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Abstract

In the present paper, a coupled algorithm refining recursively the Hermite–Hadamard inequality on a
simplex is investigated. Our approach allows us to express the integral mean value M f of a convex
function f on a simplex as both the limit of sequences and sum of series involving iterative lower and
upper bounds of M f . Two examples of interest are discussed.

2010 Mathematics subject classification: primary 26B25.

Keywords and phrases: convexity, simplex, Hermite–Hadamard inequality, refinement, convergence of
recursive algorithms.

1. Introduction
The following result is well known in the literature (see, for example, [1, 6–8]).

Theorem 1.1. Let D be an (n + 1)-simplex of Rn and f : D −→ R be a convex function.
If p1, p2, . . . , pn+1 denote the vertices of D then we have

f
(n+1∑

i=1

pi

n + 1

)
≤

1
|D|

∫
D

f (x) dx ≤
1

n + 1

n+1∑
i=1

f (pi), (1.1)

where |D| =
∫

D dx stands for the Lebesgue volume of D in Rn.

The double inequality (1.1), known in the literature as the Hermite–Hadamard
inequality, and henceforth denoted by (HHI), has a large array of applications in many
mathematical areas and has proved very useful from the theoretical point of view
as well as for practical purposes. A refinement of (HHI) was discussed by Mitroi
and Spiridon in [4]. A converse version of (HHI) was investigated by Mitroi and
Symeonidis in [5]. An extension of (HHI), due to Choquet, for convex functions on a
compact set can be found in [9].

For the sake of simplicity, the middle term of (1.1) will be denoted by M f (D), that
is,

M f (D) =
1
|D|

∫
D

f (x) dx,
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known in the literature as the (arithmetic) integral mean value of f on D. The left
and right terms of (1.1) will be called the initial lower and upper bounds of M f (D),
respectively. The computation of M f (D), when f and D are given, is in general hard.
The initial lower and upper bounds of M f (D) in (1.1) can be considered as estimates
of M f (D), but of course without good precision in general.

The fundamental goal of the present paper appears out of the following procedure:
we will construct a coupled algorithm involving two recursive sequences, denoted by
(Lk(D))k and (Uk(D))k, such that

f
(n+1∑

i=1

pi

n + 1

)
:= L0(D) ≤ L1(D) ≤ L2(D) ≤ · · · ≤ Lk(D)

≤ M f (D) ≤ · · · ≤ Uk(D) ≤ · · · ≤ U2(D) ≤ U1(D) ≤ U0(D)

:=
1

n + 1

n+1∑
i=1

f (pi),

together with the property

lim
k→∞

Lk(D) = lim
k→∞

Uk(D) = M f (D).

Our approach also allows us to give an expression for M f in terms of series:

M f (D) = U0(D) −
1

n + 1

∞∑
k=0

(Uk(D) − Lk(D)).

In the one-dimensional case, n = 1, (HHI) takes the form

f
(a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

, (1.2)

provided that f : [a, b] −→ R, a < b, is convex. It is well known (see [2]) that the left
inequality of (1.2) gives a better estimate of the integral mean value than the inequality
on the right, that is,

1
b − a

∫ b

a
f (x) dx − f

(a + b
2

)
≤

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx. (1.3)

In [10], Wasowicz and Witkowski proved, via a counterexample, that (1.3) does not
remain true for convex functions involving several variables. This means, using our
previous notation, that the inequality

M f (D) − L0(D) ≤ U0(D) − M f (D)

does not hold for convex functions with several arguments. After checking a particular
example of the two-dimensional case, Wasowicz and Witkowski conjectured that

M f (D) − L0(D) ≤ n(U0(D) − M f (D)), (1.4)
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and proved it later by an elementary but lengthy argument. Our approach, described
above, will allow us to deduce (1.4) as a simple consequence of our theoretical results.
In fact, we show more: inequality (1.4) is conserved for all iterates Lk(D) and Uk(D)
previously constructed. That is, the iterative inequality

