure 5(b) it is natural to enquire whether a particular co-flow
strength, Ω0 = Ω∗

0 , leads to a dynamically invariant plume. From (2.14a)

dΓ

dζ
= 0 =⇒ 6

Γ

β

[
1 − Γ − 2

Ω∗
0

ω
+
(

Ω∗
0

ω

)2
]

= 0 =⇒ 1 − Γ0 − 2
Ω∗

0
ω

+
(

Ω∗
0

ω

)2

= 0,

(4.8)
provided Γ/β /= 0. Insisting dΓ/dζ = 0, (2.16) reduces to ω = 1 which on substitution
into (4.8) yields the required co-flow, namely

Ω∗
0 = 1 ±

√
Γ0. (4.9)

In conjunction with a constant plume velocity ω, this co-flow necessarily results in a
linearly varying plume width, as is confirmed from (2.14b)

dβ

dζ
= ∓2

√
Γ0 =⇒ β = ∓2

√
Γ0ζ + 1 for Ω0 = Ω∗

0 . (4.10)

Evidently, the smaller root Ω∗
0 = 1 − √

Γ0 results in a linearly increasing plume width
(dβ/dζ > 0) and the larger root, a linearly decreasing plume width (dβ/dζ < 0). The
larger root Ω∗

0 = 1 + √
Γ0 necessarily results in detrainment (see (4.1)) and so is not

considered further.

4.3. The case Γ0 = 1
As the sole restriction placed on the derivation of (4.9) is Γ/β /= 0, the expression for
Ω∗

0 holds across all three classes of release with the exclusion of the jet (Γ0 = 0). For a
pure plume release, (4.9) reproduces the classic result that Γ is invariant in a co-flow of
zero velocity and provides the new result that the co-flow Ω0 = 2 causes a pure release to
decrease linearly in width until β = 0, at which point the model breaks down.

As the co-flow strengthens, the plume width reduces markedly (figure 5c). The plume
outline transitions from straight sided (with Ω0 = 0) to resembling a lazy plume in
quiescent surroundings owing to the appearance of a neck (e.g. with Ω0 = 1). Moreover,
the relative velocity of the plume (w − wa) decreases. Thus in the reference frame of the
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Figure 7. Variation of the plume neck with co-flow strength for the lazy release Γ0=20; (a) βn vs Ω0, (b) ζn
vs Ω0 (solid line), and Γn vs Ω0 (dashed line). Here, • (blue) show the solutions of van den Bremer & Hunt
(2014) for a quiescent environment.

plume, the inertial force decreases and, consequently, the buoyancy force associated with
the plume plays an increasingly dominant role – this trend ultimately leading to plume
contraction (see § 4.1).

The gradient dΓ/dζ reveals a strong dynamical variation in the near field of the plume,
a variation that increases with Ω0. Further downstream, the gradient weakens and the
subsequent vertical variation is slow as the plume asymptotes to its far-field behaviour
(§ 3.3). Notably, the release becomes increasingly forced downstream as the co-flow
strengthens.

4.4. The case Γ0 > 1
In the absence of a co-flow, Γ rapidly converges to unity due to the excess of buoyancy
relative to a pure plume (van den Bremer & Hunt 2014). This rapid variation is also
evident in the presence of a co-flow (figure 5f ). Increasing the strength of the co-flow also
reduces the plume width, though to a considerably lesser extent than for pure and forced
releases. Moreover, the co-flow accentuates the plume neck, which narrows, forms further
downstream and at a lower local Richardson number. These trends are shown in figure 7 for
the example release Γ0 = 20. The location and width of the neck was found numerically
by locating the sign change in dβ/dζ . The closed-form solution for Γn (Appendix E) was
derived by substituting (2.16) into (2.14b) and setting dβ/dζ = 0.

