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New wheat-breeding techniques, such as hybridization and genetic modification,
show increasing yield potential. This study involves estimating multi-output
multi-input production technology by stochastic frontier techniques to evaluate
the economic value of this yield potential. An input-oriented distance function is
formulated and applied to European Farm Accountancy Data of 23 European
countries. Based on the analysis, an average shadow value is derived for the
increase in the marginal yield of wheat that corresponded to 18.87 €/ha. Further,
technical change, technical efficiency, and returns to scale are measured for
different European regions.
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Introduction

Innovations in agricultural crop production contribute to food safety and food
security and affect the environment. Recent innovations in plant breeding are
often based on hybrid and genetic modification (GM) breeding strategies. These
techniques are widespread in the global production of several cash crops such
as corn, soybeans, rapeseeds, rice, and barley but not in the production of
wheat. Simultaneously, the increase in wheat yield lags behind. For example, the
annual average yield increase in rapeseeds in Europe from 1994 to 2014
corresponds to 3.6 percent, and it was more than double the yearly increase for
wheat (1.6 percent) (FAOSTAT 2016). However, wheat is one of the most
important crops for global food security (Shiferaw et al. 2013), and breeding
innovations are crucial for keeping up with the increasing global demand. In
addition to social relevance in terms of food security, wheat is also the most
dominant crop for European farmers. Wheat is cultivated on approximately 26
percent of the 100.3 million ha of arable land in the EU-28 (FAOSTAT 2016).
Former studies indicated that wheat yield could be significantly increased by
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innovative breeding strategies. Based on GM technology, researchers developed a
wheat variety (HOSUT) with a yield-increasing potential of 28 percent compared
to its conventional counterpart (Saalbach et al. 2014). Longin et al. (2013)
evaluated different hybrids and conventional wheat varieties and observed that
hybrids were superior in terms of yield by 10.7 percent on average. Despite
their potential, GM wheat varieties are not commercially produced due to social
and political reasons, and wheat hybrid areas increase only gradually.
In this study,wefirst applystochastic frontieranalysis andconstructmulti-output

multi-input distance functions (DFs) to represent output-input relationships for
European crop production technology. The estimated function provides empirical
applications for measuring farm efficiency and productivity (Zhou, Zhou, and Fan
2014) and accounted for complementarity and supplementarity of inputs (Sauer
and Wossink 2013). Multi-output functions are beneficial because it is not
necessary to distinguish as to which fraction of an input is used to produce a
specific output. This type of detailed production information is often not
available, as in the case of the European Farm Accountancy Data (FADN) used in
this study. Further, using DFs has an advantage because it does not require price
data or explicit behavioral assumptions (Kumbhakar, Wang, and Horncastle
2015, 27). Second, based on the estimates for the multi-output multi-input
production technology, a potential price is proposed in terms of a marginal
shadow value (MSV) that farmers would be prepared to pay for yield-increasing
wheat seed material. The MSV measures the economically justified costs for
seeds that marginally increase yields or output in wheat production under the
assumption of optimal input combination.
DFs constitute an established methodology to examine various agricultural

production patterns. Studies including Brümmer, Glauben, and Thijssen (2002),
Key and Sneeringer (2014), Newman and Matthews (2006), Reinhard, Lovell,
and Thijssen (1999), Tsionas, Kumbhakar, and Malikov (2015), and Sauer and
Latacz-Lohmann (2015) applied this methodology to analyze the European and
American dairy farming sectors with respect to aspects such as technical
efficiency and technical change. Other extant studies, such as Coelli and Fleming
(2004), Fleming and Lien (2009), Paul and Nehring (2005), and Rahman
(2009), studied farms’ diversification strategies. Solís, Bravo‐Ureta, and Quiroga
(2009) and Sauer and Wossink (2013) used this concept to analyze
relationships between agricultural output and ecosystem services management
of farms. Shadow prices derived from such agricultural DFs were mostly used
to determine and value unwanted environmental damages (Hailu and Veeman
2001, Färe, Grosskopf, and Weber 2006, Arandia and Aldanondo-Ochoa 2011,
Njuki and Bravo-Ureta 2015). In contrast to these studies, the present study
examines the shadow price of a yield-increasing innovation as a desirable
outcome. To the best of our knowledge, no study to date has used DFs to
construct a shadow price for such an (desirable) innovation. Previous studies,
including Zilberman et al. (2015), Brookes and Barfoot (2014), and Qaim
(2009), which examined the economic benefits of breeding innovations, did not
account for different production technologies and the substitutability of inputs.
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The remainder of this paper is structured as follows. Section 2 introduces the
theoretic model. Section 3 outlines the methodology used to construct DFs and
measure marginal shadow values. In Section 4, data and estimation procedures
are described. Empirical results are presented in Section 5. The paper concludes
with a summary and discussion of the main empirical findings and outlines the
implications of the results.

