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1. Introduction. Let A be the m a t r i x a lgebra of type 
n X n over a finite a lgebraic number field F , and V the 
module of m a t r i c e s of type n X m over F. V is natural ly 
an A-left module. Given a non-singular symmet r i c m a t r i x S 
of type m X m over F , we have a bi l inear mapping f of V 
on A such that f(x, y) = xSy' for e lements x and y in V 
where y' i s the t ranspose of y. In this case , corresponding 
to the ar i thmet ic of A([l]), the a r i thmet ica l theory of V will 
be discussed to some extent as we establ ish the a r i thmet ic of 
quadrat ic forms over a lgebraic number fields ([2]). In this 
note, we shall define a latt ice in V with respec t to a maximal 
order in A. and determine its s t ruc ture (Theorem 1), and 
after giving a s t ruc tu re of a complement of a latt ice (Theorem 2), 
we shall give a finiteness theorem of c lass numbers of lat t ices 
under some assumption (Theorem 3). 

2. Definition and s t ruc ture of a lat t ice. The m a t r i x 
unit e in A whose ent r ies a re all zero except the 1-1 

11 
entry 1 is used very effectively and will be denoted simply by z. 
Consider srV and sAe = Fe - The la t ter is isomorphic to F 
and the former may be considered as a vector space over the 
l a t t e r ;namely eV may be considered as a quadratic space over 
an algebraic number field Ft in the sense of [2]. The s t ruc ture 
of V as an A-module is easi ly derived from that of eV since 
V = A e V. However, a r i thmet ica l proper t ies of Y a re not 
so simply obtained from those of £V, since the ar i thmet ic of 
V depends on maximal o rde r s in A. Let us take and fix a 
maximal o rde r & in A throughout this note. 
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Definition. A sys tem of e lements x , . . . , x in V is 
1 m 

said to be a bas i s of V (over A) if V = Ax + . . . + Ax is a 
1 m 

direct sum of A- submodules Ax and if each Ax. is a min imal 
i i 

A-left module. 

When ex = x for an element x in V, we say x is 
e-invariant. If all x. of a bas i s of V a r e e- invariant , we say 

the bas i s is an e-invariant b a s i s . 

Definition. A subset L of V is said to be an ^ - l a t t i c e 
if 1) L is an ££-Ieft module, 2) L contains a bas i s of V, 
and 3) for a bas i s x , . . . , x , there exis ts an element <o in 

1 m 
F such that <plu 

1 m 

Obviously the proper ty 3) does not depend on a choice of 
a bas i s . Also, we see that for any bas i s x , . . . , x , the re 

1 m 
exists an element p in F such that px , . . . , px is a bas i s 

1 m 
of V contained in the lat t ice L». This shows that any 
£ / - l a t t i ce contains an e-invariant b a s i s . 

THEOREM 1. Given an £?- la t t ice . L, the re ex i s t s an 
e-invariant bas i s e , . . . , e such that L. = £? e + . . . + £ ? e 

1 m 1 1 u m m 
with some £/- left ideals £7 in A which satisfy ^ e C ^ 7 

^ i i i 
for i = 1, . . . , m . 

Proof. Let x , . . . , x be an e-invariant ba s i s of V 
1 m 

which is contained in L,. Put U = Ax„ + . . . + Ax . L»et 
2 m 

A. = {T € A | T X J € L. + U} . Then L. = A x mod U. Put 
1 1 1 1 

O. = A . e + 0 e _ _ + . . . +£?£ where e.. a r e m a t r i c e s whose 
^ 1 1 22 nn. il 
ent r ies are all zero except the i - i en t r ies 1. We shall show 
that d is an O'-Ieft ideal in A. Q is c lear ly an £?-left 

module, and it contains O*, since A. 3 ($• and 
1 

Q A^ O-z + ôk^^ + . . . + ô*z . Take <p in F such that 
1 22 nn 

cpL C 6^x + . . . + 0*x • Then <p û x = <pd? ex = <pA x Œ £s"& 
1 m 1 1 1 1 1 1 1 
Therefore y d tc= ( ^ e • s^-ce x is e- invariant and 
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Ax is i somorphic to Az a s a min imal left A-moduIe . Take 

9 in F such that 9e € & and 9 cpz m m € for i = 2, . . . , n ) . 
i i 

T h e n 9 cpû CZ 0>Q e + £?9 <pc + . . . + Û Q <pe <Z & and Q 
I 22 nn 1 

is an £5-left ideal as a s s e r t e d . Obviously £? s Œ Cl , 
- i 1 i 

and L = ^ 7 x mod U. Now consider O A in the sense of 
I I 1 

ideal theory in A([l]}. We can take a ,. . . , a in d and 
. 1 r 1 

m, \ 

(3 , . . . , 6 in O . such that 8 or + . . . + 8 or = 1 , because 
1 r 1 1 1 r r 
- 1 

d £f is a maximal order which natural ly contains 1. If 

we put ar.x = i + u with 4 in L and u in U, then 
i l l l l i 

x = 28 i + Sp u . Since ex = x , x = 2 s 8 i + 2 e 3 u . Now 
1 i i i i 1 1 1 i i i i 

put e = Sep i . It is s- invariant , and Q z - Q (Sep I ) = 
1 i i l l ^ l i i 

# . e ( S p . i . ) C tf. (Zp. i . ) C £7 tf~ L = # L = L. Since 
1 i i 1 l i ^ 1 1 

£ ? , * ^ < ? , x , = JLmod U, L = <3' e t + L fl U (direct) . 
1 1 1 1 1 1 

Now L f l U is an £?- la t t ice in U, and we can complete the 
proof of Theorem 1 by induction on the number of bas i s e l ement s . 

