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Nonstandard topological extensions

Robert A. Herrmann

This paper investigates the nonstandard theory of filters on a

non-empty meet-semi-lattice of sets and applies this theory to

the general study of topological extensions Y for a space X .

In particular, we apply this theory to Baire and quasi-/?-closed

extensions as well as Wallman type compactifications. Whereas

these extensions have previously teen obtained and studied as

types of ultrafilter extensions, we study them as subsets of an

enlargement of X . Since X c Y c X and the elements of X

and Y - X are of the same set-theoretic type, these extensions

appear more natural from the nonstandard viewpoint.

1. Introduction

Extensions of a space X by means of f i l t e r type spaces have been

studied by numerous authors. For example, the Wallman type

compactifications using normal bases as introduced by Frink [5] and studied

by Alo and Shapiro [7 ] , Alo and Shapiro [2 ] , Biles [ 3 ] , D'Aristotle [ 4 ] ,

Steiner and Steiner [77], Steiner [78], [79], among others. As shown in

[ 6 ] , the Stone-Cech compactification may be considered as a Z-u l t ra f i l t e r

extension. The Katetov extension of a Hausdorff space [9 ] , the quasi-#-

closed (that i s , generalized absolutely closed) extension such as i t i s

discussed by Porter and Thomas [74] and Liu [70], and a Baire extension

discovered by McCoy [73] are studied as u l t r a f i l t e r type extensions

determined by the topology of X .

At the Seventy-Ninth Annual Meeting of the American Mathematical

Society I conjectured that a l l of the above extensions and many new ones

could be obtained as subsets of an enlargement of X , [7 ] . I was asked to

Received 2 July 1975.
269

https://doi.org/10.1017/S0004972700024461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024461


270 Robert A. Herrmann

justify this conjecture. Consequently, this paper investigates a

construction method which shows that all of the above extensions, as well

as many others, can be considered as subsets of X , where X is the non-

standard extension of a space X within the set-theoretic enlargement

*M = (*£/, *e, *pr, *ap) discovered by Machover and Hirschfeld [12]. The

extensions Y of X constructed here not only have the property that

X c X c x but they also appear more natural from the nonstandard viewpoint

since the elements of X and Y - X are of the same set-theoretic type;

whereas, in many of the classically constructed extensions the elements of

the remainder are fi l ters on X . Indeed, observe that if 1} ( X-X , then

q is not an element of any n-fold power set iteration, n > 1 .

First, we show how i t is possible to extend most of the known results

from the nonstandard theory of filters on a set X to filters in any non-

empty meet-semi-lattice of subsets of X . We then use the topology or a

normal base on a space X as the basic meet-semi-lattice in order to

construct various topological extensions as subsets of X . Even though the

meet-semi-lattices we use in the latter parts of this paper are lattices of

sets, I have shown elsewhere [S] that other interesting extensions exist

where the basic meet-semi-lattice V is the set of all regular-open

subsets of X . In this latter case, V is known to be a non-lattice.

2. l / - f i l t e r s

Throughout th i s paper L will be a suitable f i rs t order language with

equality containing one binary predicate symbol "e" and two binary

operator symbols "pr" and "ap" . We assume that the reader is familiar

with the concepts and notations of set-theoretic nonstandard analysis the

foundations of which may be found in references [71], [72], [75]. Our

principal reference is [7 2] and the f i rs t order structure we use is

M = (U, e, pr, ap) which is to be interpreted in the usual manner. We le t

our nonstandard structure be the enlargement *M = (*£/, *e, *pr, *ap) .

Any notation not specifically defined in this paper will be found in [7 2].

Of course, we assume that for a topological space (X, x) , we have

X £ U , where U i s our universe.

Let 1/ be any non-empty meet-semi-lattice of subsets of a non-empty

X . This means that if G, H £ V , then G n H € V . In the usual manner

[76], we cal l any non-empty F c 1/ a V-filter if whenever G, H € F ,
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then G n H € F and whenever A € F , B € (/ , A c B , then B £ F . We

say that a non-empty ¥ c V i s a subbase for a I/-filter < F> i f

<F> = {p | [p € V] A Bz/Qj/ € F'] A [y c p ] ] ) , where

F' = (p | [p = n{A.}] A [{/I.} i s a non-empty f in i te subset of F]} . A

l/-fil ter F i s trivial i f F = 1/ . Finally, 0 ^ B c 1/ i s a base for the

(/-filter < B> if for each G, H € 8 there exis ts some K € 8 such that

K c G n B . Whenever we discuss a U-filter F , we will always t a c i t l y

assume that 0 # F c 1/ c: ?{X) and that 1/ i s a meet-semi-lattice unless

otherwise indicated.

The following resu l t s are easily verif ied.

(2 .1) . If ¥ is a V-filter and 0 * 8 <= F , then B is a base for

¥ iff for each G € F there exists some H € 8 sweTz ifazt H c G .

(2 .2) . 1 / we assume that 0 € V and $ + ¥ c V , then < F> # (/ i f f

F fers tfce finite intersection property.

We call a l/-filter F a V-ultrafilter if i t is a maximal (c)

non-trivial (/-filter.

(2.3). If M " , tTzen every non-trivial V-filter is contained in a

V-ultra filter.

(2.4). If 0, G Z V and ¥ is a V'-ultrafilter, then G n H # 0

fo r eaeTz ff € F iff G € F .

(2 .5) . J f G, H <i V , G u ff e F , w^ere ¥ is a V-ultrafilter and

1/ i s a lattice of subsets of X , then either G ? F or ff € F .

