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A SELECTION THEOREM FOR WEAK UPPER SEMI-CONTINUOUS
SET-VALUED MAPPINGS

WARREN B. MOORS

Let $ be a set-valued mapping from a Baire space T into non-empty closed subsets
of a Banach space X, which is upper semi-continuous with respect to the weak
topology on X. In this paper, we give a condition on T which is sufficient to
ensure that 3> admits a selection which is norm continuous at each point of a
dense and Gg subset of T. We also derive a variation of James' characterisation
of weak compactness, which we use in conjunction with our selection theorem, to
deduce some differentiability results for continuous convex functions defined on
dual Banach spaces.

0. INTRODUCTION

Let A be an open covering of a topological space T. A subset 5 of T is said to
be A-small if S is contained in a member of A. A topological space T is said to be
strongly countably complete if there exists a sequence {An: n € N} of open coverings of
T, with the property that, for any sequence {Fn: n 6 N} of non-empty closed subset
of T, f]{Fn: n £ N} ^ 0 provided Fn+1 C Fn for all n 6 N and each Fn is ^n-small.
It follows immediately from this definition that all locally countably compact and all
complete metric spaces are strongly countably complete. In 1974 Isaac Namioka proved
the following theorem, [7].

THEOREM 0 . 1 . Let T be a strongly countably complete regular topological

space and let X be a Banach space. If f: T —» (X, weak) is a continuous map,

then there is a dense and Gg subset G of T such that at each point of G, f is norm

continuous.

Since this theorem first appeared, it has undergone numerous generalisations, most
of which have been aimed at either relaxing the conditions on the domain space to
something less stringent than strongly countably complete, or at extending the result
to include set-valued mappings. The main result of Section One may be considered to
be such a generalisation. Indeed, in Section One, we prove a theorem more general than
the following.
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THEOREM 0 . 2 . Let T be a regular topological space, which contains as a dense
subspace a strongly countably complete space, and let K be a compact Hausdorff space.
If $ is a set-valued mapping from T into non-empty subsets of C(K), which is upper
semi-continuous with respect to the pointwise topology on C(K), then there exists a
function a: T —> C(K) such that <r(t) is in the norm closure of $(t) for each t G T,
and <r is norm continuous at each point of a dense and Gg subset of T.

Section Two is concerned with providing a positive answer to the following question.

Is every continuous convex function </>, defined on the dual of a Banach space X,

necessarily Frechet differentiable on a dense and Gg subset of X* whenever d<j>(f)tlX ^

0 for each / G X* ?

In answering this question, we prove the following result. If 0 is a continuous
convex function denned on the dual of a Banach space X, and d<f>(f) fl X ^ 0 for each
/GX*, then ^ ( F ) C L

This result may be viewed as an extension of James' characterisation of weak
compactness, in the sense, that if <f> is the gauge of the polar of some bounded, closed
and convex set C (with 0 G C), then this result, combined with the Bishop-Phelps
theorem, recaptures the fact that C is weak compact.

1. A SELECTION THEOREM

The main theorem of this section, Theorem 1.10, has come from an attempt to
unify Theorem 2 in [10] and Theorem 5 in [11]. We begin with some definitions. A
set-valued mapping $ from a topological space T into subsets of a topological space
(X, r ) is said to be T-upper semi-continuous at a point to G T (or T-USC, for short) if,
for each open subset W containing $(<o), there exists an open neighbourhood U of to
such that $(J7) = IJ{*(<) • t e U} CW. We caR a. topological space T a Baire space if
for each countable family of dense open sets {On: n G N} of T, the set H{^n: n G N},
is dense in T. From this definition one may readily deduce the following facts.

(i) A non-empty open subset of a Baire space is a Baire space,
(ii) If T is a Baire space and T = \J{Fn: n G N}; where each Fn is a closed

subset of T, then |J{int Fn: neN} is dense in T.

We call a subset of a topological space a Gg set if it can be expressed as a countable
intersection of open sets, and we call a set residual, if it contains, as a subset, the
countable intersection of dense open sets. Note that in a Baire space, a subset is
residual if, and only if, it contains a dense and Gg set. In this paper we introduce a
new class of Baire spaces, namely the class of v—(3 defavourable spaces, whose definition
is amenable to the proof technique considered in Lemma 1.4.

