## A NOTE ON THE FIBONACCI QUOTIENT $F_{p-\varepsilon} / p$.

BY<br>H. C. WILLIAMS


#### Abstract

In this note a formula analogous to Eisenstein's well known formula is presented for $F_{p-\varepsilon} / p$, where $F_{n}$ is the $n$th Fibonacci number ( $F_{0}=0, F_{1}=1$ ), $p$ an odd prime, and


$$
\varepsilon=\left\{\begin{array}{rl}
1 & p \equiv \pm 1(\bmod 5) \\
-1 & p \equiv \pm 2(\bmod 5)
\end{array}\right.
$$

This formula is:

$$
F_{p-\varepsilon} / p \equiv \frac{2}{5} \sum_{k=1}^{\mathrm{p}-1-[p / 5]}\left(\frac{-1}{k}\right)^{k}(\bmod p) \quad(p \neq 5)
$$

1. Introduction. Let $F_{n}$ be the $n$th Fibonacci number, where $F_{0}=0, F_{1}=1$, and $F_{k+1}=F_{k}+F_{k-1}$. It is well known that if $p(\neq 5)$ is a prime, then

$$
p \mid F_{p-\varepsilon}, \quad \text { where } \quad \varepsilon=\left\{\begin{array}{rll}
1 & \text { when } & p \equiv \pm 1(\bmod 5) \\
-1 & \text { when } & p \equiv \pm 2(\bmod 5)
\end{array}\right.
$$

That is, $\varepsilon=(5 \mid p)$, where $(a \mid p)$ is the Legendre Symbol. In 1960 Wall [5] posed the problem of whether there exists a prime $p$ such that $p^{2} \mid F_{p-\varepsilon}$. It is still not known whether such a prime exists although it is known (Williams, unpublished) that it must exceed $10^{9}$. This problem is analogous to the famous problem concerning the existence of primes $p$ such that

$$
2^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

Here, however, two solutions 1093 and 3511 are known. There are no other solutions for $p<5.4 \times 10^{9}$ (Brillhart et al. [2]; Lehmer, unpublished).

One rather pretty result concerning the Fermat quotient $\left(2^{p-1}-1\right) / p$ is that of Eisenstein (cf. Dickson [3, p. 105]).

$$
\begin{equation*}
\left(2^{p-1}-1\right) / p \equiv-\frac{1}{2} \sum_{k=1}^{\mathrm{p}} \mathrm{D}^{1}\left(\frac{-1}{k}\right)^{k}(\bmod p) \quad(p \neq 2) \tag{1.1}
\end{equation*}
$$

In [1] Andrews found formulae which are analogous to (1.1) for $F_{p-\varepsilon} / p$. These results were given as

$$
F_{p-1} / p \equiv 2(-1)^{(p-1) / 2} \sum_{\substack{m \equiv 7,5(\bmod 10) \\|m|<p}} \frac{(m+1 \mid 5)(-1 \mid m)}{p-m}(\bmod p)
$$

[^0]for $p \equiv \pm 1(\bmod 5)$ and
$$
F_{p+1} / p \equiv 2(-1)^{(p-1) / 2} \sum_{\substack{m=1,5(\bmod 10) \\|m|<p}} \frac{(m+1 \mid 5)(-1 \mid m)}{p-m}(\bmod p)
$$
for $p \equiv \pm 2(\bmod 5)$. Unfortunately, these rather complicated formulae are not as attractive as the simple formula of (1.1). In this note we present a much simpler formula than those given above for $F_{p-\varepsilon}$. Our method of proof is elementary and quite different from that of [1].
2. Preliminary results. Let $\alpha, \beta$ be the zeros of $x^{2}-x-1$ and let $\left\{L_{n}\right\}$ be the Lucas sequence defined by $L_{0}=2, L_{1}=1, L_{k+1}=L_{k}+L_{k-1}$. From the Binet formulae,
\[

$$
\begin{gather*}
L_{n}=\alpha^{n}+\beta^{n}  \tag{2.1}\\
F_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta), \tag{2.2}
\end{gather*}
$$
\]

it is easy to derive the well-known results

$$
\begin{gather*}
2 L_{n+m}=L_{n} L_{m}+5 F_{n} F_{m},  \tag{2.3}\\
2 F_{n+m}=L_{n} F_{m}+F_{n} L_{m},  \tag{2.4}\\
L_{-n}=(-1)^{n} L_{n}, \quad F_{-n}=(-1)^{n+1} F_{n},  \tag{2.5}\\
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} . \tag{2.6}
\end{gather*}
$$