We now indicate how to modify most of the known resul t s from the non-

standard theory of f i l t e r s on a set X , [ / / ] , [72] , so that they hold for

( / - f i l ters . In order to do t h i s , we formally prove only a small number of

resul t s and then s ta te a representative collection of theorems, without

proof, since the reader should be able to easi ly modify the corresponding

f i l t e r resu l t s as they appear in [7 7], [ /2] . If i t should become necessary

to distinguish between various meet-semi-lattices we will use the

terminology V-filter on X to mean that 1/ c ?{X) . Also, certain

variants to the notation and terminology found in [7 2] will be introduced.

THEOREM 2.6. If 0 # F c 1/ , then Nuc F = Nuc < F> .

Proof. Clearly F c < F> c G , where G is the f i l t e r on X
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generated by F . From the definition of the "nucleus" (that i s ,

Nuc F = (]{G | G € F} ) , i t follows that Nuc G c Nuc < F> c Nuc F . Using

the known resu l t that Nuc F = Nuc G , we have the resu l t .

DEFINITION 2 . 1 . Let 0 * F c 1/ . Then Nuc F = fl{F | F € F} will

be called a

We observe, at this point, that if F c 1/ is a base for a I/-filter,

then it is also a base for a filter on X .

THEOREM 2.7. If F is a V-filter and F1 c F , tfzen F1 i s a iase

/or F iff F ''contains an infinitesimal ^element which, is also a

^element of F .

Proof. Let F c F and assume that F is a base for F . Then F

is a base for the f i l t e r G on X generated by F . Consequently, there

exists some E t *U such that E c jfuc F = Nuc G and J •( F . Since

F1 c F implies that F" c F , then £ *€ F .

Conversely, assume that F c F c: (/ and that there exists some

E (. *U such that £ *€ F and E is an infinitesimal *element of F .

Hence, if G .€ F , then E <= G . Thus the sentence in L ,

€ F j A [x c c]]

holds in *M ; hence in M . Interpreting this in M , i t follows that

each element in F contains a subset which is an element of F and, of

course, since F c V also an element of V . This implies that F is a

base for the f-filter F .

DEFINITION 2 . 2 . Let Wcx. Define

1/ Fil(W) = {G | [ 5 ( K ] A [ l f c ff]} .

If f Fil((/) # 0 , then clearly 1/ Fil(W) is a (/-filter on X . If we

now replace the word "filter" by "(/-filter" and the symbol "Fil" by

"1/ Fil" , then by similar modifications as displayed above it can easily be

shown that Theorems 5.1.3 and 5.I.1* of [JZ] hold. Indeed, the following is

also easily verified.
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THEOREM 2 . 8 . Let < F>_, < G> be V-filters generated by bases F and

G . Then < F> c < G> iff Nuc G c Hue F £ / / for each F € F there exists

some G d G such that G <= F .

How l e t {F . | j $ j] be a non-empty set of V-filters such that

n{F. [ j e </} = H # 0 . Clearly H i s the strongest (in the usual sense)
3

l^-filter weaker than each F. . Under the above assumption, i t follows
V

that the resul t s of Sections 5.1.6 and 5.1.7 of [72] hold when interpreted

for ^ - f i l t e r s .

Let B be a base for a l^-filter F on X and f : X -*• Y .

Consider

Vy ~ IP I [P = nf-^PJ}] A UGi) i s a non-empty finite subset of V]} .

Then i t i s not d i f f icul t to show that /[B] i s a base for the V - f i l t e r

</[F]> on Y . Also, i f C i s a base for the V-filter 6 on Y ,

then /"1[C] i s a base for the V - f i l t e r </"1[6]> on X , where

The following resu l t , Theorem 2.9, and Corollary 2.1 are obtained by a
straightforward modification of the resul t s in Sections 5.1.9 and 5.1.10 of
[72].

THEOREM 2 . 9 . Let F and G be bases for V and V -filters < F>

and < G> on X and Y , respectively. Let f : X •* Y and *f:X-*Y,

where *f is the unique extension of f to X . Then

(i) V F i l (* / [Nuc F]) = <f[F] > ,
a a

(ii) Huc(l/ Fil(*/[Nuc F])) = Hue f[¥] ,
y

(Hi) */~1[Nuc G] = Nuc f~X[G] .

COROLLARY 2.1 . Let *M be an <x-enlargement for some limit ordinal

a. . Then under the hypothesis of Theorem 2.9, we have that

*f[Nuc F] = Hue f[¥] .

If we assume that 1/ is a non-empty l a t t i c e of subsets of X , then
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we may use 1/' = 1/ u {0} u {X} in order to topologize X by considering

the set of closed sets in X to be {Nuc F | F i s a M ' - f i l t e r } .

Indeed, since the 5-topology on X is compact [77, p. 'kll i t clearly

follows that X i s compact in i t s V'-topology. As a direct consequence

of our previous def ini t ions and resu l t s we have the following theorem.

THEOREM 2.10. Let f : X - Y . Assume that /•~1[(l/') ] = I/1 and

that X and Y carry the I/' and ((U') ) ' topologies, respectively.

Then

(i) the induced map *f : X -*• Y is continuous;

(ii) if *M is an a-enlargement for some limit ordinal a and

if f is a bisection, then *f is a homeomorphism.

In the sequel, we will be principally concerned with l/-ultrafilters.

For this reason, the following results, even though not completely

analogous to the known results for ultrafilters, are of considerable

importance.

THEOREM 2.11. Let 0 6 V and consider any V-ultrafilter F . Then

(i) F = 1/ Fil({p}) = U Fil(p) for each p € Nuc F ;

(ii) if F is fixed (that is, C\{G \ G f F} + 0 ; , then there

exists some p € X such that

1/ Fi l (p) = F = {G I [G € I/] A [{p} cr G]} ;

(Hi) if F is free (that is, not fixed), then there exists

some q € X-X such that V Fil(p) = F and

Nuc F n X = 0 .