Let T be a topological space. We consider the following Gv game played on T

between two players a and f3. The player (3 starts by choosing a non-empty open
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subsets B\ of T. The player a then chosses a non-empty open subset Ai C B\ C T
and an element Oi £ T , (that is, a ' s 'move' is the pair (Ai, a i ) , with ax g T ) . Player
/? responds by selecting a non-empty open subset B2 C Ai C B\ C T. Next, a chooses
a non-empty open subset A2 C B2 C Ai C Bi C T, and an element a2 G T . Repeating
this procedure infinitely many times, the player a and /3 produce a p/ay. We shall fix
the rule that a wins a play if I = f]{Bn: n 6 N} ^ 0, and either cl{ajfc} n / ^ 0 for
some Jfc G N, or there is a subsequence {ank : k £ N} of the sequence {o n : n 6 N},
which 'converges' to I (that is, for each open set W with / C W, there exists an
JV'£ N, such that ank £ W for each k > N). Otherwise, the player (3 is said to
have won this play. By a strategy t for the player j3 {strategy s for the player a ) we
mean a rule which determines each of player /3's (player a 's) moves. In particular,
for /?, the strategy t determines his first move. In general the fcth move of player
f3 (player a ) may depend on the previous moves of a (or /3), and so we denote the
fcth move of /? by Bk = t((Ai, ai), . . . , (Ak-i, ajt-i)) (k ^ 2) (fcth move of a by
(Ak, ajt) = s(Bi, ..., Bk) (k ^ 1)). For notational reasons we denote /3's first move
by B\ = t((0, oo)), where ag is some fixed element of T. We call a strategy t a
winning strategy of (3, if /3 wins every play when using the strategy t. Likewise, we
call a strategy s a winning strategy for a , if a wins every play when using the strategy
3. Furthermore, we call a finite sequence ((Ai, ai), ..., (An, an)) or infinite sequence
{(Ai, a i ) , (A2, a2) , . . . , ) of pairs, a t-sequence if A, C <((^i, ox), . . . , (Ai-!, ai-!))
for 2 ^ i ^ n (or for all i ^ 2). and J4I C f((0, ao))- Similarly we call a finite sequence
(Bi, ..., Bn) or an infinite sequence (B\, B2, ••-,) of open sets, an s-sequence if
Bi C s(Bi, ..., Bi-i) for 2 ^ i < n (or i ^ 2). Finally, we call a topological space T
v — {3 defavourable if there is no winning strategy t, for /3 in the Gv game played in
T. We note that it follows from Theorem 1 in [9] that a v — (3 defavourable space is
necessarily a Baire space.

For Banach space X with closed unit ball B(X), we shall denote by ext(B(X*))

the set of extreme points of the dual ball B(X*), and we shall denote by <re, the
weak topology on X generated by ext (B(X*)). Observe that the o-e-topology on X

is Hausdorff and that the closed unit ball B(X) is also closed in the <re-topology. Both
of these observations follow from the fact that for each x £ X there exists an element
/ £ ext (B(X*)) such that f(x) = \\x\\. In the case when X = C{K), (K compact and
Hausdorff), and B(X) is the supremum norm ball, the ovtopology is the pointwise
topology on C(K). In the case of a Banach space X, whose dual ball B(X*) is rotund,
the o-e-topology is the weak topology on ^L .

We need the following important result, which connects ere-compactness to weak
compactness. A proof of this result may be found in either [1], [6] or [10].

THEOREM 1 . 1 . Let F be a bounded subset of a Banach space X, which is
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relatively countably compact in the o~e-topology. Then F is relatively compact in the
weaic topology.

The key result of this section of the paper is the following consequence of Theorem
1.1. Indeed, this is the very result which enables us to extend Theorem 5 of [11] to
include <re-upper semi-continuous set-valued mappings.

COROLLARY 1 .2 . Let F be an infinite bounded subset of a Banach space X.
Then there exists a countably infinite subset E of F such that <re - clE C weafc-clF.

PROOF: Suppose that this is not the case. Then for each countably infinite subset
E of F there exists an element z £ (ae — c\E)\ weak-cl-F. Clearly such an element
z, is a ce-cluster point of E. Hence by Theorem 1.1, weak-cl-F is weak compact and
therefore cre-compact. However, as we remarked earlier, the ac-topology is Hausdorff,
and so weak- cl F is erc -closed. It now follows that for any countably infinite subset E
of F, cre — cl E C weak- cl F, which contradicts our initial assumption; and the result
follows. D

For an element x of a Banach space X, and a real number r > 0, we denote by
B[x, r], the set {y £ X: \\x — y\\ ^ r}. For a non-empty subset A of X and a real
number r > 0, we shall denote by B[A, r], the set |J{.B[a, r]: a £ A}. Note that if A
is <re-compact then B[A, r] is cre-closed.

In order to simplify the statements of the following results we introduce the fol-
lowing definition. We say that the set-valued mapping $ from a topological space T
into non-empty subsets of a Banach space X is •partially ae-upper semi-continuous at a
point ( J E T (or partially <7e-usc, for short), if for each <re-closed and bounded subset
C of X there exists an open neighbourhood U of to such that <&(£/) flC = 0, whenever
dist ($(<o),coC) > 0. Of course all ac-usc set-valued mappings are partially cre-usc.

LEMMA 1 . 3 . Let $ be a partially <re-usc set-valued mapping from a topological

space T into non-empty subsets of a Banach space X. Suppose that for some totally

bounded subset C of X and some e > 0 we have that dist ($(*), B[C, e]) = 0 for each

t in a non-empty open subset U of T. Then there exists an element x £ C and a

non-empty open subset V C U such that $(<) D B[x, 2e] ̂  0 for each teV.