4.5. Adjustment to locally pure plume behaviour
To acquire further insight into the role of a co-flow it is informative to examine the
streamwise distance over which a release adjusts to locally pure plume conditions. The
‘adjustment’ length ζΓ =1 over which this dynamical variation occurs is defined such that
Γ (ζΓ =1) = 1 and, as a consequence, is meaningful only for releases for which Γ0 > 1. In
quiescent surroundings Γ (ζ ) → Γf = 1 as ζ → ∞ for Γ0 /= 1, i.e. the adjustment length
is infinite for Γ0 > 1. It is clear, however, that a co-flow significantly alters the behaviour
of Γ (ζ ), reducing the far-field Richardson number to a value below unity (figure 5). With
reference to (2.14a)

ζΓ =1 =
∫ ζΓ =1

0
dζ =

∫ 1

Γ0

β

6Γ

(
1 − Γ − 2

Ω0

ω
+
(

Ω0

ω

)2
)dΓ. (4.11)
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Figure 8. The vertical distance ζΓ =1, (4.11), over which the release adjusts to locally pure plume conditions
plotted against Γ0 for Ω0 = {0.01, 0.1, 1}. The plot cannot be extended to forced releases as these never attain
Γ = 1 for Ω0 /= 0. The figure was generated by numerically integrating (2.14) and interpolating to find the
height at which Γ = 1.

Comparing the finite distance (4.11) over which the Richardson number reduces from
Γ = Γ0 (> 1) to Γ = 1 for different strengths of co-flow allows us to establish whether
the inertia of the co-flow or the buoyancy force of the plume is dominant in controlling
the dynamical behaviour. Figure 8 plots ζΓ =1 vs Γ0 for non-zero co-flows that vary by
two orders of magnitude. Below each curve the plume is locally lazy (i.e. for ζ < ζΓ =1),
above each curve the plume is locally forced (i.e. for ζ > ζΓ =1) and on the curves the
plume is pure. Evidently, the adjustment to a pure plume state is now attained over a finite
distance. Moreover, for ζ > ζΓ =1 the release continues to adjust such that asymptotically
Γ → Γf < 1. As the co-flow increases in strength, ζΓ =1 decreases and the variation of
ζΓ =1 with Γ0 weakens − note the flatness of the curve when Ω0 = 1. The decrease in
ζΓ =1 can be attributed to the increase in momentum transported by the plume as the
co-flow strengthens, an increase that acts to reduce Γ , see (2.11).

The weakening variation of ζΓ =1 with Γ0 as Ω0 increases is indicative of co-flows
having an increasingly dominant influence on plume behaviour. That ζΓ =1 hardly varies
with Γ0 for the co-flow Ω0 = 1 (figure 8 for Γ0 � 5) suggests that, as defined, Ω0 = 1
be regarded as a ‘strong’ co-flow; this assertion is consistent with this co-flow reducing
the shear at the source to zero (§ 4). However, while nuanced, the role of buoyancy on the
interaction between co-flow and plume is evident in figure 8; note the decreasing spacing
between the three curves as Γ0 increases, a trend signifying that the influence of a given
co-flow on the plume lessens for increasingly buoyancy dominated releases. Indeed, this
result is also borne out in figure 5.

5. Analytical solutions for weak co-flows

Analytical solutions to the governing system of equations, (2.14), are now presented for
highly forced (Γ0 	 1) and highly lazy (Γ0 � 1) releases into weak co-flows, specifically
those that satisfy

Ω0/ω 	 1. (5.1)
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Figure 9. Values of β, ω and Γ . Solid lines represent the numerical solutions of (3.6). Dashed lines
represent the analytical solutions for the limits of: (Left column) highly forced release in weak co-flow for
(Γ0 = 0.01, Ω0 = 0.1) (§ 5.1); (Right column) highly lazy release in weak co-flow for (Γ0 = 100, Ω0 = 0.1)

(§ 5.2).