Conceptual Framework

Production theory is the basis of the estimation of a stochastic frontier and input-
output relationships in the present study. It is assumed that farms are offered a
certain technology set that describes the relationship between inputs and
outputs. The farmer can allocate inputs to generate outputs within the
technology. Some inputs, such as land, could be exogenous in the short run,
while others are endogenous. We assume that the farmer can choose inputs to
optimize a cost-minimization objective function. Eventually optimizing behavior
makes all input and output choices endogenous (Kumbhakar, Asche, and
Tveteras 2013). Endogenous decision variables imply the possibility of farms
with inefficient production, which could then be measured by the DF approach.
Furthermore, the setting of multioutput multi-input DFs allows to account for
marginal interactive and substitutional relationships between inputs and
outputs through elasticities. Elasticities are estimated with respect to each
input and output. A marginal shadow value for wheat seeds is derived through
an economic evaluation of the marginal effects between the input (seed) and
the output (wheat). This value is then used to evaluate the economic impact of
marginal yield-increasing wheat seeds, which constitutes the main aim of the
study. The MSV differs from market price because it evaluates the importance
of the innovation within the production technology in monetary units while
considering substitutional input relationships. Yield-increasing seeds are
viewed as an embodied innovation, thereby implying that it is under the
farmer’s control to introduce the innovation and potentially extend her/his
seed expenditures. The MSV indicates the maximum price premium for
marginal yield-increasing seed innovations paid by the average farmer.
In the model used in the study, input markets are seen as perfectly

competitive. This implies that the size of a single farm relative to the size of
the market is so small such that the farm has no influence on input prices.
This section involves the introductionof the theoretical frameworkof theDFupon

which we base our marginal shadow value calculation. The production technology
set at time t, (St) represents an input vector xt ¼ (xt1, . . . , x

t
N) ∈ RN

þ that produces
an output vector yt ¼ (yt1, . . . , y

t
M) ∈ RM

þ, which is formally expressed as follows:

(1) St ¼ {(xt , yt): xt can produce yt}

(Newman and Matthews 2006).
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St denotes all feasible input–output vectors, and all inputs are assumed as
freely disposable.
We apply an input-oriented DF, developed by Shephard (1970), to represent

multi-output and multi-input technologies. Given a technically feasible set (St),
the input-oriented DF measures for each observation the largest radial
contraction of an input vector (xt), given outputs (yt) (Färe and Primont 1995).
The mathematical representation of the optimization function is as follows:

(2) Dt
Iðxt; ytÞ ¼ max

ρ
fρ> 0 : ðxt=ρÞ ∈ StÞg:

This functional formmeasures the maximum scalar (denote as ρ), such that xt/ρ
remains in the feasible production technology set. The DF assumes values lesser
than or equal to 1. That is Dt

I (x
t , yt) � 1 if xt ∈ St .

The DF value for a given observation corresponds to 1 if and only if the
observation is part of the frontier of the production technology set St. Values
between 0 and 1 indicate production with a distance to the production frontier
and, thus, technical inefficiency (Coelli and Fleming 2004). Increasing efficiency
of a farm corresponds to a larger ρ value, which implies that the farm is closer
to the stochastic frontier. By definition Dt

I (x
t , yt) is a non-decreasing, positively

linearly homogenous and concave in xt and nonincreasing in yt (Coelli and
Fleming 2004, Sauer, Frohberg, and Hockmann 2006).

Multi-output Multi-input Stochastic Input-distance Function Approach

For the analysis in the study, an input-oriented DF was selected as we focus on
marginal input effects. We estimate a multi-output multi-input distance DF in a
flexible translog form, allowing for all possible input-output interactions and
including dummy variables for year (denoted as (Y)), country (denoted as
(C)) and economic size (denoted as (E)):

(3)
lnDt

I (x, y, t) ¼ α0 þ
XM
m¼1

βmlny
t
m þ 1

2

XM
m¼1

XN
n¼1

βmnlny
t
mlny

t
n þ

XK
k¼1

αklnx
t
k

þ 1
2

XK
k¼1

XL
l¼1

αkllnx
t
klnx

t
l þ

XK
k¼1

XM
m¼1

δkmlnx
t
klny

t
m

þω0t þ 1
2
ω00t

2 þ
XM
m¼1

ζmtlny
t
mt þ

XK
k¼1

ηktlnx
t
kt

þ
XP
p¼1

ϑpYp þ
XQ
q¼1

ιqCq þ
XR
r¼1

κrEr
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Dt
I denotes the measured input distance function (IDF), where y and x

correspond to vectors of outputs and inputs, respectively. The subscripts m
and n denote farm output, and the subscripts k and l denote farm inputs. All
inputs and outputs include a time trend (t). Furthermore, α,β, δ, ω, ζ, η, ϑ, ι,
and κ denote parameters to be estimated.
An input variable (in this case, seeds, as denoted by xt1) is used to normalize

the stochastic IDF. This imposes linear homogeneity with respect to the inputsPK
k¼1 ak ¼ 1

� �
(Coelli and Perelman 1999). Additionally, for symmetry

purposes the restriction αkl¼ αlk, (k, l¼ 1, 2, …, L) and βmn¼ βnm (m, n¼ 1, 2,
…, M) is fulfilled (Coelli and Perelman 1999). Therefore, the DF can be
rewritten to enable its econometric estimation as follows:

(4)
ln

Dt
I

xt1

� �
¼ α0 þ

XM
m¼1

βmlny
t
m þ 1

2

XM
m¼1

XN
n¼1

βmnlny
t
mlny

t
n þ

XK
k¼2

αkln
xtk
xt1

� �

þ 1
2

XK
k¼2

XL
l¼2

αklln
xtk
xt1

� �
ln

xtl
xt1

� �
þ
XK
k¼2

XM
m¼1

δkmln
xtk
xt1

� �
lnytm

þω0t þ 1
2
ω00t

2 þ
XM
m¼1

ζmtlny
t
mt þ

XK
k¼2

ηktln
xtk
xt1

� �
t

þ
XP
p¼1

ϑpYp þ
XQ
q¼1

ιqC þ
XR
r¼1

κrEr ¼ TL ytm;
xtk
xt1

� �
; t

� �

þ
XP
p¼1

ϑpYp þ
XQ
q¼1

ιqCq þ
XR
r¼1

κrEr

where TL denotes translog. The equation can be rearranged as follows:

(5)
lnDt

I � lnxt1 ¼ TL
�
ytm,

�xtk
xt1

�
, t
�þXP

p¼1

ϑpYp þ
XQ
q¼1

ιqCq þ
XR
r¼1

κrEr

(6)
� lnxt1 ¼ TL

�
ytm,

�xtk
xt1

�
, t
�þXP

p¼1

ϑpYp þ
XQ
q¼1

ιqCq þ
XR
R¼1

κrEr � lnDt
I

By setting �lnDt
0i ¼ �uti and including a symmetric error (vti ) that reflects

random factors such as measurement errors, stochastic shocks, or unobserved
inputs, the stochastic input DF (Coelli and Perelman 1996) is obtained as follows:
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(7)
� lnxt1 ¼ TL

�
ytm;

�xtk
xt1

�
; t
�þXP

p¼1

ϑpYp þ
XQ
q¼1

ιqCq þ
XR
r¼1

κrEr � ut þ vt

where vti denotes a random error term, which is assumed to be independent and
identically distributed (i.i.d.) with N(0, σ2v) and independent of uti , and intended to
capture events beyond the farmer’s control. The term ui corresponds to a non-
negative random error term, which is assumed to be i.i.d. with N(μ, σ2u) and to
follow the specification uti ¼ ui exp(� η(t � T)), that is intended to capture
time-varying technical inefficiency effects in inputs (Battese and Coelli 1992).
The first-order partial derivatives of equation 7 measure the partial

elasticities for inputs xk (εx1,xk) and the partial elasticity for outputs ym (εx1,ym)

relative to x1. The value for εx1,ym �εDI ,ym ¼ � ∂lnDi

∂lnym
¼ ∂lnx1

∂lnym
¼ εx1,ym

� �

estimates the required percentage change in x1 from a 1 percent change in
ym, holding all output ratios constant (Paul and Nehring 2005). The mean of
the negative sums of the partial elasticities of ym (εx1,ym) represents scale

economies at the sample mean SE ¼ �PM
m¼1 εx1,ym

� �
(Paul and Nehring

2005). Thus, it reflects the extent to which overall input use must increase to
support a 1 percent increase in all outputs by holding all input ratios
constant. The elasticities of inputs (εx1,xk) contain information on the slope of
the production possibility frontier and represent the output contribution of xk
relative to x1.
Further, for each subsample, technical change (TC), as the first-order partial

derivative with respect to time (t) and technical efficiency (TE), are
determined for each subsample. Given this, it is possible to differentiate
various European production systems. The individual technical efficiency for
the ith firm is then estimated as follows:

(8)
TEi(u, x, t) ¼ exp (� ui) ¼ xti

xt�i

where TEimeasures the deviation of particular observations from the estimated
frontier (Paul and Nehring 2005).

Marginal Shadow Value

The estimation of shadow prices is based upon the IDF’s dual relationship with
the cost function (Färe and Primont 2006). The partial elasticities, as mentioned
previously, contain information on marginal products (MP) which are used to
derive MSVs. In this study we are interested in the marginal shadow value
for seeds as wheat output increases. Thus, we predominantly focus on the
partial elasticity relationship εx1,ym with x1¼ xseeds and ym¼ ywheat:
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(9)
εx1, ym ¼ ∂lnx1

∂lnym
:

From the partial elasticity for output (or ‘input share’ of ym [relative to x1])
εx1,ym , we can calculate the marginal product (∂x1/∂ym) of ym on x1, as follows:

(10)
εx1,ym ¼ ∂lnx1

∂lnym
¼ ∂x1

∂ym

ym
x1

(11) MPx1,ym ¼ ∂x1
∂ym

¼ εx1,ym
�x1

ym

In order to derive the MSV per ha, MPx1:ym is multiplied with the average total
expenditures on seeds/ha (Eseeds � ha�1) as given below:

(12) MSVxseeds:ym ¼ MPxseeds:ymðEseeds�ha�1Þ:

With respect to the model structure, the study follows Kumbhakar, Wang, and
Horncastle (2015), assuming a half-normal distribution of the inefficiency term
(ut). Estimates of the parameters for the above-outlined model were obtained
using maximum likelihood procedures based on a STATA 13 routine.