PROOF: Since C is totally bounded there exists a finite set {XJ : 1 ^ j ^ n} C
C such that B[C, 5e/4] C \j{B[xh 3e/2]: 1 ^ j < n). Let Fj = {t £ U: $(<) H
B[XJ, 3e/2] ^ 0} for each j 6 {1, . . . , n}. As $(t) n \J{B[Xj, 3e/2]: 1 < j ^ n} £ 0
for each t G U, we have that U = [){FJ: 1 < i < n} C \J{C\FJ: 1 ^ j < n}.
Hence by a simple induction argument, we see that there exists some k £ {1, . . . , n}
such that int(clFjb) D U ^ 0. The conclusion of the lemma holds for x = n and
V = mt(clFk)nU. •

The next lemma employs a construction considered in [3].
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LEMMA 1 . 4 . Let $ be a partially <rc-usc set-valued mapping from a v — (3

defavourable space T into non-empty subsets of a Ba.na.ch space X. Suppose that

for some ere-closed and convex subset C of X, and some non-empty open subset U of

T, we have that $(*) D C ^ 0 for each t g U. Then for each e > 0 t ie re exists an

element xe £ C and a non-empty open subset Ve of U such that $(2) D B[xc, 3e] ̂  0
for each t £ Ve .

PROOF: We consider first the case when C is bounded. In fact, we shall consider
the case when C is bounded and dist ($(*), C) = 0 for each t £ U. Assume, for the
purpose of obtaining a contradiction, that for each x £ C, int{t G U: $(i)f lB[j i , 3e] ^
0} = 0. From this it follows that int{< G U: $(<) n B[x, 2e] ^ 0} = 0 for each x £
B[C, e]. Furthermore, from Lemma 1.3 and the partial cre-upper semi-continuity of 3?
we have that for each norm compact subset D C B[C, e] , int{2 £ U: $(t)nB[D, e] = 0}
is a dense open subset of U. We define a strategy t for /? in the Bv game played on
T. First, let a0 be a fixed element of T, and set <((0, a0)) = U.

Suppose a chooses {A\, ai) with Ai C <((0, ao)) and ai 6 T. If oi 6 U, then
choose xi £ $(<!) n B[C, e] and define t((A1 ,a1)) = A1n int{t £ U: $(<) r\B[x1,c} =

0}, otherwise choose x\ G C and define i((.Ai, ai)) = Ai. In general, suppose a
chooses {{Ai, ai), (A2, a2), . . . , (An, an)} so that

^n C t((AU Oi), . . . , (iln-i, On-,)) C, . . . , A2 C «((i4i, flj)) C Aj C i((0, a0))

and {oi, O2, . . . , an} C T. If an G U then choose xn G $(an) H jBtC, e] and define
t{{A1,a1),...,(An,an)) = An D int{< G CT: *(<) n B[co{n , . . . , * „ } , e] = 0}, oth-
erwise let xn = xn-\ and define t((Ai, ai), . . . , (An, an)) = j4n. Since T is v — (J
defavourable, t is not a winning strategy for /3 in the game Gv played on T. Hence in
the above, there is a play, with corresponding ^-sequence {(An, an): n G N}, in which
a wins. Now since / = f]iAn • n G N} C int {t G U: $(/) n B[co{xx, ..., xn}, e] = 0}
for each n £ N, it follows that for each k G N, cl{ajt} fl / = 0. Hence we may con-
clude that there is a subsequence {ank : fc G N} of {an: n £ N} which converges to / .
Moreover, by Corollary 1.2 we may assume that <re — cl{znt: k G N} C co{j!n: n £ N}.

Now by the construction, if t G / then $(<) D B[co{xn: n G N}, e] = 0 and so
dist ($(<), co{in: n £ N}) > 0. Therefore by the partial tre-upper semi-continuity of $
there exists an open set W containing / , such that $(W) D <re — cl{xnk : k £ N} = 0.
But this is impossible, since the sequence {o n t

: k G N} converges to / , and for A;
sufficiently large, that is, for k large enough so that anjt G U, xnk £ $(onj t). We
now consider the case when C is unbounded. From above, it is sufficient to show
that for some non-empty open set V of U and some k £ N, dist ($(2), Ck) — 0 for
each t £ V, where Ck = C D kB(X). To this end, suppose that for each k £ N
Fk = {t £ $(t)'- dist ($(<), Ck) > 0} is dense in U. From the partial <re-upper semi-
continuity of $ , it follows that for each k G N, Uk = int{i £ U: $(t)nCit = 0} is dense
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in U. However, since U is a Baire space with the relative topology, H{^*: fc G N} is
non-empty (in fact, n { ^ * : fc 6 N} is dense in U). But this is impossible, since for
each t G f){Uk: k G N}, $(t) n C = 0. Hence we may conclude that for some k G N,
.Ft is not dense in U and the result follows. D

A function / from a topological space T into a topological space X is called
Baire 1 (or of the first Baire class) if the inverse image of each open subset of X is
an Fa subset of T. If T is a metric space and X is a normed linear space, then it is
well known that / is Baire 1 if and only if / is the pointwise limit of a sequence of
norm continuous functions. Let $ be a set-valued mapping from T into subsets of X.