To this end, the quadratic terms (Ω0/ω)2 are neglected in the governing equations (2.14).
These solutions, developed in § 5.1 and § 5.2 for β(ζ ), ω(ζ ) and Γ (ζ ), are plotted in

figure 9 (dashed line) together with the numerical solutions of (2.14) (solid line). From
(2.11) and (2.16), the dimensionless buoyancy is then known from β(ζ ) and ω(ζ ):

g′

g′
0

= ω2

β

Γ

Γ0
= 1

βω
. (5.2)

In order to account for the rapid dynamical variation of highly lazy releases toward their
asymptotic states relative to the slow adjustment of highly forced releases, the individual
analytical solutions are plotted over an identical dynamical range, rather than over an
identical streamwise distance. Accordingly, the vertical axes in figure 9 span different
ranges of ζ , ranges corresponding to those over which the Richardson number Γ varies
from the source value to 50 % of the far-field value.

932 A41-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1004


Buoyant plumes in a uniform co-flow

5.1. Highly forced releases Γ0 	 1
For inertially dominated releases (Γ 	 1), the governing equations (2.14) are simplified
on making the approximation 1 − Γ ≈ 1 (cf. Hunt & Kaye 2005). The resulting coupled
differential equations can then be straightforwardly solved to show

Γ = Γ0

ω3 , (5.3a)

β = 1
ω3/2

(
1 − 2Ω0

ω − 2Ω0

)1/2

, (5.3b)

ζ = (1 − 2Ω0)
1/2

2Ω2
0

[
(1 − Ω0/ω)

(1 − 2Ω0/ω)1/2 − 1 − Ω0

(1 − 2Ω0)1/2

]
. (5.3c)

Re-arranging the latter for ω gives

ω = Ω0

1 − f + ( f ( f − 1))1/2 where f =
(

2Ω2
0

(1 − 2Ω0)1/2 ζ + 1 − Ω0

(1 − 2Ω0)1/2

)2

. (5.4)

As such, the streamwise variations β(ζ ), ω(ζ ) and Γ (ζ ) are known functions. Figure 9
(left column) plots the streamwise variations of (β, ω, Γ ) from (5.3) for a representative
forced release and weak co-flow. For the case shown, namely, (Γ0 = 0.01, Ω0 = 0.1), the
analytical solutions for β, ω and Γ remain within 10 % of the full numerical solution
for ζ < 150, ζ < 7.62 and ζ < 2.65, respectively. As we have taken α = 0.14, ζ = 0.5 is
equivalent to a streamwise distance of 3.6 source widths.

5.2. Highly lazy releases Γ0 � 1
For buoyancy dominated releases (Γ � 1, so that Γ − 1 ≈ Γ ) the governing equations
(2.14) can again be simplified and solved to show that

Γ = Γ0

ω3 , (5.5a)

β = 1
ω

(
Γ0 + 2Ω0

Γ0 + 2Ω0ω2

)1/4

, (5.5b)

ζ = 1
2Ω0

[
1 −

(
Γ0 + 2Ω0

Γ0 + 2Ω0ω2

)1/4
]

. (5.5c)

The expression for ζ can be rearranged for ω, yielding

ω =
(

Γ0 + 2Ω0

2Ω0(1 − 2Ω0ζ )4 − Γ0

2Ω0

)1/2

. (5.6)

Figure 9 (right column) compares the analytical expressions in (5.5) and (5.6) with the
numerical solutions to (2.14) for a representative highly lazy release issuing into a weak
co-flow (Ω0 = 0.1, Γ0 = 100). The analytical solutions for β, ω and Γ are within 10 % of
the full numerical solutions for ζ < 0.016, ζ < 0.027 and ζ < 0.012, respectively.
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6. Conclusions

Given the inherent difficulties in providing an exact reproduction within the laboratory
setting of a line source plume, or a sufficiently high aspect ratio source of finite width,
with uniform release conditions along its entire length in a turbulence-free uniform
co-flowing vertical stream, research has been hampered by a complete absence of detail
surrounding their behaviour. Consequently, even a basic understanding of these flows had
eluded us.