M f (D) − Lk(D) ≤ n(Uk(D) − M f (D))

remains true for each integer k ≥ 0. In the one-dimensional case, n = 1 (that is
D = [a, b]), the latter inequality means that the left iterate Lk([a, b]) gives a better
estimate of the integral mean value than the right iterate Uk([a, b]). That is, for all
k ≥ 0, we have

1
b − a

∫ b

a
f (x) dx − Lk([a, b]) ≤ Uk([a, b]) −

1
b − a

∫ b

a
f (x) dx,

where the general iterates Lk([a, b]) and Uk([a, b]) can be explicitly computed in terms
of a, b and f in a simple recursive manner; see [3] or Example 3.3 below.

2. Basic notions

In this section, we state some basic notions that will be needed later. Let D
be an arbitrary (n + 1)-simplex of Rn with vertices p1, p2 . . . , pn+1, in short D =

co(p1, p2, . . . , pn+1), where co refers to the closed convex hull. Let b =
∑n+1

i=1 pi/(n + 1)
be the barycenter of the Lebesgue measure of D and co(b, a1, a2, . . . , an) be the
sub-simplex of D, where the points a1, a2, . . . , an are distinct and belong to the set
{p1, p2, . . . , pn+1}. There are n + 1 choices of (a1, a2, . . . , an) and so we have n + 1
sub-simplices of D which will be denoted by Di, 1 ≤ i ≤ n + 1.

Following the above construction, the sub-simplices Di, 1 ≤ i ≤ n + 1, form a quasi-
partition of D in the sense that

D =

n+1⋃
i=1

Di and |Di ∩ D j| = ∅ ∀i , j, (2.1)

and
|Di| = |D j| =

|D|
n + 1

∀i, j. (2.2)

Recall that D j, for fixed j = 1, 2, . . . , n + 1, has the same vertices as D except for
one vertex which is the barycentre b of D. Explicitly, we can write

D j = co{p1, p2, . . . , p j−1, b, p j+1, . . . , pn+1},

where b figures in the jth place, with D = co{p1, p2, . . . , pn+1}.
For the sake of clarity, we state the following definition.

Definition 2.1. For an arbitrary (n + 1)-simplex D ⊂ Rn with vertices p1, p2, . . . , pn+1
and a convex function f : D −→ R we set

L0(D) = f
(n+1∑

i=1

pi

n + 1

)
and U0(D) =

1
n + 1

n+1∑
i=1

f (pi), (2.3)
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which are the lower and upper bounds of (HHI) for f on D. We also define, for
k = 1, 2, . . . , n,

Lk+1(D) =
1

n + 1

n+1∑
j=1

Lk(D j), Uk+1(D) =
1

n + 1

n+1∑
j=1

Uk(D j). (2.4)

For example, for every fixed j = 1, 2, . . . , n + 1,

L0(D j) = f
( n+1∑

i=1,i, j

pi

n + 1
+

b
n + 1

)
, U0(D j) =

1
n + 1

n+1∑
i=1,i, j

f (pi) +
1

n + 1
f (b). (2.5)

3. Refinement of (HHI): the main results
Let D and f be fixed as in Theorem 1.1. As previously defined, the D j, for

j = 1, 2, . . . , n + 1, are the n + 1 sub-simplices of D. The barycentre of D will be
denoted here by b. Applying (HHI) for f in D j ⊂ D, for fixed j = 1, 2, . . . , n + 1, we
obtain

L0(D j) ≤
1
|D j|

∫
D j

f (x) dx ≤ U0(D j), (3.1)

where L0(D j) and U0(D j) are defined as in (2.5).
Replacing |D j| by |D|/(n + 1) (following (2.2)) and summing (3.1) over j =