In the work that follows we assume that $p$ is an arbitrary but fixed prime which is neither 2 nor 5 . From (2.3), (2.4), and (2.5), we see that

$$
\begin{align*}
& 2 L_{p-\varepsilon}=5 F_{p}-\varepsilon L_{p},  \tag{2.7}\\
& 2 F_{p}=F_{p-\varepsilon}+\varepsilon L_{p-\varepsilon} \tag{2.8}
\end{align*}
$$

On putting $n=p-\varepsilon$ in (2.6) and using the fact that $p \mid F_{p-\varepsilon}$, we get $L_{p-\varepsilon}^{2} \equiv 4$ $\left(\bmod p^{2}\right)$ or

$$
\left(L_{p-\varepsilon}-2\right)\left(L_{p-\varepsilon}+2\right) \equiv 0\left(\bmod p^{2}\right) .
$$

Since $L_{p-\varepsilon} \equiv 2 \varepsilon(\bmod p)$ (see for example, Lehmer [4, p. 423]) and $p \nmid\left(L_{p-\varepsilon}-2, L_{p-\varepsilon}+2\right)$, we see that

$$
\begin{equation*}
L_{p-\varepsilon} \equiv 2 \varepsilon\left(\bmod p^{2}\right) \tag{2.9}
\end{equation*}
$$

It follows from (2.9) and (2.8) that

$$
\begin{equation*}
F_{p-\varepsilon} \equiv 2 \varepsilon\left(F_{p}-\varepsilon\right)\left(\bmod p^{2}\right) \tag{2.10}
\end{equation*}
$$

3. The main result. Since $\alpha+\beta=1$ and $\alpha \beta=-1$, we can put

$$
\begin{equation*}
\alpha=-\omega-\omega^{4}, \quad \beta=-\omega^{3}-\omega^{2}, \tag{3.1}
\end{equation*}
$$

where $\omega$ is a primitive 5 th root of unity; that is,

$$
\begin{equation*}
\omega^{4}+\omega^{3}+\omega^{2}+\omega+1=0 . \tag{3.2}
\end{equation*}
$$

Put

$$
T_{i}=\sum_{k=0}^{[p / 5]}\binom{p}{5 k+i} \quad(i=0,1,2,3,4),
$$

where $[p / 5]$ is the largest integer less than $p / 5$. We note that

$$
\begin{equation*}
\sum_{i=0}^{4} T_{i}=2^{p} \tag{3.3}
\end{equation*}
$$

We are now able to prove
Theorem 1. With the symbols defined above we have

$$
5 F_{\mathrm{p}} \equiv \varepsilon\left(5 T_{0}-2^{p}-2\right)\left(\bmod p^{2}\right)
$$

Proof. From (2.1), (2.2), and (3.1), we get

$$
\begin{aligned}
\left(-\omega^{3}-\omega^{2}+\omega+\omega^{4}\right) F_{p}= & \left(\omega+\omega^{4}\right)^{p}-\left(\omega^{3}+\omega^{2}\right)^{p} \\
= & \omega^{4 p} \sum_{i=0}^{p}\binom{p}{i} \omega^{2 i}-\omega^{2 p} \sum_{i=0}^{p}\binom{p}{i} \omega^{i} \\
= & \omega^{-p}\left(T_{0}+\omega^{2} T_{1}+\omega^{4} T_{2}+\omega T_{3}+\omega^{3} T_{4}\right. \\
& -\omega^{2 p}\left(T_{0}+\omega T_{1}+\omega^{2} T_{2}+\omega^{3} T_{3}+\omega^{4} T_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
-L_{\mathrm{p}}= & \omega^{-\mathrm{p}}\left(T_{0}+\omega^{2} T_{1}+\omega^{4} T_{2}+\omega T_{3}+\omega^{3} T_{4}\right) \\
& +\omega^{2 p}\left(T_{0}+\omega T_{1}+\omega^{2} T_{2}+\omega^{3} T_{3}+\omega^{4} T_{4}\right) .
\end{aligned}
$$

If $p \equiv 1(\bmod 5)$, we get

$$
\begin{equation*}
-L_{\mathrm{p}}=2 T_{3}+\omega^{2}\left(T_{0}+T_{4}\right)+\omega\left(T_{1}+T_{4}\right)+\omega^{4}\left(T_{0}+T_{2}\right)+\omega^{3}\left(T_{2}+T_{1}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\left(-\omega^{3}-\omega^{2}+\omega+\omega^{4}\right) F_{p}=\omega^{2}\left(T_{4}-T_{0}\right)+\omega\left(T_{1}-T_{4}\right)+\omega^{4}\left(T_{0}-T_{2}\right)+\omega^{3}\left(T_{2}-T_{1}\right)
$$