3. Complement of a lattice» 

De finition. L* = { t € V jf(x, t) « 66>* for ai l x in L} 
is called a complement of lu, where Q* is the t r anspose of 

a. 
If e , . . . , e is an s - invar ian t ba s i s , we can find an 

1 m * * * 
£ - invar ian t bas i s e , . . . , e such that f(e , e ) = s or 0 

1 m i j 
according as i = j or i f j by the well known argument in sV. 
We cal l e . . . . , e a dual basis of e . . . . , e 

1 m 1 m 

THEOREM 2. If L = Q e + . . . + Q e as in 
* * * * * * * m m * * 

Theorem 1, then L» = ^ ? e i } . . . + ^ e where e , . . . , e 
1 1 m m 1 m 

is a dual bas i s of e . . . . , e and d a r e £?-left ideals such 
* m x 

that £?.( Q.V = Q(J* in the groupoid of no rma l ideals of A, 
where ( £ ^ ) f a r e the t r ansposes of £?.* 
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Proof. We have f(L, tf .e.) = f ( # . e . , tf.e.) 
1 1 1 1 1 1 

= £?.E ( # . )' d tfAtf.Y = £ ? # ' • On the other hand, if 

- 1 
f(L, a e l c : ^ ? ^ 1 , then Û. e a ' CT < W and ea' « <?" £ ? $ ' 

i l i 

= ( # . ) ' . The r e f o r e , az € u( . > and ore. =or£ e. € £? e , 
i i i i i i 

which proves Theorem 2. 

COROLLARY. (L*)* = L. 

4. Fini teness of c l a s s number of l a t t i ces . For an 
£J- la t t ice L, we consider e L. It is an le-module contained 
in cV, where I denotes the ring of all a lgebra ic in tegers of 
F. Clear ly , e L contains a bas i s of eV over Fe , namely 
an s - invar iant bas is of V contained in L. If L = O e 4- . . . 

1 1 
+ £7 e as before , then e L = e £? e + . . . + e ^7 e . We can 

m m i l m m 
take an element ç in F such that <p€ Q, Œ Û[l], where £2 [I] 

is the maximal order in A consist ing of a l l m a t r i c e s whose 
en t r ies a re algebraic in tegers in F . Then <pz£?.e. 

= cpt O e e CI e $Tll ee = le . Therefore <pe L C I e + . . . + le , 
i i i i 1 m 

which shows that e L is a latt ice in a quadrat ic space eV in 
the usual sense [2]. 

Definition. We say L is in tegra l if f ( L , L ) C ^ r . 

This definition is equivalent to L CTL*, where L* is 
the complement of L. Now we consider an £>-lattice £? e L. 
It is not neces sa r i l y contained in L, but we can take an element 
JJL in F such that £?fj.eLCZL. When L is in tegra l , <£2f±£L 
is natural ly in tegral . 

Definition. The volume of e L in sense of [2; p. 229] is 
called the s -volume of L. 

Last ly, a c lass of C/- latt ice s is introduced in a na tura l 
way. An A-automorphism T of an A-module V is cal led an 
automorphism of V if it sat isfies f(T(x), T(y)) = f(x, y). We 
say that two 0-lattices belong to the same c lass if and only if 
they a re mapped into each other by some au tomorphisms of V, 
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If lu and L ! belong to the same c l a s s , then e L and e L ! 

belong to the same c lass in cV in sense of [2], and converse ly . 
For , an automorphism of V induces an automorphism of e V, 
and an automorphism of eV can be extended to that of V for 
V = A e V . In this case , ^ s L and ^ E L ' natura l ly belong to 
the same c l a s s . Now we have the last theorem. 

THEOREM 3. The number of c l a s se s of all in tegral 
^ - l a t t i c e s with the same e -volume is finite. 

Proof. Let L be an integral (3 - la t t ice with the given 
z-volume. Then we can take u in F such that C/\& L C L 
as above. Here the choice of u does not depend on L; namely 
we could choose u such that JJLS « 0*. Next, we take an element 
v in I such that vO<Z@[l\. Then ^ v e L C L , and 
uvsL, is in tegra l in eV, since f(uvsL, uV£L,)CTIs. Since 
fivsL has a fixed volume and it is an in tegral la t t ice , it can 
belong to only a finite number of c l a s ses in £ V by [2; p. 309]. 
Therefore , ÔV.VZL can belong to only a finite number of 
c l a s se s in V. Let us denote these finite number of c l a s se s by 
K , . . . ,K . Then for any automorphism T of V, 

T(£?\LVZL>) =TT(K.) for some automorphism Tf and some i 

( l < i < t ) . Then S(£?|JLVS L) = K. with S = T t " 1 T . Therefore 

K. CZ S(L). On the other hand, S(L) Œ K since 
l i 

S(L) C S(L)*CI Kf. However, there a r e only a finite number 
1 * * 

of 6?-lat t ice s between K. and K. , because K. and K a re 
i i i i 

finite I -moduIes . This completes the proof of Theorem 3. 
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