1, 2, . . . , n + 1, with (2.5), we obtain

1
n + 1

n+1∑
j=1

f
( n+1∑

i=1,i, j

pi

n + 1
+

b
n + 1

)
≤

1
|D|

n+1∑
j=1

∫
D j

f (x) dx

≤
1

(n + 1)2

n+1∑
j=1

n+1∑
i=1,i, j

f (pi) +
1

n + 1
f (b),

which, with (2.1) and
n+1∑
j=1

∫
D j

f (x) dx =

∫
⋃n+1

j=1 D j

f (x) dx =

∫
D

f (x) dx = |D|M f (D),

yields

1
n + 1

n+1∑
j=1

f
( n+1∑

i=1,i, j

pi

n + 1
+

b
n + 1

)
≤ M f (D)

≤
1

(n + 1)2

n+1∑
j=1

n+1∑
i=1,i, j

f (pi) +
1

n + 1
f (b). (3.2)

Summarising, we have started from initial lower and upper bounds of (HHI), named
L0(D) and U0(D), and obtained new lower and upper bounds, respectively given by

L1(D) =
1

n + 1

n+1∑
j=1

L0(D j) =
1

n + 1

n+1∑
j=1

f
( n+1∑

i=1,i, j

pi

n + 1
+

b
n + 1

)
(3.3)
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and

U1(D) =
1

n + 1

n+1∑
j=1

U0(D j) =
1

(n + 1)2

n+1∑
j=1

n+1∑
i=1,i, j

f (pi) +
1

n + 1
f (b). (3.4)

This leads to the next result.

Proposition 3.1. With the notation as above, the following relationships hold:

L1(D) =
1

n + 1

n+1∑
j=1

f
( p j + (n + 2)

∑n+1
i=1,i, j pi

(n + 1)2

)
, (3.5)

U1(D) =
n

(n + 1)2

n+1∑
i=1

f (pi) +
1

n + 1
f
(∑n+1

i=1 pi

n + 1

)
. (3.6)

Proof. Use (3.3) and (3.4) with b =
∑n+1

i=1 pi/(n + 1) and a classical manipulation of the
summation. The details are straightforward. �

We are now in a position to state the following result.

Proposition 3.2. With the notation as above, (3.2) is a refinement of (1.1), that is,

L0(D) ≤ L1(D) ≤ M f (D) ≤ U1(D) ≤ U0(D). (3.7)

Proof. Inequalities (3.7) can be proved by using (3.5) and (3.6) with the help of the
generalised Jensen inequality applied to the convex function f . See also [4] for a
similar argument. �

Example 3.3. Let n = 1 and D = [a, b] with a < b. Then we have

L0(D) = f
(a + b

2

)
, L1(D) =

1
2

(
f
(a + 3b

4

)
+ f

(3a + b
4

))
,

U0(D) =
f (a) + f (b)

2
, U1(D) =

1
2

( f (a) + f (b)
2

+ f
(a + b

2

))
.

Substituting these expressions in (3.7) we obtain a well-known refinement of (HHI)
for a convex function f : [a, b] −→ R (see, for example, [2, 3]).

Example 3.4. Let n = 2 and D be the triangle of sides a, b and c. We have

L0(D) = f
(a + b + c

3

)
, U0(D) =

f (a) + f (b) + f (c)
3

,

and, using (3.5) and (3.6) respectively, we obtain

L1(D) =
1
3

(
f
(a + 4b + 4c

9

)
+ f

(4a + b + 4c
9

)
+ f

(4a + 4b + c
9

))
,

U1(D) =
2
3

( f (a) + f (b) + f (c)
3

)
+

1
3

f
(a + b + c

3

)
.
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We can repeat the same procedure as above by starting from the new lower and
upper bounds, L1(D) and U1(D) respectively, of M f (D). We then construct, by a
mathematical induction, two recursive sequences (Lk(D))k and (Uk(D))k such that

Lk+1(D) =
1

n + 1

n+1∑
j=1

Lk(D j), Uk+1(D) =
1

n + 1

n+1∑
j=1

Uk(D j), (3.8)

where the initial data L0(D j) and U0(D j) are given in Definition 2.1. The following
result is clear.