Proof. Again a simple modification of the resul t s in Section 5-1-5 of

cm.
DEFINITION 2.2 . Let q e X . If V F±x(q) i s a ( / -ul t raf i l ter ,

then we ca l l Hue {V Fll(q)) = NVF{q) a M-ultramonad. If 1/ Fil(q) i s

free, then NVF(q) i s a /ree IZ-uZ-tramonaii.

The following important properties associated with U-ultramonads are

obtained from the previous resu l t s in t h i s paper or by the usual

modifications of r e s u l t s from [77] or [72].
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THEOREM 2.12. Let p, q € X , 0 € f and assume that NVF(q) ,

are V-ultramonads. Then

(i) NVF(q), NVF(p) are distinct iff V Fil(q), 1/ Fil(p) are

distinct iff NVF(q) n NVF(p) = 0 iff there exist

G, H € V such that G n H = 0 and q € G , p € ff ;

(ii) letting G Z V 3 we have that G € 1/ Fil(a)
NVF(q) n G # 0 i f / ffl/FCff) c g ;

(Hi) letting G d V , if H n G + 0 /or eac^ fl € 1/ swe^ that

NVF(q) n H + 0 , we fozue t?zat NVF(q) n G t 0 ;

(iv) if F i s a ^-filter, then Nuc F i s a V-ultramonad

iff for each A (. V-F , we have that Nuc F n 4 = 0 .

The folloving lemma, which is proved here in i t s ent i re ty , i s obtained

by using the enlargement *M , the language L and a suitable modification

of the proof of Theorem 2.7.2 in 1111.

LEMMA 2 .1 . Assume that we are given some non-empty F c 1/ 3 an

internal § c f and a map f such that

(i) f : N •* F , where N denotes the natural numbers,

(ii) / ( i ) c f(j) for each i , j € N such that j < i ,

(Hi) f(n) ± 0 for each n € N .

Then Q n ( / («))" + 0 for each n £ N implies that Q n Nuc f[N] t 0 .

Proof. We have that

S = {q I l[f*apq] *n Q * 0] A \[f*apq] *i f[N]] A [q *€ ff]}

i s an internal subset in N . Thus S = P for some P € *£/ . Now since

/"» /(w)> f[^]» and each n d N are assumed to be standard, i t follows that

Q n ( / («))" = (« *n f ( n ) j " = (« *n (/*opn))" # 0 and (f*apn) *€ f[ff] for

each n € N ; which implies that ff c P c } . However, N ± P since N

i s an external subset of N . Consequently, there exis ts some v € N-N

such that V £ P . The sentences in L ,

€ ff] A [y € /I/] A [x < y] •+ [fapy] c

Vx[[x g N] + [~[/<qjar = 0]]]

hold in W ; hence in *M . Using the resul t that i f y f fl-N , then

Y > n for each n € N , we obtain ( f a p v ) " c (f*opn)" = (f(n))" for each
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n i N . Also if*apv)" t 0 . Thus (f*apv)" c Nuc f[N] and
if*avv)~ n Q # 0 . Clearly § n Nuc /[ff] # 0 .

We now use the previous results and those which the reader can easily

obtain by modifying the known results in [ I / ] , D2J, in order to give a

nonstandard proof of a sufficient condition for a space to be Baire. We

will use th is result in the sequel in order to investigate a nonstandard

Baire space extension of an arbitrary non-Baire space. First , we need an

additional definition. The motivation for this definition comes from the

well known fact that a f i l t e r F converges to p € X iff Nuc F c y(p) ,

where y(p) is the monad of Robinson [75].

DEFINITION 2.3. A -̂monad Nuc F is said to converge on X if

there exists some p € X such that Nuc F c y(p) .

THEOREM 2.13. Let (X, x) be a topological space. If X is not a

Baire space, then there exists a free converging i-ultramonad in X .

Proof. Assume that (X, x) is not Baire. Hence, there exists a non-

empty G (. T and a sequence / : {N-{0}) -*• V{X) such that

G = U{/(n) | n € ff-{0}} , where f(n) * 0 and int cl fin) = 0 for each

n € N-{0) • Define the map h : N •* T -{0} as follows:

(i) l e t MO) = X ;

( i i ) l e t hid) = X - (U{cl f{n) \ n = 1, . . . , j}) .

Since fin) i s nowhere dense in X , we have that hid) i s a n °Pen dense

set in X for each j € ff . we observe that MJ) * 0 for each j Z N ,

and that h(i) c hid) f ° r each i , Q ^ N such that j < i . Consider

H = n{hij) | j € iV} . If p € G , then p € /(fe) <= cl f(fe) for some

k € iV-{0} . Hence p f M^) and i t follows that G r\ H = 0 . Therefore,

H is not dense in X . Let V = x and G(p) = {4 | [A (. x] A [p € 4]}

for some p € G . Clearly, y(p) = Nuc G(p) = Nuc< G(p)> and

Nuc h[N] = Nuc(h[N]> . Let E be the infinitesimal ^element of < Gip) >

which exists by Theorem 2.7- The sentence in 1 ,

Vx[[x € T] A [~[X = 0]] * [~[x n hin) = 0]]]

holds in M for each n € N ; hence in *Af . Since (Gip)) i s non-

t r i v i a l , then E # 0 , and in terpre t ing the above sentence in *M y ie lds

tha t E n (fe(n))" ^ 0 for each hin) t h[N] . Lemma 2.1 implies tha t

* 0 • Hence
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Nuc< G(p)> n Nuc< h[N]) = Nuc< < G(p) > u < h[N])) = Nuc F + 0 ,

where F = <<G(p)> u <7z[ff]>> . Thus the x - f i l t e r F is non- t r iv ia l .