Then a function a: T -+ X is called a selection of $ if <r(t) G $(<) for each t £ T.

In [11] Stegall proves the following Theorem which gives some very general conditions
under which a set-valued mapping from a complete metric space into subsets of Banach
admits a selection which is of the first Baire class.

THEOREM 1 .5 . Suppose that T is a complete metric space, X is a Banach space

and $ is a set-valued mapping from T into non-empty subsets of X which satisfies the

following property:

for each e > 0, each non-empty and closed subset C of T and each

closed ball B of X, with perhaps infinite radius such that $(<) H B ^ f l
for all t G C, there exists an open subset U C. T and V C X such that

UC\C y£<b, VflB ^<D, the diameter of V is less than e and $ ( * ) H F ^ 0
for all t G C f~l U.

Then there exists a Baire 1 function a: T —> X such that cr(t) G norm-cl<I>(<) for each

t ET.

We use this result in conjunction with Lemma 1.4 to deduce the following theorem.

THEOREM 1.6 . Suppose $ is a partially cre-usc set-valued mapping from a com-

plete metric space T into non-empty subsets of a Banach space X. Then there exists

a Baire 1 function a: T —> X such that a(t) G norm-cl$(f) for each t £T.

PROOF: From Corollary 1.12 Part (i) (below) we see that a complete metric space
is v — a defavourable and from Lemma 1.4 we have that the mapping $ satisfies the
hypothesis of Theorem 1.5 and so the result follows. U

A set-valued mapping $ from a topological space T into non-empty subsets of a
linear topological space (X, T) is called T-Hausdorff upper semi-continuous at a point
t0 G T (or T — H use for short) if for each r-open neighbourhood W of 0 in X, there
exists an open neighbourhood U of to such that $(U) Q $(*o) + W. If (X, r) is a
locally convex topological space and the set-valued mapping $ is T — H use at a point
to G T, then the convex-valued mapping $*: T —» 2X defined by $*(t) = co$(i), is
also T — H use at to. Note that from the 'strong' separation theorem we have that
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a weak-lf use set-valued mapping $ , from a topological space T, whose images are
non-empty closed convex subsets of a Banach space X , is partially <re-usc. D

COROLLARY 1.7 . If # is a weak-H use set-valued mapping from a complete
metric space T into non-empty subsets of a Banach space X, then there exists a Baire 1
function a: T -» X such that <r(t) G co$(i) for each t G T.

Let X be a Banach space. We define the duality mapping D: S(X) —• 2S(X ' by
D(x) = {/ G S(X*): f(x) = 1}. We call a Banach space X an Asplund space, (see [8,
p. 13] for the original definition) if each separable subspace of X has a separable dual.

COROLLARY 1 .8 . Let X be a Banach space and let Bi(X*) be an equivalent,
though not necessarily dual, norm on X* . Further, let cre be the weak topology on X*
generated by ext (Bi (X**)). If X can be equivalently renormed so that the graph of the
corresponding duality mapping x —• D(x) contains the graph of a partially <re-usc set-
valued mapping, then X is an Asplund space. In particular, if X can be equivalently
renormed so that the graph of the corresponding duality mapping x —* D(x) contains
the graph of a weak-H use set-valued mapping, then X is an Asplund space.

PROOF: By Theorem 1.6 the duality mapping x —> D(x) will admit a Baire 1
selection. The result now follows from Corollary 9 in [11], which states that a Banach
space X is an Asplund space if and only if there exists an equivalent norm on X such
that the corresponding duality mapping possesses a Baire 1 selection. D

As a special case of Corollary 1.8 we may answer Problem 2 of [4].

COROLLARY 1.9 . If a Banach space X can be equivalently renormed so that
the duality mapping x —> D(x) is weak-H use on S(X), then X is an Asplund space.

We now present our main selection theorem.

THEOREM 1 . 1 0 . Suppose that $ is a partially <re-use set-valued mapping from

a v — /? defavourable space T into non-empty subsets of a Banach space X. Then

there exists a function o:T^>X such that a(t) G norm-cl$(<) for each t £ T, and

or is norm continuous at each point of a dense and Gf subset of T.

PROOF: The proof we present here is essentially the same as that give in [11,
Theorem 5]. The proof proceeds by inductively constructing a sequence of functions
{<rn: n £ N} which converge uniformly to a function a, which will possess the desired
selection properties.