Proposition 3.5. With the notation as above, (Lk(D))k is an increasing sequence while
(Uk(D))k is a decreasing one. Further, the chain of refinements for (HHI) given by

L0(D) ≤ L1(D) ≤ L2(D) ≤ · · · ≤ Lk−1(D) ≤ Lk(D)
≤ M f (D) ≤ Uk(D) ≤ Uk−1(D) ≤ · · · ≤ U1(D) ≤ U0(D) (3.9)

holds true for every integer k ≥ 0.

We need the following result which will be a good tool for ensuring our claim.

Theorem 3.6. With the notation as above, we have for every integer k ≥ 0,

Uk+1(D) =
n

n + 1
Uk(D) +

1
n + 1

Lk(D), (3.10)

where Lk(D) and Uk(D) are defined recursively as in (2.3) and (2.4).

Proof. We use a mathematical induction on k ≥ 0. For k = 0, the assertion follows
from (3.6) with (2.3). Assume that (3.10) is true for k = p. We have, with (3.8),

(n + 1)Up+1(D) =

n+1∑
j=1

Up(D j) =

n+1∑
j=1

(
n

n + 1
Up−1(D j) +

1
n + 1

Lp−1(D j)
)

=
n

n + 1

n+1∑
j=1

Up−1(D j) +
1

n + 1

n+1∑
j=1

Lp−1(D j).

By (3.8) again we deduce

Up+1(D) =
n

n + 1
Up(D) +

1
n + 1

Lp(D),

that is, (3.10) is true for p + 1. This concludes the proof. �

We are now in a position to state the following result which ensures our claim.

Theorem 3.7. The sequences (Lk(D))k and (Uk(D))k both converge with the same limit
M f (D):

lim
k→∞

Lk(D) = sup
k≥0

Lk(D) = M f (D) = inf
k≥0

Uk(D) = lim
k→∞

Uk(D). (3.11)

Further, the following estimate holds:

∀k ≥ 0, 0 ≤ Uk(D) − M f (D) ≤
( n
n + 1

)k
(U0(D) − L0(D)). (3.12)
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Proof. Following Proposition 3.5, the sequence (Lk(D))k is monotonic increasing and
bounded above by U0(D) while the sequence (Uk(D))k is monotonic decreasing and
bounded below by L0(D), so they both converge. According to (3.10) we obtain, by
letting k→∞,

lim
k

Uk+1(D) =
n

n + 1
lim

k
Uk(D) +

1
n + 1

lim
k

Lk(D).

Simplifying the latter equality, we get limk Lk(D) = limk Uk(D) := L(D). Now, letting
k→∞ in (3.9), we immediately deduce that L(D) = M f (D).

We now prove (3.12). According to (3.10) again, we can write

Uk+1(D) − M f (D) =
n

n + 1
(Uk(D) − M f (D)) +

1
n + 1

(Lk(D) − M f (D)),

which, with the help of Proposition 3.5, yields

0 ≤ Uk+1(D) − M f (D) ≤
n

n + 1
(Uk(D) − M f (D)).

The desired estimation follows by a simple mathematical induction on k, using the fact
that L0(D) ≤ M f (D). The proof of the theorem is complete. �

The relation (3.10) is very useful: it can be used for showing again that the limits
of (Lk(D))k and (Uk(D))k coincide. Such a relation is also interesting in a practical
sense for computing recursively the terms of (Uk(D))k. See the next section for some
examples. Further, (3.10) will be a good tool for deducing more interesting results as
discussed below.

Corollary 3.8. The inequalities

0 ≤ M f (D) − Lk(D) ≤ n (Uk(D) − M f (D)) (3.13)

hold true for every integer k ≥ 0.

In what follows and for the sake of simplicity, we will omit the D in the iterative
lower and upper bounds of M f (D) and write Lk,M f ,Uk.