Data and Estimation

Annual FADN data with 302,041 observations in 23 European countries
(Belgium (BEL), Czech Republic (CZE), Denmark (DEN), Germany (DEU),
Greece (ELL), Spain (ESP), Estonia (EST), France (FRA), Hungary (HUN),
Ireland (IRE), Italy (ITA), Lithuania (LTU), Luxembourg (LUX), Latvia (LVA),
Netherlands (NED), Austria (OST), Poland (POL), Portugal (POR), Finland
(SUO), Sweden (SVE), Slovenia (SVN), Slovakia (SVK), and the United
Kingdom (UKI)), from 2005 to 2012, are used for the analysis. The FADN
data set consists of annual accountancy data from a sample of commercial
agricultural holdings in the EU. The data were collected by the Member
States of the EU by following a harmonized bookkeeping principle
(Commission 2016).
Within the countries of the EU, the Common Agricultural Policy (CAP) sets

common farming regulations, e.g., with respect to environmental standards
and subsidy payments (decoupled direct payments). Nevertheless, crop
production systems differ due to farm structures, traditional differences, and
especially due to agroclimatic conditions. To account for these differences,
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four subsamples (Table 1) were formed based on agroclimatic zones proposed
by Bouma (2005). The subsamples North, East, South and West include the
following different countries:
The farms in the samples produce a variety of outputs (i.e., crops, dairy,

livestock) for which they rely on a variety of inputs. This study focuses on the
characteristics of specialized crop-producing farms because these are most
likely to engage in wheat production. Therefore, the farms selected from the
sample include farms that generate at least 60 percent of their annual revenue
by crop production in every year of observation. This results in an unbalanced
panel based on a total of 73,719 observations after removing outliers from the
sample. The farms remaining in the sample operated on an annual average
area of 1,733,293 ha, which is approximately equal to 1.6 percent of European
crop land (EUROSTAT 2016a). The average farm size in the sample is 186.5 ha,
of which 70 ha on average were cultivated with wheat. The largest farms in
the sample are in the Eastern region, where the average farm size is 230 ha.
The model estimation included specifying inputs and outputs based upon the

production process of wheat farms. Two output variables are selected, namely
total production of commonwheat (yt1) and total production of other field crops
(yt2), which account for all produced crops except wheat. Furthermore, five
input variables were included, namely seed and plants (xt1), fertilizers (xt2),
crop protection (xt3), machinery (xt4), labor (xt4), and total crop area (xt5). The
variables measured in monetary terms (€) refer to total production value
(yt1, yt2) and input expenditures (xt1, xt2, x

t
3). All data measured in EUR were

deflated using real agricultural price indices with the base year 2005
provided by the Eurostat database (EUROSTAT 2016b).
The analysis is conducted the entire sample as well as separately for the four

subsamples (production regions North, East, South and West). The descriptive
statistics for the entire sample are reported in Table 2.
From 2005 to 2012, the average total crops area per year in the sample

remains almost constant in the range of 183–197 ha, and the average yearly
wheat cultivation area ranges between 66 ha and 73 ha. Simultaneously, the
total output of wheat varies between 571 €/ha and 1,256 €/ha and indicates
an upward trend over time. Expenditures for seeds and plants increased from
64 €/ha to 85 €/ha, while labor, on average, remained constant between
6,290 h and 6,991 h. The included dummy variables to account for year (Y),

Table 1. Subsamples’ Composition

Subsample Countries

North SUO, SVE

East EST, HUN, LTU, LVA, POL, SVN, SVK

South ELL, ESP, ITA, POR

West BEL, CZE, DAN, DEU, FRA, IRE, LUX, NED, OST, UKI
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country (C), and economic size (E) are defined according to the FADN. It is
assumed that C picks up country differences in production systems, subsidy
payments, and environmental conditions within a country. With respect to E,
the FADN defines 14 different classes according to the standard output of
farms (Commission 2016).
Differentobservations in thedata set show0values for individualvariables,which

cannot be handled by the logarithmic functional specification. We follow the
procedure outlines by Rasmussen (2010) and deleted those observations (a total
of 2,287 observations were deleted). Only 3 percent of the sample was affected
by this, and thus a significant bias is not expected with respect to the results.
In the empirical application of production or distance functions on

agricultural holdings endogeneity is a general concern as discussed by, e.g.,
Kumbhakar (2001), Kumbhakar (2011), Brümmer, Glauben, and Thijssen
(2002), Sauer and Latacz-Lohmann (2015), and Solís, Bravo‐Ureta, and
Quiroga (2009). Endogeneity problems occur in an IDF if outputs are not
exogenously given. This problem occurs in agricultural crop production to a
certain extent, because they are partly the result of exogenous climate factors
and endogenous farming decisions. The endogeneity impact of outputs on the
next season’s inputs is less problematic in developed countries compared to
developing countries where a bad harvest strongly influences the possibility
to invest in next season’s inputs. Farms in developed countries mostly follow
a standard cultivation pattern that is far less influenced by the previous
harvest outcome. Compared to multi-output production functions, DFs are

Table 2. Descriptive Statistics of the Sample Variables (Aggregated
Sample)

Variables (Obs: 75,784) Unit Mean Min. Max. Std. Dev.