STEP 1. Let f2i be a maximal family of pairwise disjoint open subsets of T which
satisfy the following property:

*i For each W\ G fii there exists an element xwi G X such that
D B[xWl, 1/2] ^ 0, for each t G Wx.

https://doi.org/10.1017/S0004972700016932 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016932


220 W.B. Moors [8]

Suppose, for the purpose of obtaining a contradiction, that Wi = ( J { ^ i : Wi £ ^1}
is not dense in T. Then there exists a non-empty open subset V C.T such that Wi
is disjoint from V. By Lemma 1.4 (with C = X) there exists an x £ X and a
non-empty open subset U of V such that $( i ) n B[x, 1/2] ^ 0 for each t £ U. Let
QJ = f2i U {U}. Clearly Q[ strictly contains Qj and satisfies * i . However, this
contradicts the maximahty of $7i, and hence we may conclude that Wi is dense in T.
Define ax: T -* X by, tr(t) £ $(*) if t £ T \ Wi and o-(t) = x ^ if t £ Wi for some
^ G f l ] . Also, define <r0 : T -* X by ao(t) = a^t) for each t£T. Finally, note that
<7i(<) G !?[$(<), 1/2] for each t £ T. Suppose the first n steps of the induction have
been completed. Then we shall have a family Cln of pairwise disjoint open subsets of
T and a function <rn: T —» X, such that:

(i) Wn = \J{Wn: Wn £ fin} is dense in T,

(ii) an{t) £ $(<) for each t £ T \ W n , and <rn(t) = xWn if < £ Wn, for some

(Note this means that crn is constant on each Wn £ fin-)

Furthermore, for each t£T, an(t) £ B[*(<), 1/271] and

STEP n + 1. Let f2n+i be a maximal family of pairwise disjoint open subsets of W n

which satisfy the following property:

* n + i For each Wn-\-i £ Cln+i there exists a Wn £ Cln such that Wn+i C Wn

and there exists an x\yn+l G X with | |zwn + 1 — ^WnH ^ 1/2™ such that
*(<) n B[xWn+l, l / 2 n + 1 ] ^ 0 for each < £ Wn+1.

Assume, for the purpose of obtaining a contradiction, that Wn+i = U{Wr
n+i: FFn+i

f l n + i} is not dense in T. Then there exists a non-empty open set V C T such that
Wn+i is disjoint from V. Since W n is dense in T , there exists a Wn £ J7n such
that V<lWn^<D. Now observe that for each t£VDW, $(*) H B[xWn, 1/2"] ^ 0.
Therefore by Lemma 1.4 there exists a non-empty open subset U C V D Wn and
an element x £ B[xWn, l / 2 n ] such that $(*) H 5[x, l /2" + 1 ] ^ 0 for each t £ U.
Let f2n +i = fin+i U {t^}. Clearly O n + 1 strictly contains n n + i and satisfies * n + i -
However, this contradicts that maximality of Cln+i, and hence we may conclude that
VVn+i is dense in T. We define an+1 : T -* X as follows. If t <£ W n , then
let <rB +i(0 = ffB(«). K t £ W n \ W n + i , then let an+1{t) £ $(<) D B[<rB(<), 1/2"].
Finally, if * G W n + i , then t £ Wn+i ,for some W^+i G n n + i , and we set ern+i{t) =
xWn+l. Note, for each t £ T , <rB+1(i) £ B[*(<), l / 2 n + 1 ] and ||o-n+1(t) - «rB(<)|| <
1/2". It follows from our construction that the sequence {<rn: n £ N} converges uni-
formly to some function, which we shall call er. It is also clear that <r(t) £ norm-d $(f)
for each t £ T. So to complete the proof it suffices to show that a is norm continuous
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at each point of ("|{ W n : n € N} , which is a dense and Gg subset of T. To this end, let
to G n { W " : n G N} and suppose e > 0 is given. Now for each n £ N and each t € T
we have that ||ern+1(<) - <rn(t)|| ^ l / 2 n . Therefore, \\<r(t) - <rn(t)|| < 1/2"-1 for each
n G N and * G T . Let us choose n G N so that 1/2""1 < e /2 , and choose Wn € ftn so
that toeWn. Then for each ( ^ n ,

H O - "(Mil ^ H<) - »» Wll + Ikn(f) - <rn(*o)|| + lk»(*o)|| < \K(t) ~ "«(*o)|| + e-

However, an is constant on Wn, and so ||0n(O ~ °n(4o)|| = 0. Therefore, for each
t G Wn, \\a(t) - a(to)\\ < e; which completes the proof. D

Observe that strictly speaking, Theorem 1.10 is not a selection theorem, unless the
images of $ are assumed to be closed in the norm topology.

The remainder of this section is devoted to providing some examples of v — /?
defavourable spaces.

We noted earlier that the definition of an v — 0 defavourable space is amenable
to the proof technique considered in Lemma 1.4. However a disadvantage with the
definition of v — 0 defavourablity is that in general, it is difficult to directly determine
whether a given topological space is v—fi defavourable or not. To overcome this problem
we introduce a new class of Baire spaces, contained in the class of v — /? defavourable
spaces whose membership properties are more readily determined.