Proof. By Proposition 3.5 with (3.10), we have (for all k ≥ 0)

M f ≤ Uk+1 =
nUk + Lk

n + 1
,

or again,
0 ≤ M f − Lk ≤ nUk − nM f = n(Uk − M f ),

which is the desired result. �

As already pointed out in the introduction, the particular case k = 0 in the above
corollary was proved (in a different and longer way) in [10, pages 595–596].
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Corollary 3.9. The two numerical series
∑∞

k=0(Uk − M f ) and
∑∞

k=0(M f − Lk) both
converge with the estimates

∞∑
k=0

(M f − Lk) ≤ n
∞∑

k=0

(Uk − M f ) ≤ n(n + 1)(U0 − L0), (3.14)

and the relations
∞∑

k=0

(M f − Lk) +

∞∑
k=0

(Uk − M f ) = (n + 1)(U0 − M f ), (3.15)

∞∑
k=0

(Uk − Lk) = (n + 1)(U0 − M f ). (3.16)

Proof. Since 0 < n/(n + 1) < 1 we deduce from (3.12) that the series
∑∞

k=0(Uk − M f )
converges with

∞∑
k=0

(Uk − M f ) ≤ (U0 − L0)
∞∑

k=0

( n
n + 1

)k
= (n + 1)(U0 − L0).

This, with (3.13), implies that the series
∑∞

k=0(M f − Lk) converges with
∞∑

k=0

(M f − Lk) ≤ n
∞∑

k=0

(Uk − M f ).

Summarising the above, inequalities (3.14) are completely proved.
Now, by virtue of (3.10), we can write

∞∑
k=0

(Uk+1 − M f ) =
n

n + 1

∞∑
k=0

(Uk − M f ) −
1

n + 1

∞∑
k=0

(M f − Lk),

or equivalently,
∞∑

k=0

(Uk − M f ) − (U0 − M f ) =
n

n + 1

∞∑
k=0

(Uk − M f ) −
1

n + 1

∞∑
k=0

(M f − Lk).

The desired relationship (3.15) follows from the latter equality by a simple reduction.
Since the two series above converge, we can write
∞∑

k=0

(M f − Lk) +

∞∑
k=0

(Uk − M f ) =

∞∑
k=0

((M f − Lk) + (Uk − M f )) =

∞∑
k=0

(Uk − Lk).

Relation (3.16) follows by combining the latter equality with (3.15). The proof of the
corollary is complete. �

Remark 3.10. Relation (3.11) states that M f can be expressed as the common limit of
the sequences (Lk)k and (Uk)k of iterates, while (3.16) states that

M f = U0 −
1

n + 1

∞∑
k=0

(Uk − Lk),

that is, M f is determined from the series
∑∞

k=0(Uk − Lk) whose general term is the
difference between the above iterated estimates of M f .
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4. Two examples

Let E be the canonical (n + 1)-simplex of Rn with vertices 0, e1, e2, . . . , en where
(e1, e2, . . . , en) denotes the canonical basis of Rn, that is,

E =

{
(x1, x2, . . . , xn) ∈ Rn :

n∑
i=1

xi ≤ 1 and xi ≥ 0 ∀i
}
.

Recalling that |E| = (n!)−1, (HHI) yields

f
( e
n + 1

)
≤ n!

∫
E

f (x) dx ≤
1

n + 1

(
f (0) +

n∑
i=1

f (ei)
)
, (4.1)

where e :=
∑n

i=1 ei = (1, 1, 1, . . . , 1). We will consider some typical situations by
choosing appropriate convex functions.

4.1. The case where f is a power-norm. Let p ≥ 1 be a real number and take
f (x) = ‖x‖p in (4.1):

L0(E) :=
‖e‖p

(n + 1)p ≤ n!
∫

E
‖x‖p dx ≤

1
n + 1

n∑
i=1

‖ei‖
p := U0(E).