Outputs

Common wheat total
production

EUR 64,584.7 173.3 5,872,466 143,783.1

Other field crops total
production

EUR 111,459.5 146 9,589,848 249,319.8

Inputs

Total crops area hectare 186.5 2.2 7,310 367.2

Seed and plants EUR 13,175.2 0 1,118,402 32,801.5

Fertilizers EUR 27,977.7 0 2,004,995 58,648.2

Crop protection EUR 19,953.1 0 1,548,833 44,025.3

Machinery EUR 127,965.1 0 11,394,706 254,748.4

Labor hours 6,399.2 16 524,505 16,268

Note: All monetary values are adjusted for inflation using the price indices for agricultural outputs and
inputs with base year 2005 (EUROSTAT 2016b).
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superior in avoiding such endogeneity problems, although they fail avoiding
them completely (Kumbhakar 2011). Because the inputs on the right-hand
side of equation 4 appear as ratios, they are likely to suffer less from
endogeneity (Brümmer, Glauben, and Thijssen 2002). Additionally, outputs
are assumed to be exogenous to the farm’s input choice to the extent that
farms are cost minimizers, and panel data estimators control for farmers’
input adjustment due to unobserved time-invariant conditions (Sauer and
Wossink 2013).

Empirical Results and Discussion

This section presents the results for first-order elasticities, marginal shadow
values, scale economies, technical efficiency, and technical change. Detailed
estimates for the parameters of the IDF based on aggregated data for 23
European countries are presented in Table A1 (Appendix). In the estimation
for the entire sample, we find more than 90 percent of the parameters to be
statistically significant different from zero at least at the 5 percent level.
Particularly, first-order coefficients and the dummy variables Y, C, and E are
mostly significant. A number of coefficients for the interaction variables
(second order terms) are also significantly different from zero. This indicates
non-linearities in the production structure and therefore supports the
application of a flexible translog specification (Rahman 2009).
Applying the delta method, we derive the partial first-order elasticities of the

translog function at the sample means for the entire EU region and the four
subsamples as reported in Table 3. Furthermore, Table 3 reports the estimate
of the MSV, SE, TE, and TC evaluated at the sample means.
The first-order derivatives or partial elasticities reflect input substitutability

with respect to seeds (εx1,xk) and marginal output contributions (εx1,ym). As the
dependent variable in equation 7 is � lnx1, these estimates show negative
signs for partial derivatives with respect to outputs and positive signs for
partial derivatives with respect to inputs. The positive signs of all elasticities
for the inputs imply their substitutability with total seed expenditures
(∂lnx1/∂lnxk <0). The negative signs of all elasticities for the outputs imply
that a reduction in total seed expenditures (x1) is positively associated with a
reduction in outputs (∂lnx1/∂lnym >0) (Rahman 2009). Thus, the estimations
confirm the monotonicity conditions for the specified stochastic input-
oriented distance frontier at the sample means (Rasmussen 2010). The
(input) elasticities for outputs (εx1,ym) represent the percentage in x1
associated with a 1 percent change in ym, holding all input ratios (ln(xk/x1))
constant. Because x1 corresponds to the relative measure for the inputs, all
other inputs need to change similar to x1 in order to hold the input ratios
constant. Thus, εx1,ym summarizes the (total) input expansion required for a 1
percent increase in ym and can be considered an input share of ym (relative to
x1) (Paul and Nehring 2005). For example, the elasticity of �0.24430 for
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Table 3. Elasticities MSV, SE, TE and TC (with delta method evaluated at the sample means)

Region EU North East South West

Obs. 73,719 1,626 29,527 8,670 33,896

Elasticities of outputs

εx1,y1 (wheat) �0.24430 �0.21755 �0.19222 �0.21269 �0.26205

εx1,y2 (other crops) �0.30705 �0.24065 �0.26673 �0.29854 �0.29692

Elasticities of inputs

εx1,x2 (fertilizer) 0.07202 0.08624 0.07492 0.06833 0.07217

εx1,x3 (crop protection) 0.17717 0.12236 0.11490 0.12787 0.22985

εx1,x4 (machinery) 0.04143 0.03060 0.04458 0.02871 0.03592

εx1,x5 (labor) 0.26246 0.21145 0.26812 0.31773 0.25176

εx1,x6 (total crop area) 0.30212 0.42679 0.37014 0.29511 0.26125

MSV (yield increasing wheat seeds in €) Farm total 1,303.46 838.90 916.58 635.95 1500.70
Per ha 18.87 17.97 12.79 31.85 15.60

SE (εx1,y) 0.52030 0.45819 0.45895 0.51123 0.55897

TE (within the subsample) 0.91203 0.90680 0.91561 0.88820 0.98908

TC �0.291% �0.09% 0.23% �0.25% �0.192%

Note: Marginal shadow value (MSV), scale economies (SE), technical efficiency (TE), technical change (TC).
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wheat output (εx1,y1) implies that a 1 percent increase in wheat production is
associated with a 0.24430 percent increase in (all) inputs, measured at the
sample mean and holding all input ratios constant.
In a manner similar to εx1,ym , the elasticities for the inputs (εx1:xk) represent the

percentage change of x1 associated with a 1 percent change in xk. However, in an
IDF (equation 7) xk is measured relative to x1. For example, the elasticity value of
0.30212 for the input land (εx1,x6) implies that a 1 percent decrease in the ratio of
land (x6) to seeds (x1), due to a change in x6, could be substituted by 0.30212
percent increase in all inputs. Again, this change, which would keep production
constant, is measured at the sample means.
For every subsample, εx1,y2 is found to exceed εx1,y1 , which confirms that the

production of y2 (crops other than wheat) requires a higher input share for farms
at the sample means. The estimates for the partial elasticities of inputs (εx1:xk)
represent their proportional marginal productivity. The variables land (εx1:x5) and
labor (εx1:x6) show the largest magnitudes, and this suggests that these are the
inputs with the highest contribution to outputs within the estimated models.