Let T be a topological space. On T we may consider the following game G,
(Choquet [2]) played between two players a and /3. As usual, /? goes first, and chooses
a non-empty open subset Bi of T. Player a then chooses a non-empty open subset
Ai of B\. Player 0 responds to this by choosing a non-empty open subset Bi of
A\. Next, a selects a non-empty open subset A^ of B2 • Continuing this proceedure
indefinitely, the players a and /? produce a play. We declare that a wins a play of the
G game if P|{.4.n: n G N} is non-empty, otherwise we declare 0 the winner. In [9],
it is proven that on a Baire space there is no winning strategy for 0 in the G game,
(in fact, this characterises Baire spaces). We call a topological space T conditionally
v — a favourable if T contains a dense set R, such that R with the relative topology
is a Baire space, and there is a strategy s for a in the Gv game played on T such
that a wins every play (played according to a) where the corresponding s-sequence
{Bn: n£ N} has C\{Bn: n G N} D R ̂  0.
Note: it is not a condition of the strategy s that ("){.Bn: n G N}fli£ ever be non-empty.

THEOREM 1 . 1 1 . Conditionally v — a favourable spaces are v — /3 defavourable.

PROOF: Let T be a conditionally v — a favourable space and let R be the dense
subset of T given in the definition of v — a favourable. Further, let s denote the
associated strategy on T. Consider 0 with a strategy t; we shall show that t is not
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a winning strategy for /? in the Gv game played on T. We define a strategy t' in /3

in the G game played on R. For each open set U in R let U* denote the largest
open set in T such that U* D R = U. Clearly if Ui C U2 then U{ C U%. First let
t'(<D) = t((%, s0)) n R, s0 £ T, and write To = i((0, s0)). If a chooses 4 i C t'(%) let
Wi = A* n To, (5 i , si) = s{Wx) and Tx = t((Su s i)) , then define i ' ^ i ) = 2\ D # .
(Note: Ti C 5i C Wi C To ). Inductively, suppose a has chosen {Ai, . . . , An} so that
AnQi'(Ai, ...,An-1)C,...,A2Ct'(A1)CA1 C*'(0).

At s tage i ( l ^ i ^ n — 1 ) / ? has constructed an open set Wi C Ti_i so tha t

Wi C\ R — Ai, and a pair (Si, Si) — s(W\, ..., Wi) and also an open set T,- =
t((Si, Si), ..., (Si, Si)), in such a way that ((Si, Si), . . . , (5,-, s<)) is a ^-sequence,
(Wi, . . . , Wi) is an s-sequence, and t'(Alt ..., A{) = T< n R. (Note: T{ C Si C W{ C
Ti_i C , . . . , W 2 c r i C 5i C Wi C r o . ) At stage n , /? proceeds as follows: Let
Wn = A*nnTn_u (Sn,sn) = s(Wlt...,Wn), and Tn = t((Slt « i ) , . . . , ( 5 B , «„) ) .

Then /9 sets f'(j4i, . . . , ^4n) = TnC\R. By construction {Wn: n £ N} is an a-sequence
and {(.?„, •»„): n S N} is a t-sequence. Since R is a Baire space t' is not a winning
strategy for (3 in the G game played on R. Hence, there is a t'-sequence {An : n £ N}
such that 0 y£ C\{An- n £ N} = {Wn: n 6 N} D B. Since T is conditionally v - a
favourable either cl{aj;} fl Pl{5n : n £ N} / 0 for some fc 6 N, or there exists a subse-
quence {anfc : fc £ N} of {an: n £ N} which converges to n { ^ n : ^ £ N}. However, as
{ ( 5 n , sn): n £ N} is a f-sequence and /9 does not win this play, the strategy t is not a
winning one for /? in the Gv game played on T. Therefore T is v — /3 defavourable.

We may now readily obtain some examples of v — a defavourable spaces. D

COROLLARY 1 . 1 2 . A Baire space (T, T) is conditionally v — a favourabie and
Aence v — j3 defavourable if one of the following conditions holds:

(i) (T, T) is metrisable;

(ii) (T, T ) is separable and first countable;

(in) (T, T) is strongly countably complete and regular;

(iv) T is an uncountable set and T is the co-finite topology on T.

PROOF: In all of the following proofs R = T.

(i) We define a strategy for a in the following way. If 0 has chosen {i?i, . . . , Bn},

then define s(B1} ..., Bn) = (.An, a n ) where an £ An C c\An C Bn and diam.Ara <
1/2™. It is easy to see that a wins every play where CK-^": n £ N} ji 8.

(ii) Let {xn: n £ N} be a dense subset of (T, r). This time we define the strategy
of a as follows. If C has chosen {Bi, ..., Bn}, then define s(Bi, ..., Bn) = (An, an),

where An = Bn and an=xn. Now if / = f\{An : n £ N } / 8 , then c\{an: n £ N}D/ ^
0. Let z £ cl{on: n £ N} n / . Since z has a countable local base either z £ cl{an}
for some n 6 N, or there exists a subsequence {anj t: k £ N} of {an: n £ N} which
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converges to z. Hence a wins each play where

(iii) Let {An: n £ N} be the countable family of open coverings of T given in the
definition of strongly countably complete. Again we define a strategy for a . Suppose
(3 has chosen {B\, ..., Bn}, then define s(Bi, . . . , Bn) = (An, an), where an 6 An C
cl-An Q Bn and cl.4.n is -An-small. It is easy to see that with this strategy a wins
every play.