Following (3.11) or (3.7) (after a simple reduction),

U1(E) =
n

(n + 1)2

n∑
i=1

‖ei‖
p +

‖e‖p

(n + 1)p+1 ,

and by (3.6) (after a long but elementary computation and reduction),

L1(E) =
(n + 2)p

(n + 1)2p+1 ‖e‖
p +

1
(n + 1)2p+1

n∑
i=1

‖(n + 2)e − (n + 1)ei‖
p.

If the norm ‖.‖ is symmetric in x1, x2, . . . , xn, as the three classical norms of Rn are,
then the above expressions reduce to

U0(E) =
n

n + 1
‖e1‖

p, U1(E) =
n2

(n + 1)2 ‖e1‖
p +

‖e‖p

(n + 1)p+1 ,

L1(E) =
(n + 2)p

(n + 1)2p+1 ‖e‖
p +

n
(n + 1)2p+1 ‖(n + 2)e − (n + 1)e1‖

p.

4.2. The case where f is power-quadratic. Let A = (ai j) be a real or complex (self-
adjoint) positive matrix of size n. For a fixed real number α > 0, we set

fα(x) = (〈Ax, x〉)α =

( n∑
i, j=1

ai jxix j

)α
for all x = (x1, x2, . . . , xn) ∈ Rn, where 〈x, y〉 is the standard inner product of Rn.
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Proposition 4.1. If α ≥ 1/2 then fα is convex on Rn.

Proof. Since A is (self-adjoint) positive, it follows that 〈Ax, x〉 = ‖A1/2x‖2, where A1/2

denotes the matrix root of A and ‖ · ‖ the Euclidian norm of Rn. The desired result
follows after elementary manipulation. �

Assuming that α ≥ 1/2 in what follows, we can apply (HHI) for fα on E ⊂ Rn and
(4.1) yields

0 ≤
(〈Ae, e〉)α

(n + 1)2α ≤ (n!)
∫

E
(〈Ax, x〉)α dx ≤

∑n
i=1(〈Aei, ei〉)α

n + 1
.

It is easy to see that 〈Aei, ei〉 = aii and 〈Ae, e〉 =
∑n

i, j=1 ai j, and so the above double
inequality becomes

0 ≤ L0(E) :=

(∑n
i, j=1 ai j

)α
(n + 1)2α ≤ (n!)

∫
E

( n∑
i, j=1

ai jxix j

)α
dx ≤

∑n
i=1(aii)α

n + 1
:= U0(E).

We leave to the reader the routine task of computing the corresponding L1(E) and
U1(E) via (3.5) and (3.6), respectively.
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MUSTAPHA RAÏSSOULI, Department of Mathematics,
Faculty of Science, Taibah University,
Al Madinah Al Munawwarah, PO Box 30097, 41477,
Kingdom of Saudi Arabia

https://doi.org/10.1017/S0004972715000258 Published online by Cambridge University Press

http://www.staff.vu.edu.au/rgmia/monographs.asp
https://doi.org/10.1017/S0004972715000258


[11] Hermite–Hadamard inequality on a simplex 67

and
Department of Mathematics, Faculty of Science,
Moulay Ismail University, Meknes, Morocco
e-mail: raissouli.mustapha@gmail.com

SEVER S. DRAGOMIR,
Research Group in Mathematical Inequalities and Applications,
School of Engineering and Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia
and
School of Computational and Applied Mathematics,
University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg,
South Africa
e-mail: sever.dragomir@vu.edu.au

https://doi.org/10.1017/S0004972715000258 Published online by Cambridge University Press

mailto:raissouli.mustapha@gmail.com
mailto:sever.dragomir@vu.edu.au
https://doi.org/10.1017/S0004972715000258

	Introduction
	Basic notions
	Refinement of (HHI): the main results
	Two examples
	The case where f is a power-norm
	The case where f is power-quadratic

	References