Therefore, there exis ts a x-ultramonad NjF{r) , where r ? X , such that

NjF(r) c u(p) n Nuc fcftf] . Now if c? £ AT , q e p(p) , and q € (fe(n))~

for each n Z N , then q (. H . This contradicts y(p) n fl = 0 . Hence

NxF{r) n X = 0 . Consequently, NjF(r) i s free and obviously i s

converging on X .

3 . B a i r e a n d q u a s i - f f - c l o s e d e x t e n s i o n s

In order to properly differentiate the following constructions from

the usual ones, we introduce an additional definition.

DEFINITION 3.1 . A topological space Y will be called a nonstandard

extension of a space X if

(i) X c y ex and X + Y ,

( i i ) X i s a dense subspace in Y .

THEOREM 3.1. If for the space {X, T) there exists a free

T-ultramonad in X , then there exists a nonstandard Baire extension

{bX, to) of X .

Proof. Assume that 1/ = T . For each G f x , l e t

N{G) = {p | [p € G] A [tfxF(p) i s a free x-ultramonad in X]} .

Define bX = X u flKA") . From the hypothesis and Theorem 2.11, we have that

X <= bX c X a n d X * bX . A l s o , N(G) c G - G c X - X . N o w f o r e a c h

G € x , l e t G' = G u N(G) . Then consider 8 = {<?' | G € x} .

We now show that 8 is a base for a topology on bX . Let

G±, Gy
2 € 8 . Then C j n S ^ ( ^ n G^ u ( t f ^ ) n ff(G2)) . If

G n G2 = 0 , then ff(G ) n ^(G ) = 0 € 8 since G n G = 0 .

Consequently, assume that G. = G n G ± 0 . Since 5_ = G. n G , i t is

easily verified that N[G ) = tf(G ) n ff(G ) . Clearly,

bX = U{G' | G d x} . Thus we consider 8 to be a base for a topology b\

on £>X . I t follows immediately that X i s a dense subspace in bX and,

consequently, (bX, bi) i s a nonstandard extension of X .

We next show that (bX, bx) i s a Baire space. Assume not. Using a
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r e su l t from McCoy's paper [73], we have that there exist sequences {U.}
Is

and {B.\ of sets such tha t {B.} c 8 , U. € i>x for each £ € N , and
t* Is Is

Bk
 c Bfc c ( n ( y - | i = 1, • • . , i}) , B, / 0 for each k Z N . Also,

{£/.} is po in t - f i n i t e . Letting B. = G. u N[G.) for each i 6 111 , i t i s
"Z- Is 1r Is

easily shown that the sequence {G.} has the finite intersection property.
Is

Hence Nuc{(7.} t 0 . Let NxF{q) ~be a x-ultramonad contained in
Is

Nuc{<?.} . Then NxF(q) i s free since
Is

| i « #( c n{Bi | i c J ) c n{y^ | i e ^} = 0 .

Consequently, <? € £-X . However, we observe that since q *£ G. for each
Is

i d N , then q i B. for each i Z N . Thus <? e (iffi. | £ € fl} = 0 .

This contradiction completes the proof.

The nonstandard Baire extension (bX, bx) has a mapping property

similar to the Stone-Cech compactification. We use t /-f i l ter methods in

order to investigate t h i s property.

THEOREM 3.2. Let (Z, o) be a T -space and f : X •+ Z

continuously in such a manner that cX^[f[X}) = Z and f[X] # Z . Then

the nonstandard Baire extension (bX, bx) exists. Moreover, there exists

a subspace Y of bX and a continuous map h from Y onto Z such that

h\x = / .

Proof. Let V = x , where T i s the topology on X , and assume that

p € Z-f[X] . Since c l z ( / [X]) = Z , then p(p) n (f[X])~ + 0 . Using

T-f i l t e r theory, we have that

where G(p) = {G \ [G € x] A [p € <?]} . Consequently, since

Kuc / [G(p)] ? 0 and / i s continuous, then there exis ts a x-ultramonad

NtF{<ip)
 c */"1[y(p)] • If q t X , then u(/(<7)) n u(p) = 0 , since Z i s

Tp . Hence, since continuity implies that q 6 \i(q) c *f~ \}i[f(q))] , we

have that q $ NxF[q ) . Hence NrF[<j ) i s a free x-ultramonad and the
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nonstandard Baire extension (bX, bi) for X ex i s t s . Let

A = \^TF{qv) | [ffTFkp) c *rXlv{p)]\ A [p € z-f[x]]

A [_NTF[q ) i s a free T-ultramonad in x] \ .

Define Y = (UA) ux and consider Y a subspace of bX .

Define h : Y •* Z by 7z(<?) = / ( ? ) for each <? € X and

(q- )] = p for each NjF[q ) € A . Observe that A is a pa r t i t ion .

Assume that dis t inct r, t € Z-/[X] . Since Z is T , then there exists

some W € a such that r € W and t t cl_V . This implies that W £ G(r)

and Z-cl_l/ € G(i) . Consequently, since /~1[(v'] n Z-/"1 [cl_(/| = 0 ,
6 { ii )

then NtF{qr) n /VxF(c?t) = 0 and h is well-defined.

Let y € J and 1/ € o such that h(y) € (/ . Then there exis ts some

W. Z a such that h(y) € cl-[w) <= 1/ . Consider

where ff /~ C -̂,] is defined in the proof of Theorem 3 .1 . Then

( 1 ^ 'f E^i] n y = K Is open in the topology induced on Y . Suppose that

x € K . It x t X , then h(x) = / (*) € / j . T 1 O J 1 <= ̂  <= W . If

x (• K-X , then x € JIW(<7 ) for some p € Z-/[Z] . If we assume that

q $ cl^{W ) , then there exis ts some W £ a , such that q € W and

W1 n W' = 0 . However, t h i s implies that NjF[q ) = 0 for

/ [W ] n f [W']\ , a contradiction. I t follows that

?j[X] c W . Consequently, h i s continuous and, obviously h\x = f . This

completes the proof.