Technical Efficiency and Technical Change

The results indicated that technical efficiency (TE) remains fairly constant over
time and varies between 0.896 and 0.925 at the aggregated EU level. The
estimates exceed that in a previous study of the TE of European crop farmers
by Rasmussen (2010), where a value of 0.82 was determined based on data
from 1985 to 2006. However, Paul and Nehring (2005) determined a higher
TE of crop farms in the U.S. corn belt of 0.94 from 1996 to 2000. It is
important to note that TE is only measured within each subsample and only
comparable to a limited extent between different subsamples.
The rate of technical change (TC) can be calculated using the derivative of the

DF (in logs) with respect to t (εDi , t ¼ ∂lnDi=∂t) (Kumbhakar, Asche, and Tveteras
2013). We determine an average annual TC of �0.291 percent, thereby implying
a negative technical change over time, albeit at a relatively low rate. In contrast,
Sauer and Latacz-Lohmann (2015) analyzed German dairy farms from 1996–
2010 and found a positive average annual technical change of 1.5 percent.

Scale Economies

The negative sum of elasticities of outputs (εx1,ym) represents scale economies
(SE) at the sample means. Thus, it reflects the extent to which overall input
use must increase to support a 1 percent increase in all outputs (Paul and
Nehring 2005). Values below 1 imply that the production possibility frontier
expands more than proportionally with an increase in resources, which
indicates increasing returns to scale. Accordingly, an SE value of 0.5203
(Table 3) indicates that a 0.5203 percent increase in all inputs is required to
sustain a 1 percent increase in outputs. Thus, on average, European crop
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farmers are likely to benefit from economies of scale. Figure 1 shows increasing
SE with increasing economic size, which indicates that farms in higher economic
classes are closer to the optimal farm size. We derive low SE values at the
sample mean similar to previous European farms studies including Paul and
Nehring (2005) (SE value of 0.654) and Fleming and Lien (2009) (SE value
of 0.700).
The analysis provides detailed insight into the European crop production

system. However, due to data aggregation and availability, it is not possible to
check specifically for farm individual aspects, such as soil quality or farmers’
characteristics. For example, Sauer and Latacz-Lohmann (2015) show in their
DF model that the farmers’ age and education level affect efficiency and
investment in innovations.

Marginal Shadow Value

We estimate an average MSV for yield-increasing seed material of 18.87 €/ha
for the average European crop farm. Depending on the region, this value
varies between 15.60 €/ha and 31.85 €/ha (Table 3). The reason for these
differences is not easy to identify but can rather be considered a result of
complex differences in regional crop production systems and technologies
influenced by factors such as climate conditions, farm structure, and land and
labor availability. Further, because the MSV measures a percentage increase
of absolute terms, one can expect a region with generally lower revenue/ha
—e.g., the North and East regions—to show a lower MSV/ha. Within the total
sample, we identify increasing average MSVs with an increase in economic
class (Figure 1). Consequently, farmers in a higher economic class could pay a
higher price for yield-increasing seeds.

Figure 1. Average MSV and SE relative to Economic Class.
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Incremental revenue from a 1 percent yield increase in wheat are, on average,
92.9 €/ha for EU crop farms. The MSV for the input seed is 20.3 percent of this
value. The result is consistent with production theory because the incremental
use of different substitutable inputs could lead to a yield increase. Elasticities
indicate the marginal output effect for individual inputs. Thus, the MSV for
one specific input must always be smaller than the incremental revenue due
to substitutability.

Robustness

Various specifications of the model were compared based on likelihood ratio
tests, for which the results are presented in Table A2 (Appendix). We tested
for systematic differences between the model with different subgroups
(specialized crop farms and general farms), with and without dummy
variables (year, country, and economics size), and with and without a time
variable to include technical change. The test results support the sampling
decision at statistically significant levels. Further, we find the chosen translog
functional form superior to a Cobb-Douglas functional form. The hypothesis
of no inefficiencies in the model was rejected at least at a 10 percent level for
all four subgroups.