Thus,

$$
\omega^{2}\left(T_{4}-T_{0}+F_{p}\right)+\omega\left(T_{1}-T_{4}-F_{p}\right)+\omega^{4}\left(T_{0}-T_{2}-F_{p}\right)+\omega^{3}\left(T_{2}-T_{1}+F_{p}\right)=0 .
$$

Since (3.2) is irreducible, we can only have

$$
\begin{equation*}
F_{\mathrm{p}}=T_{0}-T_{4}=T_{1}-T_{4}=T_{0}-T_{2}=T_{1}-T_{2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}=T_{4}, \quad T_{0}=T_{1} . \tag{3.6}
\end{equation*}
$$

Hence, from (3.3) and (3.6), we get

$$
\begin{equation*}
T_{3}+2 T_{0}+2 T_{2}=2^{p} \tag{3.7}
\end{equation*}
$$

and from (3.4), (3.6), and (3.7), we have

$$
\begin{equation*}
L_{p}=5\left(T_{0}+T_{2}\right)-2^{p+1} \tag{3.8}
\end{equation*}
$$

Since $\varepsilon=1$, we find from (2.7), (2.9), (3.5), and (3.8) that

$$
\begin{equation*}
5 T_{2} \equiv 2^{p}-2\left(\bmod p^{2}\right) . \tag{3.9}
\end{equation*}
$$

The result of the theorem now follows from (3.5) and (3.9).
It can be shown in a similar manner that this same result is true for $p \equiv 2,3$, $4(\bmod 5)$.

We are now able to give our main result as
Theorem 2. If $p$ is any prime except 2 or 5, then

$$
\begin{equation*}
F_{\mathrm{p}-\varepsilon} / p \equiv \frac{2}{5} \sum_{k=1}^{p-1-[p / 5]} \frac{(-1)^{k}}{k}(\bmod p) . \tag{3.10}
\end{equation*}
$$

Proof. From (2.10) and the result of Theorem 1, we have

$$
\begin{equation*}
F_{p-\varepsilon} \equiv \frac{2}{5}\left(5\left(T_{0}-1\right)-2^{p}-2\right)\left(\bmod p^{2}\right) . \tag{3.11}
\end{equation*}
$$

Since

$$
\binom{p}{i} \equiv \frac{p}{i}(-1)^{i+1}\left(\bmod p^{2}\right) \quad(0<i<p)
$$

and

$$
T_{0}-1=\sum_{k=1}^{[p / 5]}\binom{p}{5 k},
$$

we see that

$$
5\left(T_{0}-1\right) \equiv p \sum_{k=1}^{[p / 5]} \frac{(-1)^{k+1}}{k}\left(\bmod p^{2}\right)
$$

Using this result together with (1.1) and (3.11), we get

$$
\begin{aligned}
F_{\mathrm{p}-\mathrm{\varepsilon}} / p & \equiv \frac{2}{5}\left(\sum_{k=1}^{\mathrm{p}-1} \frac{(-1)^{k}}{k}-\sum_{k=1}^{[p / 5]} \frac{(-1)^{k}}{k}\right) \\
& \equiv \frac{2}{5} \sum_{k=1}^{p-1-[p / 5]} \frac{(-1)^{k}}{k}(\bmod p) .
\end{aligned}
$$

This result (3.10) is much simpler than the results given by Andrews and seems to be more strictly analogous to (1.1). Unfortunately, the method of proof here made use of very special properties of the Fibonacci sequence. It is
not known whether simple results, results similar to (1.1) or (3.10) exist for other Lucas sequences such as the Pell sequence.

## References

1. G. H. Andrews, Some Formulae for the Fibonacci sequence with generalizations, Fib. Quart., 7 (1969), 113-130.
2. J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory, Academic Press, London and New York, 1971, pp 213-222.
3. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
4. D. H. Lehmer, An extended theory of Lucas' functions, Annals of Math. (2) 31 (1930), 419-448.
5. D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.

Department of Computer Science
Universtry of Manitoba
Winnipeg, Manitoba, R3T 2N2
Canada.


[^0]:    Received by the editors April 25, 1980.
    AMS (1980) Classification numbers: 10A35, 10A10.
    Key Words and phrases: Fibonacci numbers.