Recall that a space X i s quasi-ff-closed [M] i f f every open cover G

of X contains a f in i te subset, say {G., . . . , G } , such that

X = {cl (C.) I i = 1, . . . , n) . If X i s regular, then X is quasi-ff-

closed iff X i s compact. A quasi-#-closed space is also known as a
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generalized absolutely closed space [70]. Throughout the remainder of this

paper, (bX, bi) wi l l denote the nonstandard Baire extension of a space

(X, x) when i t ex is t s .

THEOREM 3.3. If (X, x) is not quasi-H-olosed, then there exists a

topology T ' 3 hi on bX such that (bX, T ' ) is a nonstandard quasi-H-

olosed extension of X and X € x' .

Proof. Let 1/ = T and construct bX in the same manner as in

Theorem 3-1 . We observe that since X is not quasi-ff-closed, then there

exis ts a non-converging x-ultramonad NiF(q) in X . Moreover,

NxF{q) cf: y(p) for any p € X implies that NjF{q) n u(p) = 0 for each

p (. X . Thus NTF(q) is a free x-ultramonad in X . Hence X c bX and

X + bX .

Let B = {G' | G € x} , where G' = G u //(G) and tf(G) is defined in

the proof of Theorem 3 .1 . Now define C = 8 u x . Using the method

indicated in the proof of Theorem 3.1, i t follows easily that C is a base

for a topology x ' r> bi on bX in which X is a dense open subspace.

Therefore, {bX, x ' ) is a nonstandard extension of X .

In order to show that {bX, x ' ) is quasi-#-closed, we need the

following two r e s u l t s . F i r s t , a space is quasi-ff-closed iff every open

u l t r a f i l t e r converges to an element in that space. Secondly, if (X, x)

i s a dense subspace in (bX, x') and F is a x ' - u l t r a f i l t e r on bX ,

then Nuc(F n x) i s a x-ultramonad in X . In this l a t t e r case,

F + p (. bX i f f {? n j | f ( F) = F n I + p , Let F be a

x ' - u l t r a f i l t e r on bX . Assume that Huc(F n x) c u(p) c £ . Then

F •* p € fcZ . If Nuc(F n j ) (|: p(p) for any p £ X , then Kuc(F -n J) i s

a free x-ultramonad and Nuc(F n X) = NTF(q) for some q € fcZ-J . Let

K £ x ' and assume that q Z K . Then there exists some G u ff(G) € B

such that q t G v N(G) c K . This implies that q £ G . Consequently,

(F n #) n G * 0 for each F € F . However, for each F € F , we have that

F = G_ u £„ , where G,, € x and £„ c X-X . Hence C n Cr ^ for each^ ^ ^ £ r

F ( F . Therefore, X n F f 0 for each F f F implies that K € F . I t

follows that F -> ^ . Thus {bX, xr) is quasi-//-closed and the proof is

complete.

In the remaining set of theorems in th is section, we discuss other

nonstandard quasi-ff-closed extensions and thei r relat ion to the Katetov
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extension of a Hausdorff space.

THEOREM 3.4. If (X, x) is not quasi-H-closed, then there exists a

nonstandard qua si-H-closed extension (hX, hx) such that X £ hx .' If X

is also T , then (hX, hx) is T except for hX - X .

Proof. We c o n s t r u c t t he space {hX, hi) by using a nonstandard

v a r i a n t of Liu ' s cons t ruc t ion [ JO] . Let 1/ = x and define

H = U{NxF(q) | NxF(q) i s a non-converging x-ultramonad in X} . For each

q £ X , l e t G(q) = {G U {q} \ [G £ x] A [NxF{q) n G + 0]} and

B = U{G{q) | q £ H} . Define C = 8 u x and hX = X u H . Since X i s

not quasi-ff-closed, then H + 0 . Clearly, K M c i and X + hX . If

ij ( I , then there exis ts some G £ x such that q € G . If q £ H , then

since NjF{q) n Z # 0 , we have that <? ? X u {<?} € 8 . We know tha t , in

general, if NiF(q) i s non-converging, then NxF(q) n X = 0 . I t follows

that C i s closed under f in i te intersection and is a base for a topology

hi on hX . Obviously, X i s an open dense subspace in (hX, hi) .

Let F be an Tzx-ultrafilter on hX . Observe that if Nuc(F n X)

i s a free x-ultramonad in i , then Kuc(F n X) = NrF(q) for some

q £ H . If X £ hx , q £ K , then there exis ts some G u {̂  } £ C such

that q € C u {<? } c-. K . Since q f C , then q = q . Thus

NiFiq) n G ? 0 and as in the proof of Theorem 3-3 i t i s easily verified

that (hX, hx) is quasi-H-closed.

Recall that a space hX i s said to be T except for hX - X i f f

for d is t inc t p, q £ hX , not both in hX - X , there exist disjoint

^x-open sets K., K such that p £ K and q £ K~ . Assume that X is

T . If d is t inc t p , q £ X , then the requirement holds since x c hx .

Assume that p £ X and q £ hX-X . Since NxF(q) n \i(p) = 0 , then there

exist G, G £ x such that p £ G , q £ G , and G n G = 0 . Since

£ n G = 0 , t h i s implies that Gn {G u {q}) = 0 , where Cu (^] € 8 .

The resul t follows and t h i s completes the proof.