Conclusions

In the preceding analysis, we estimated translog IDFs for a comprehensive
unbalanced panel of European farms (FADN data) for the period from 2005
to 2012. We evaluate a range of measures capturing the output-input
relationships for European crop farms. Additionally, we exploited the duality
between the IDF and the cost function to determine MSV of marginal yield-
increasing breeding innovations in wheat for four European crop production
regions. On average, we derived MSV of 18.87 €/ha for European crop farms.
However, farm individual MSVs will differ from that value due to general
differences in regions, economic classes and SE.
Our findings give valuable information to farmers, seed producers, and other

political stakeholders. The derived MSVs indicate the marginal economic value
of breeding innovations. Those breeding innovation’s benefits are usually
shared between the seed developer, the farmer, and to a lower extent the
consumer, but the percentage distribution of the shares can be very different
based on the region and trait (Qaim 2009). In our model, the MSVs for seeds
indicate the economic value of crop improvements to farms. However,
through seed prices or breeding premiums, innovation’s benefits are shared
between the seed developer and the farmer. Furthermore, yield increases
provide social benefits in terms of food security and offer potential benefits
for environmental conservation and resource savings. MSVs give theoretical
values for breeding innovations; however, the actual values are also
determined by practical circumstances, such as laws and agreements. The
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International Union for the Protection of New Varieties of Plants (UPOV) aims to
protect breeding innovations for the benefit of society through the application
of an effective regulatory system. Not all countries in our sample signed the
latest UPOV act.1 In a weak regulatory system, MSV and long-term benefits of
breeding innovations might be lost.
Generally, the results of the present study are independent from any breeding

techniques such as conventional, hybrid, and GM. The suggested MSV approach
can also be applied to economically evaluate marginal improvements in other
production factors.
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Table A1. Estimation Results: Multi-output Multi-input Stochastic IDF for All European Countries

Total crops area Parameters Coeff. Std. Err. P>|z|

Frontier

ln(wheat) β1 0.1854413 0.000

ln(other crops) β2 0.0542069 0.000

ln(wheat) × ln(wheat) β11 �0.1211454 0.000

ln(wheat) × ln(other crops) β12 0.057113 0.000

ln(other crops) × ln(other crops) β22 �0.115165 0.000

ln(wheat) × ln(fertilizer) δ12 0.0212942 0.000

ln(wheat) × ln(crop protection) δ13 �0.0126239 0.000

ln(wheat) × ln(machinery) δ14 0.0077065 0.000

ln(wheat) × ln(labor) δ15 �0.0524704 0.000

ln(wheat) × ln(land) δ16 0.0599189 0.000

ln(other crops) × ln(fertilizer) δ22 0.0025249 0.285

ln(other crops) × ln(crop protection) δ23 0.0184444 0.000

ln(other crops) × ln(machinery) δ24 0.0108085 0.000

ln(other crops) × ln(labor) δ25 0.0125612 0.000

ln(other crops) × ln(land) δ26 �0.0615178 0.000

ln(fertilizer) α2 �0.1002692 0.000

ln(crop protection) α3 0.1807334 0.000

Continued

Appendix
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Table A1. Continued

Total crops area Parameters Coeff. Std. Err. P>|z|

ln(machinery) α4 �0.1360751 0.000

ln(labor) α5 0.3568976 0.000

ln(land) α6 0.2852327 0.000

ln(fertilizer) × ln(fertilizer) α22 0.044459 0.000

ln(fertilizer) × ln(crop protection) α23 �0.0326878 0.000

ln(fertilizer) × ln(machinery) α24 �0.0103323 0.000

ln(fertilizer) × ln(labor) α25 0.0056864 0.028

ln(fertilizer) × ln(land) α26 0.0114391 0.001

ln(crop protection) × ln(crop protection) α33 0.0814748 0.000

ln(crop protection) × ln(machinery) α34 �0.007717 0.000

ln(crop protection) × ln(labor) α35 �0.0050478 0.019

ln(crop protection) × ln(land) α36 �0.0137855 0.000

ln(machinery) × ln(machinery) α55 0.0160653 0.000

ln(machinery) × ln(labor) α56 0.0098117 0.000

ln(machinery) × ln(land) α57 0.006551 0.000

ln(labor) × ln(labor) α66 0.0176325 0.000

ln(labor) × ln(land) α67 0.0161114 0.000

ln(land) × ln(land) α77 �0.0263266 0.000

t ω0 �0.7897497 0.000

t2 ω00 0.107003 0.001

ln(wheat)_t ζ1t 0.0060681 0.000

ln(other crops)_t ζ1t �0.0075074 0.000

ln(fertilizer)_t η2t 0.0059123 0.000
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ln(crop protection)_t η3t �0.0018287 0.004

ln(machinery)_t η4t 0.0006367 0.078

ln(labor)_t η5t �0.000369 0.515

ln(land)_t η6t �0.000712 0.417

year_dummy2005 �2.150663 0.000

year_dummy2006 �1.540443 0.000

year_dummy2007 �1.081107 0.000

year_dummy2008 �0.6909532 0.000

year_dummy2009 �0.2313109 0.000

year_dummy2010 0 (omitted)

year_dummy2011 0 (omitted)

year_dummy2012 0 (omitted)

country_dummyBEL 0.1588165 0.000

country_dummyCZE �0.313934 0.000

country_dummyDAN 0.2093997 0.000

country_dummyDEU 0.0316546 0.000

country_dummyELL �0.0281328 0.009

country_dummyESP �0.0404519 0.000

country_dummyEST �0.4865652 0.000

country_dummyFRA 0.0165101 0.000

country_dummyHUN �0.260656 0.000

country_dummyIRE �0.056374 0.002

country_dummyITA 0.1217846 0.000

country_dummyLTU �0.3860692 0.000
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Table A1. Continued