We set out to characterise how a co-flow affects the plume, specifically its growth
rate, vertical velocity and dilution and, via the streamwise variation of the Richardson
number, its dynamical variability. This important step was achieved by means of a
theoretical model, whereby, the underlying governing conservation equations were derived
based on a constant α-formulation and top-hat profiles for velocity and buoyancy.
This simplified approach was taken so as to gain a first insight. The solutions of the
governing equations were subsequently examined for the entire spectrum of possible
source conditions, i.e. those spanning the classes of forced, pure and lazy plume
releases.

Following this approach it proved possible to derive analytical solutions for highly
forced and highly lazy releases in weak co-flows, as well as power-law solutions for
the case of a line plume. These solutions agreed closely with the full solution obtained
numerically. Based on our analysis, the behaviour of a plume in a co-flow was shown to
be characterised by the source Richardson number, Γ0, and the ratio of the co-flow and
plume source velocities, Ω0. Regarding the latter, we focused on entraining (rather than
detraining) plumes which we reason require the co-flow to not exceed Ω0 = 1.

For all release conditions, the co-flow was shown to cause a reduction in the dilution
relative to a plume with identical source conditions released into quiescent surroundings.
This result has potentially wide implications, including to controlling the delivery of cool
air from ceiling level (with minimal, or an absence of, dilution) to occupants in rooms by
means of a shrouding stream of co-flowing air at ambient temperature.

In stark contrast to behaviour that is unique to lazy plumes in quiescent surroundings,
we have shown that in the presence of a co-flow all three classes of release can contract
to a neck in the near-source region before expanding downstream. We derived the
minimum co-flow strength that produces necking behaviour and analysed the position and
characteristics of the plume at the neck. Recognising that a co-flow causes a reduction in
the relative velocity of the plume, contraction was expected given the acceleration of the
plume fluid that stemmed from the associated strengthening of the buoyancy force relative
to inertia.

Seeking the analogue of the dynamically invariant behaviour that is unique to pure
plumes in quiescent surroundings, we have shown that dynamical invariance is possible
only for forced releases (Γ0 < 1) and deduced that unique to each is the co-flow strength
Ω0 = 1 − √

Γ0 that leads to this invariance.
As a final note, the governing equations we consider are readily extended to the case

of a non-constant entrainment coefficient. Indeed, a possible progression would be to
reason for an entrainment model in which the entrainment coefficient varies with a suitably
defined local Richardson number - the Richardson number and, thereby, the entrainment
responding to the strength of the co-flow. Building in this way on the developments made
herein would present a natural next step in further enhancing our understanding of these
flows.
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Appendix A. Conservation equations

Following the well-established route (Morton et al. 1956; Morton 1961), it is assumed
that the turbulent plume flow can be described using mean flow variables. For the
two-dimensional, slender and quasi-steady flow considered, the fundamental statements
of mass and streamwise momentum conservation reduce to

∂

∂x
(ρu) + ∂

∂z
(ρw) = 0 and ρu

∂w
∂x

+ ρw
∂w
∂z

= −∂P
∂z

+ ρg, (A1a,b)

where ∂P/∂z is the streamwise pressure gradient. Combining the momentum and
continuity equation allows the latter to be rewritten as

∂

∂x
(ρuw) + ∂

∂z
(ρw2) = −∂P

∂z
+ ρg. (A2)

Assuming that the hydrostatic pressure gradient of the environment is imposed on the
plume, integrating from the centreline at x = 0 to the plume perimeter at x = b/2 yields

d
dz

∫ b/2

0
ρw dx + [ρu]b/2 = 0 and

d
dz

∫ b/2

0
ρw2 dx + [ρuw]b/2 =

∫ b/2

0
(ρ − ρa)g dx.