THEOREM 3.5. Assume that (X, x) is not quasi-H-closed. Then there

exists a nonstandard quasi-H-closed extension (kX, kx) of X such that

X £ kx and with the following properties:
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(i) the space kX is 1 except for X ;

(ii) if X is T. , then kX is essentially the same as (T70],

that is, isomorphic to [741) the Katetov extension of

X ;

(Hi) the set hX - kX is infinite.

Proof. Let 1/ = x and

H = {NTF(q) | NrF(q) is a non-converging T-ultramonad in X) .

Observe that H is non-empty and forms a partition for U// . The Axiom

of Choice allows us to consider a choice set, say ff1 , composed of one

element from each element of H . Define -kX = X u H' . Clearly

kX c hX . Let kx be the topology induced on kX by hi , where hi is

defined in the proof of Theorem 3-1*. Obviously, X is an open dense

subspace of (kX, kj) and X i kX .

It i s easy to show that kX is quasi-//-closed. Indeed, this follows

in the same manner as in the proof of Theorems 3.3 and 3.^ with the

additional observation that if F is a fei-ultrafilter on kX and there

exists some q € X-X such that NjF{q) = Nuc(F n X) , then there exists

some q' £ H' such that NjF(q') = NtF{q) .

d) Let p €. X and q £ kX-X . In the same manner as in the proof

of Theorem 3.U, i t follows that p and q are separated by fex-open

sets . Hence, we assume that we have distinct p, q € kX-X . Since

NxF(p) n NrF(q) = 0 , then there exist disjoint G , G £ T such that

p € G -G and q i G -G . The result follows easily.

(ii) Recall that kX is essentially the same as (that i s , isomorphic

to) the Katetov extension of X iff there exists a homeomorphism from kX

onto the Katetov extension of X which restricted to X is the identity.

We use the criterion of Liu's [10]. If X is T_ , then a T^ extension

Y of X i s essentially the same as Katetov's extension if a l l sets of the

form G u {q} , where G € x and q € cly{G)-X , are open in I and X

i s open in Y . Clearly (i) implies that kX is T~ . Let G f T and

q (. cl^{G)-X c kX-X . Assume that q Z G u {q } f B , where B is

https://doi.org/10.1017/S0004972700024461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024461


N o n s t a n d a r d t o p o l o g i c a l e x t e n s i o n s 2 8 3

defined in the proof of Theorem 3-^. Then q = q. . However,

[G U {q}) n G ± 0 implies that G' n G * 0 . Hence NxF(q) c G .

Consequently, q € G implies that G u {17} £ 8 and the resul t follows.

(Hi) There exis ts some q 6 X-X such that NxF(q) n X = 0 and

NxF(q) + 0 . Since Nuc Fil(g) c NxF(q) , the conclusion is obvious since

Nuc Fil(q) i s an inf in i te set .

THEOREM 3.6. Assume that (X, x) is not quasi-H-alosed and that

(Y, y) ^S any subspaae of hX suah that kX c: y .

(i) Then (Y, y) is a dense open subspaae.

(ii) Also, ( J , y) is a nonstandard quasi-H-alosed extension of X

such that X t y and if kX t Y , then Y is not T^ except for X .

Proof. (i) The subspace Y is obviously dense in hX . Let

q € Y . If q £ X , then there exis ts some G (. x such that q £ G c Y .

If q £ X , then q € H , where H i s defined in the proof of Theorem 3.1*.

However, H' defined in Theorem 3-5 i s a choice set for the par t i t ion H

of H . We observe that there exis ts one, and only one, NrF[q ) € H

such that q € NxF[q ) . For some G € x , i t follows that G u {q} 6 hx

and G u {<?} c y . Thus Y is open in hX .

(ii) A proof similar to that which shows that kX and hX are

quasi -//-closed also shows that (Y, y) i s quasi-fl-closed. Clearly

X I y .

Now if kX + Y , then i t is clear that there exist d is t inc t p, q € Y

such that NxF(q) = NxF(p) . Consequently, i f G € x , then p f G i ff

q d G . This implies that Y is not T except for X and the proof i s

complete.

The final resul t in t h i s section shows that the space kX constructed

in Theorem 3-5 i s the smallest nonstandard quasi-#-closed extension in a

very natural sense.

THEOREM 3.7. Assume that (X, x) is not quasi-H-closed. If

X c y c kX and Y is a proper subspaae, then Y is not quasi-H-closed.

Proof. Assume that q i kX-Y . Then NxF(q) i s a free non-

https://doi.org/10.1017/S0004972700024461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024461


284 Robert A. Herrmann

converging T-ultramonad. Let F = {K \ [K € kj] A [K n X £ x Fil(q-)]} .

I t i s known that F i s a kx-ul t raf i l ter on kX . Conversely, F n X i s

a x - u l t r a f i l t e r on X such that F n X = x Fil(<7) . Clearly F -»• q .

Now i f q' + q and q' € fcX-Jf , then since kX i s r 2 except for X ,

we have that ? \ q' . We know that F n y •+ p for some p € Y iff

F -> p . Thus F n y -+ q and only q i kX . However, q \ Y and the

resu l t follows.

4. Wall man type compactifications

In t h i s section, we construct nonstandard Wallman type

compact i f ica t ions which are not necessarily Hausdorff. We will do t h i s by

l e t t i n g 1/ = 3 , where 3 i s a normal "base for the space X as

or ig inal ly defined by Frink [5] with the T requirement deleted. Unless

otherwise indicated, the space (X, x) wil l "be non-compact completely

regular and not necessari ly T . Observe, that a normal separating ring

of closed sets in the sense of Steiner [79] i s a normal base and

conversely.