Total crops area Parameters Coeff. Std. Err. P>|z|

country_dummyLUX �0.1585622 0.000

country_dummyLVA �0.4901362 0.000

country_dummyNED 0.1818278 0.000

country_dummyOST 0.0427528 0.000

country_dummyPOL �0.2660551 0.000

country_dummyPOR �0.3094652 0.000

country_dummySUO �0.1657136 0.455

country_dummySVE �0.1657136 0.000

country_dummySVK �0.4963437 0.000

country_dummySVN �0.0714956 0.000

country_dummyUKI 0 (omitted)

EcoSize_dummy1 1.477931 0.000

EcoSize_dummy2 1.289724 0.000

EcoSize_dummy3 1.122759 0.000

EcoSize_dummy4 0.9272114 0.000

EcoSize_dummy5 0.7325038 0.000

EcoSize_dummy6 0.5290397 0.000

EcoSize_dummy7 0.3269214 0.000

EcoSize_dummy8 0.1816877 0.000

EcoSize_dummy9 0.0856994 0.000

EcoSize_dummy10 0.0525546 0.004

EcoSize_dummy11 �0.0175358 0.310

EcoSize_dummy12 0 (omitted)
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Constant α0 �2.049934 0.000

Usigmas

t �0.0996319 0.001

Constant �3.800857 0.000

vsigmas

Constant �3.095368 0.000

Log likelihood: 5510.9927

Number of observation: 73719

Wald chi2 (82): 2412373.29

Prob> chi2: 0.0000

Note: The dummy variables year_dummyXXXX, country_dummyXXX and EcoSize_dummyXX control for different years, countries and economic sizes in the
sample, respectively. The economic size classes are defined according to the FADN. The coefficient cannot be interpreted directly. Using the delta method
relevant coefficients are presented in Table 3.
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Table A2. Log Likelihood Test Ratios

Test Hypothesis Region

North East South West

Subsamples H0: Specialized and non-
specialized farms share the
same technology HA:
Specialized and non-
specialized farms have
different technology

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
479.74 1373.00 363.28 11221.92
Critical value: Critical value: Critical value: Critical value:
χ262: 0:01 ¼ 90.80 χ270: 0:01 ¼ 100.43 χ267: 0:01 ¼ 96.82 χ268: 0:01 ¼ 131.14
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance

Dummy variables
(country)

H0: Including country
dummy variables does not
improve the model fitness
HA: Including country
dummy variables does
improve the model fitness

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
130.88- 2026.82 484.19 1750.08
Critical value: Critical value: Critical value: Critical value:
χ21: 0:01 ¼ 6.63 χ26: 0:01 ¼ 16.81 χ23: 0:01 ¼ 11.34 χ29: 0:01 ¼ 21.67
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance

Dummy variables
(economic size)

H0: Including economic size
dummy variables does not
improve the model fitness
HA: Including economic size
dummy variables does
improve the model fitness

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
336.64 10279.32 1482.25 5694.92
Critical value: Critical value: Critical value: Critical value:
χ208: 0:01 ¼ 20.09 χ211: 0:01 ¼ 24.72 χ211: 0:01 ¼ 24.72 χ210: 0:01 ¼ 23.21
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance

Dummy variables
(year)

H0: Including year dummy
variables does not improve
the model fitness HA:
Including year dummy
variables does improve the
model fitness

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
120.43 1919.40 360.92 1277.45
Critical value: Critical value: Critical value: Critical value:
χ25: 0:01 ¼ 15.09 χ25: 0:01 ¼ 15.09 χ25: 0:01 ¼ 15.09 χ238: 0:01 ¼ 15.09
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance
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Time variable H0: Including a time variable
does not improve the model
fitness HA: Including a time
variable does improve the
model fitness

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
43.51 272.39 93.10 202.30
Critical value: Critical value: Critical value: Critical value:
χ28: 0:01 ¼ 20.09 χ27: 0:01 ¼ 18.48 χ27: 0:01 ¼ 18.48 χ27: 0:01 ¼ 18.48
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance

Cobb-Douglas
functional type

H0: Cobb-Douglas functional
type HA: Translog DF

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
188.34 4028.13 Critical 1487.04 2021.14
Critical value: value: Critical value: Critical value:
χ228: 0:01 ¼ 48.28 χ228: 0:01 ¼ 48.28 χ228: 0:01 ¼ 48.28 χ228: 0:01 ¼ 48.28
Rejected at

0.01%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance

Inefficiency (critical
χ2 values according
to Kodde and Palm
(1986))

H0: No technical inefficiency
present HA: Technical
inefficiency present

Test-statistic: Test-statistic: Test-statistic: Test-statistic:
2.47 14.2521.90 8.03 9818.42
Critical value: Critical value: Critical value: Critical value:
Mixed

χ21: 0:01 ¼ 5.412
Mixed

χ21: 0:01 ¼ 5.412
Mixed
χ21: 0:01 ¼ 5.412

Mixed
χ21: 0:01 ¼ 5.412

Rejected at 0.1%
significance

Rejected at 0.01%
significance

Rejected at
0.01%
significance

Rejected at 0.01%
significance
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