(A3a,b)
Assuming top-hat profiles for velocity and buoyancy gives

d
dz

[ρbw] = 2ρaue and
d
dz

[ρbw2] = bg(ρa − ρ) + 2ρawaue. (A4a,b)

On applying the Boussinesq approximation (A4) reduces to the statements of conservation
of mass and momentum given in (2.3). Manipulating the internal energy equation (cf.
Rooney & Linden 1996) leads to the following statement of conservation of volume for a
two-dimensional non-Boussinesq plume:

d
dz

[bw] = 2ue. (A5)

Combining (A5) with the statement of conservation of mass in (A4) and integrating yields

(ρ − ρa)bw = const. (A6)

Multiplying by the constant g/ρa gives the left-hand side of (A6) the units of buoyancy
flux per unit length and (A6) can then be rewritten as

d
dz

[
bwg

(ρa − ρ)

ρa

]
= 0, (A7)

which becomes the statement of conservation of buoyancy in (2.3) upon application of the
Boussinesq approximation.
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Figure 10. Log–log plots of β, ω and g′/g′
0 vs ζ . Solutions are shown for: Ω0 = 0 (——–); Ω0 = 0.5

(- - - - - - ); and Ω0 = 1 (· · · · · · ··); (a–c) Γ0 = 0.2, (d–f ) Γ0 = 1 and (g–i) Γ0 = 20.

Appendix B. Streamwise variation on log–log plots

The solutions shown in figures 5 and 6 are re-plotted in figure 10 on a log–log scale.

Appendix C. Pure releases in quiescent surroundings: Γ0 = 1, Ω0 = 0

As expected, for the case where Ω = 0 the governing equations (2.14) reduce to those
derived by van den Bremer & Hunt (2014) for a motionless environment (the sole
differences are factors of two which result from our scaling using the full width of the
plume and van den Bremer & Hunt (2014) using the half-width). In this case, the solutions
for pure releases are

Γ = 1, β = b
b0

= 1 + 2ζ, and ω = w
w0

= 1. (C1a–c)

Noting that for this case Γ0 = Γ , substituting for (2.11), and using the definition of g′ in
(1.1) yields

ρa − ρ

ρa − ρ0
= 1

1 + 2ζ
. (C2)
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Figure 11. Successively magnified views of the dilution curves for a lazy release with Γ0 = 20. Solutions are
shown for: Ω0 = 0 (——–); Ω0 = 0.5 (- - - - - - ); and Ω0 = 1 (· · · · · · ··). Note the reduction in the scale of
the vertical axis between (a) and (c).
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Figure 12. Variation of the Richardson number at the neck Γn with Γ0 and Ω0 from (E1). The plot shows
contours of constant Γn with values as indicated by the colour bar.

Appendix D. Near-field dilution of lazy release

The near-source region of the dilution curves in figure 6 for the lazy release are shown
in figure 11. The successively magnified views shown in (a)–(c) highlight that near-field
dilution is weak for the co-flow Ω0 = 1 (dashed line).

Appendix E. Richardson number at the neck

A polynomial expression for the Richardson number at the neck Γ = Γn is readily
determined as follows. Substituting dβ/dζ = 0 into (2.14b) yields Γn = 2 − 3Ω0/ωn +
Ω2

0/ω2
n and eliminating ωn by means of (2.16), wherein ωn = (Γ0/Γn)

1/3, gives

Γn − Ω2
0

Γ
2/3

0

Γn
2/3 + 3

Ω0

Γ
1/3

0

Γn
1/3 − 2 = 0. (E1)

The variation of Γn with Ω0 and Γ0 from (E1) is shown as a contour plot in figure 12. As
co-flow strength increases, Γn decreases, rapidly for small Γ0 and slowly by comparison
as Γ0 increases. For Ω0 = 0 this reduces to the established result that the neck occurs at
Γn = 2 in the absence of a co-flow.
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