THEOREM 4 . 1 . Each normal base 3 for {X, x) determines non-

standard normal eompactifications H(X, 3) and co(X, &)„ suah that

X c coU, 3 ) 5 c: H(X, 3) <= X .

Proof. Assume that 3 is a normal base. Since (X, x) i s non-

compact, then there ex is t s a non-empty {B, A ? A} = F c 3 with the

f i n i t e in tersect ion property and such that OF = 0 . Since *M i s an

enlargement, i t follows that Muc F ^ 0 . Thus, for some q £ Nuc F , we

have that N$F(q) i s a free g-ultramonad. We now construct H(X, 3) •

For each B € 3 , l e t

F{B) = {q I [q £ B] A [N&F(q) i s a free 3-ultramonad in X]} .

Define H{X, 3) = X u F{X) . Clearly, X <= H(X, 3) <= X and X * H{X, 3) .

In order to obtain a topology for H(X, 3) , l e t B' = B u F(B) for

each B € 3 . Consider r = {B' \ B € 3) . If B', C' € V , then

B' u C' = (B u C) u (F(B) U F(O) . However, B u C = 0 € 3 and i t

follows easi ly that F(D) = F(B) u F{C) , since B o C = D . Notice that

0, H(X, B) £ F . Hence, we consider V a base for the closed subsets in
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H(X, 6) . Obviously A" i s a subspace in H(X, 3) since F(B) n X = 0

for each B € 3 • Considering any B u F(B) 6 V such that J c: g u F(B) ,

we have that X = B . Consequently, X i s dense in H(X, 3) .

We now show that H(X, 3) i s compact. Let {B! | ()>€$} be a set of

basic closed sets in H(X, 3) with the f in i te intersect ion property.

Assume t

Clearly

Assume t h a t { B ! | i = 1 , . . . , n] <= JB' | (j> € $} for some n > 1 .

1s If

where B = l"l{B. | I = 1, . . . , n) E B . Now B u F{B) ± 0 . If B = 0 ,

then F(B) = 0 . Consequently B # 0 implies that

{B, I [<{> € $] A [B ' = B, u ^ ( s J ] } = F1 has the f ini te intersection

property. Thus, Nuc Fr / 0 . If there exists some p € X such that

p € Nuc F' , then p d B, for each <j> £ $ . On the other hand, assuming

that there does not exist a. p £ X such that p (. Nuc F' , then there

exists some q £ X-X such that the free 3-ultramonad N&F(q) c Nuc F' .

Since q € B, for each <f> € $ , then th is implit- +ha+ ~ ^ viv. \ for

each <J> € <J> . Consequently, nJBl | <j> £ $} / 0 and B{X, 3) i s compact.

We now show that Y is a separating family of closed sets in the

sense of Steiner [1&1. Let K be any non-empty closed subset in H(X, 3)

and assume that q € H{X, $)-K . We f i rs t assume that q € X . Since X

i s a subspace, then K n X is closed in X . Since Y is a base for the

closed sets in H(X, 3) , i t follows that K <= B u F(B) and q £. B u F(B)

for some B u F{B) £ Y . However, 3 is a separating family implies that

there exist C, D € 3 such that C n D = 0 , Xn K B C f , and q £ D .

Clearly, F(C) n F(0) = 0 and F(B) c F(C) imply that K <= C u F(C) ,

<? € £ u F(D) , and (C u F(C)) n (o u F(D)) = 0 . On the other hand, we

assume that q € X-X . Thus, q € F(B) for some B € 3 . In the same

manner as above, we easily show that there exist elements of Y which

separate K and q . Consequently, Y i s a separating family of closed

sets .

In order to show that Y is a normal separating family [7 7], we
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assume tha t B u F{BI) = B^ , B2 v F[B ) = B' and B^ n B' = 0 . The

base 3 being normal implies that there exist B~, B* € 3 such that

Bx c S3 , B2c Bk , B1 n B^ = B2 n B3 = 0 , and B^ u B^ = X . If we

consider the se ts B. u f(B.) , £ = 1, 2, 3, k , then i t i s easily

verif ied that T i s normal. Consequently, T i s a normal separating

family of closed se t s and Steiner 's resu l t in [7S] implies that H(X, 3)

i s a completely regular space. Hence H{X, 3) i s a normal

compactification of X .

We now construct u(X, 3)c . Obviously {N$F(q) | q 6 F(X)}

o

par t i t ions F{X) . Let 5(6) be the set of a l l choice sets determined by

iN&F(q) | q € F{X)} and 5 € S(3) . Define wU, 6)^ = AT u 5 and l e t

hi(X, 3 ) c carry the topology induced by T . Hence, i f B i 3 and q £ B

such that ff3F(<7) i s a free B-ultramonad in X , then there exis ts one,

and only one, element, say p d S , such that N$F(q) = N&F(p) . I t is

also clear that for each B € 6 such that F(B) + 0 the set S n F(B) i s

a choice set for the pa r t i t ion {NfiF(q) | q € f(S)} . Observe that the

closed base for w(X, 3)g induced by T i s of the form

{B U (5 n F(B)) | B £ 3} . To show that a)(X, 3)^ i s a normal

compactification of X , i t is sufficient to show that w(X, 3 ) c i s a

compact subspace of H(X, 3) • However, t h i s follows from a simple

modification of the above proof that H(X, 3) i s compact and th i s

completes the proof.