(iv) In this case we define the strategy s in the following manner. If /? has cho-
sen {Bi, ..., Bn}, then we define s(Bi, ..., Bn) = (An, an), where An - Bn and
an $ { i i , • • •, o-n-i}• As with (iii), it is easy to see that a wins every play with this
strategy. D

PROPOSITION 1 . 1 3 . A topological space T" which contains, as a dense sub-
space, a conditionally v — a favourable space T, is conditionally v — a favourable.

PROOF: Consider T equipped with the dense subspace R and the strategy s given
in the definition of conditionally v — a favourable. Observe that R is dense in T" and
is a Baire space with a relative topology. For each open set U in T, let U* denote the
largest open set in T" such that U* C\T — U. We shall define a strategy s' for a in
the Gv game played on T". First, if /3 chooses B\, a non-empty open subset of T", we
define

s'iBx) = (A[, a[) where (Alt oi) = a ^ j nT) , A\ = A{nBi, and a[ = ax.

In general, suppose /3 chooses {5 i , . . . , Bn} so that

Bn C a'(Bu ..., Bn-!) C,...,B2C a ' ( B 0 C B , .

We define s'{Bu ...,Bn) = {A'n, < ) where {A*, an) = a{Bl D T, ..., Bn n T), A'n =
A^ fl Bn, and a'n = an (This makes sense since {Bi DT, . . . , Bn DT} is an s-sequence).
By construction f]{A'n: n £ N} n R - f\{An: n 6 N} D R. Hence, it follows that a
wins each play where f]{A'n :nGN}nR^<D. D

In [11] Stegall calls a Baire space T a complete Baire space, if it is regular, and con-
tains as a dense subspace, a strongly countably complete space. Hence from Corollary
1.12. Part (iii) and Proposition 1.13, we see that complete Baire spaces are condition-
ally v — a favourable, and so I / - / 3 defavourable. From this it follows that Theorem
1.10 does indeed subsume both Theorem 2 in [10] and Theorem 5 in [11].

2. A DIFFERENTIABILITY RESULT FOR CONVEX FUNCTIONS DEFINED
ON DUAL BANACH SPACES

We say that a real-valued function <j> defined on a non-empty open subset A of
a normed linear space X is Frechet differentiable at x G A if there exists a linear
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functional / on X such that for each e > 0 there exists a S(x, e) > 0 such that:

<j>{x) - f{y)\ ^ e \y\ for all \y\ < 6.

In the case of a continuous convex function <f> is Frechet differentiable at x G A if and
only if

i i m

A-»o A
exists, and is approached uniformly for all y E S(X). Note, this characterisation does
not hold in general. Furthermore, for convex functions we can completely determine
their differentiability properties in terms of the following set-valued mapping.

The subdifferential mapping x —> d<j>(x) associated with the convex function (j) is
defined by

d<f>(x) = {f£X*: f(y) - f{x) ^ <j>{y) - <f,(x) for all y G A}.

It is well-known that for each x G A, d(j){x) is non-empty and weak* compact, moreover
it is also known that the subdifferential mapping is weak* upper semi-continuous on A,
[8, p.19]. The fact that the results from Section 1 enable us to deduce differentiability
results follows from the fact that a convex function <f> is Frechet differentiable at a point
Xo (E. A if and only if there exists a selection a: A —* X* of the subdifferential mapping
x —> d<f>(x) which is norm continuous at XQ, [8, p.19].

We say that a Banach space X is a dual differentiability space (or DD space, for
short) if each continuous convex function <j> defined on a non-empty subset A of X* is
Frechet differentiable at each point of a dense and Gg subset of A, whenever the set
{/ E A: d<t>{f) f"l X 7̂  0} is residual in A. This class of Banach spaces is very large,
in fact currently, there is no known example of a Banach space which fails to be a DD

space. Hence it is not unreasonable to conjecture that all Banach spaces are in fact
DD spaces. However, a proof or counter example to this conjecture remains elusive. In
this paper we content outselves with showing that if <f> is a continuous convex function
defined on the dual of a Banach space X and {/ G X* : d<f>(f)nX ^ 0} = X*, then <j>

is Frechet differentiable on a dense and Ge subset of X*.

For a continuous convex function h denned on a non-empty open convex subset A

of a nonned linear space X, we define epi [h) = {(x, r) € A x K: r ^ h(x), x G .4}. It
is not difficult to see that int (epi (h)) = {(x, r)e AxR:r > h(x), x e A} ^ 0.

PROPOSITION 2 . 1 . Let H bea. continuous convex function defined on the dual

of a Banach space X. Then F G dh(f0) if and only if (F, - 1 ) G X" x R supports

epi(h) at (/o,M/o))-

THEOREM 2 . 2 . Let H be a continuous convex function defined on the dual of
a Banach space X . If dh{f) f l l / O f o r each / G X* , then dh{X*) C X.
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PROOF: We may suppose without loss of generality, that h(0) = — 1. Let p be the
Minkowski functional defined on X* x R associated with the convex set epi(h). Since
h(0) = — 1 , (0, 0) € int(epi(A)) and so p is well-defined and continuous on X* x R.
Consider the Banach space X X R under any norm which restricts to the original
norm on the subspace X; for instance ||(x, r)\\ — \\x\\ + \r\. Also consider the natural
mapping T: (X xR)* -> X* xR defined by: T(g) = ( / , r ) where f{x) = g(x, 0) and
r = g(0, 1). T is an isomorphism from ( X x K ) ' onto X* x R. Let p* = p o T. The
following facts are readily verified.