Throughout the remainder of t h i s paper, we shall l e t S(Q) be the set

of a l l choice se ts determined by the par t i t ion {N&F(q) \ q E F(f l ] , where

3 i s a normal base for X . Also, u>(X, 3)^ for some S € S(3) and

H{X, 3) wil l denote the normal compactifications of X constructed in

Theorem U.I . In [ 4 ] , D'Aristotle constructs for each normal base 3 a

normal compactification (3) . Our next theorems show the re la t ions
X

between the compactifications u(X, 3 ) c > H{X, 3) , and (B) . In
" X

par t i cu la r , they show that ui{X, &)„ i s homeomorphic (^) to (B) and

that no subspace J such that u ( / , 3 ) c -* % *- B(X, 3) i s homeomorphic to
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(B) even though a l l such Y are normal compactifications of X .
X

THEOREM 4 . 3 . The aompaotification u(X, &)g ^ ( 6 ) .

Proof. Recal l t h a t (3) = X u A , where A i s t h e se t of a l l free
X

g - u l t r a f i l t e r s on X . Define the map <j> : (0) -*• tt(X, 8) in the
X "

following manner. For each p U , let <$>(p) = p . For X € A , let

<j)(A) = S n Nuc(A) = <? € Nuc(A) . Clearly, <(> is a bisection. Since for

each B € 3 , <|> maps the closed base elements

B u {X | [A € A] A [B € X]} of (6) onto B u (S n F(B)) , then <f> is a

X
homeomorphi sm.

COROLLARY 4 . 1 . If (X, x) i s a Tychonoff space, then

ix>(X, f 3 ) c ^ u(X, 6) , where ia{X, 6) i s the T Wallman compactification
i_? el.

of X in the sense of Frink [ 5 ] .

THEOREM 4 .4 . Assume that Y is a subspaoe of H{X, 6) such that

w(X, 3 ) s 5 Y . Then Y is a non-T novmal compactification of X .

Proof. Since i t is easily verified that Y is a normal

compactification of X , a l l we need to show is that Y is not T .

Clearly there exist distinct p, q d Y-X such that N&F(q) = NBF(p) . Now

for any S u F(B) € V , we have that p € F(B) iff q € F(B) . Hence Y

i s not T .

If we assume that a free 6-ultramonad N&F(q) is a finite set, then

there exists a non-empty finite infinitesimal ^element E such that

E c tf(3F(<7) . However E *€ B Fil(i?) implies by transfer that there exists

a non-empty finite element of 8 which i s an element of the free

6-ultrafilter 6 Fil(<?) . This contradiction implies that N&F{q) is an

infinite set. Consequently, for each normal base f3 for X there exist

infinitely many distinct yet homeomorphic compactifications u(X, $) c

o

which are a l l homeomorphic to the T? Wallman compactification u)(/f, B)

if X is T. For this reason, the following result is not without

interest.

THEOREM 4 . 5 . Assume that {X, T) is Tychonoff and 8, y are normal
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bases such that 3 <= Y • Then w(X, 8) ^ u(X, y) iff S(y) <r. 5(8) and

for each S € S(y) , w(X, 3 ) c = U)(A", y ) c
 a s spaces.

Proof. Sufficiency i s apparent. Hence, l e t NyF(q) c H(X, y) and

consider the 8-monad N$F{q) . We know that NyF(q) i s a Y-ultramonad

and, since 3 c Y » i t follows that NyF{q) c N$F{q) .

We need to show that N&F{q) i s a free 8-ultramonad. Let B € 8

such that c? {: 2 . Then since 3 c y there must exist some C E T such

that q € NyF(q) c C and B n C = ^ for NyF(q) i s a Y-ultramonad.

Using Ste iner ' s Theorem 7 in [ ' 9 ] , which implies that 6 separates Y , we

have that there exist B B ( 3 such that B <= B , C <= B , and

B n B = 0 . Since q (. B implies that B € 3 Fil(q) , we have that

N&F(q) i s a 3-ultramonad for B n J = (I . Next we show that NBF(q) i s

free . Since NyF(q) i s a free Y-ultramonad, we know tha t , for each

p € X , there exis ts some C i y such that NyF(q) <= C and p £ C .

However there exist B , B, e g such that p € B , C <= B. , and

B n B, = 0 since 3 separates points and closed se t s . Clearly th i s

implies that Nf*>F(q) <= 0, since NQF(q) i s a 3-ultramonad. Hence

p | NQF(q) implies that NBF(q) i s free.

Assume that N&F(q') <= H(X, 8) . Clearly NBF(q') i s a free Y-monad

since N&F(q') i s a free B-ultramonad and 8 c Y • Thus there exis ts a

free Y-ultramonad NyF(q") <= NyF(q') . Therefore

NyF{q") <= NQF(q") <=H(X, 8) . However, N&F(q") =N&F(q') . Consequently,

i f N&F(q') c H(X, B) , there there exis ts some NyF(q") c ff(^r, y) such

tha t NyF(q") <= NQF(q') c ff(Z, g) . Assume that there exists some

iYY*1^) c ff(j, y) such that NyF[q1) c ffBi^q') and ^ Y F ^ ) / ltyF(q") .

Then there exist C , C E y such that q € C , q' € C , and

C n C = 0 . Since 8 separates Y > i t now easily follows that

N&F(qx) c N$F(q") c H(X, 8) and ffBF^) n ff6f(q ) = 0 . However

") = NS,F(q') , a contradiction. Consequently, there exis ts

one, and only one, lfyF(q") such that NyF(q") c ff(X, y) and

NyF(q") c
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I t i s clear from the above resu l t s that S(y) c S(g) . Hence

w(J, &)„ = u(X, y)_ as sets for each S € 5(y) . The closed base

{B U (5 n F(B)) I B € 6} for u(X, 6 ) . i s a subset of the closed base

{C u [S n f(C)) I C € y} for u(X, y) . Since the topologies for

w(Z, 3 ) o and w(X, y)_ are 5" compact, i t follows that

CJ(X, 3 ) o
 = w(Jf, y) c as spaces. This completes the proof.
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