(i) p* is a non-negative continuous sublinear functional on (X x R)*, and
hence p* is the Minkowski functional associated with the closed and con-
vex set B = {gG(XxRY: p*(g) < 1};

(ii) T{H) = epi{h);
(iii) dH = {g 6 {X x R)*: p*(5) = 1} and T(dH) = depi(h) = {(/, h{f)):

fex*};
(iv) For each g 6 dH, dp*(g) D (x x i W 0.

This follows from Proposition 2.1 and the fact that for each g 6 dH

dp'(g) = {Fe(Xx R)" : F(g) = p*(g) = sup{F(/): / G H}}.

Let Ho = {(x, r) e X xR: g(x, r) < 1 for all g G H}. It is not too difficult to
see that HQ is bounded in X x R. We shall show that Ho is in fact weak compact in
X x R. We do this via James' characterisation of weak compactness [5]. To this end,
let g E (X x R)*. We consider two cases.

(a) If p*(g) = 0, then for each A > 0 p*(A^) = 0, and so A j £ 5 . However,
this means that if (a:, r) G flo > then for each A > 0, Ap(z, r) ^ 1, which
implies that g{x, r) ^ 0. Hence g(0, 0) = max{<7(s;, r ) : (x, r) G -ffo} =
0.

(b) If p*(g) > 0, then for some Ao > 0, p*(A0<7) = 1, and so from (iv)
above there exists an {x~f) G dp*(Xog) such that 1 = p*(Aop) =
Aog(a;, r ) = sup{/(a;, r ) : / G H}. Therefore (x, r) G Ho and g(x, r) =
max{g(y,s): (y, s)eH0}.

Hence in either case g attains its maximum value on Ho , which shows that Ho is weak
compact. However, it is well known that

dp*({X x Rf) C H° ~ {F G (X x R ) " : F(g) < 1 for aU g G H},

and that H° - weak*-clff0- Therefore we may conclude that dp*((X x R)*) C

(X x RJ . We complete the proof by observing that this result in conjunction with

Proposition 2.1 implies that for each / G X*, dh(f) C X. D

https://doi.org/10.1017/S0004972700016932 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016932


226 W.B. Moors [14]

COROLLARY 2 . 3 . If <j> is a continuous convex function defined on the dual of a

Banach space X and {/ € X*: d<f>{f)nX ^ 0} = X*, then <l> is Frechet differentiate

on a dense and Gg subset of X* .

PROOF: The subdifferential mapping / —» d<j>(f) is weak* upper semi-continuous
and weak* compact-valued on X* . However, from Theorem 2.2 we have that d<f>(X*) C
X, and so the subdifferential mapping / —+ d<f>(f) is weak upper semi-continuous and
weak compact-valued on X*. Therefore from Theorem 1.10 the subdifferential mapping
admits a selection cr which is norm continuous at each point of a dense and Gg subset
of X* . The result now follows from our discussion at the start of this section. U

REMARK 2.4. Actually, from Theorem 1.6 we have that the subdifferential mapping

/ —> d<f>(f) admits a Baire 1 selection which is necessarily norm continuous at each

point of a dense and Gg subset of X* .

We conclude this paper with the following question.

If <f> is a continuous convex function defined on a non-empty open convex subset
A of the dual of a Banach space X and A = {/ € A: d(j>{f) D X ^ 0}, is <j> necessarily
Frechet differentiable on a dense and Gg subset of A?

APPENDIX

NOTATION. For a Banach space X we shall denote by:

B(X) {x£X: |XK1}
S(X) {x£X: \x\ = 1}
X* the dual of X

X** the second dual of X
X the natural embedding of X into X**

co A the convex hull of the A
co A the closed convex hull of the set A

dist (A, B) the number inf{||o - b\\ : a £ A, b £ B}, A ^ 0 and B £ 0.

For a topological space (T, T) we shall denote by:

int A the interior of the set A

T — cl A the closure of the set A in T

dA the boundary of the set A

NOTE ADDED IN PROOF. The author has recently proven the following result: "Let F

be an infinite bounded subset of a Banach space X. Then there exists a countably
infinite subset E of F such that ccF'E C coF". It now follows that all the results
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from Section 1 of this paper remain valid if we define partial <re-upper semi-continuity

as follows.

We say that the a set-valued mapping $ from a topological space T into non-

empty subsets of a Banach space X is partially cre-upper semi-continuous at a point

to 6 T (or partially <re-usc, for short), if for each «7e-closed, bounded and convex subset

C of X there exists an open neighbourhood U of <o such that $(U) D C = 0, whenever

dist($(*0), C ) > 0 .
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