ON LATTICES IN A MODULE OVER A MATRIX ALGEBRA

Nobuo Nobusawa

(received August 8, 1965)

1. Introduction. Let A be the matrix aigebra of type $n \times n$ over a finite algebraic number field F, and V the module of matrices of type $n \times m$ over F. V is naturally an A-left module. Given a non-singular symmetric matrix S of type $m \times m$ over F, we have a bilinear mapping f of V on A such that $f(x, y)=x S y$ for elements x and y in V where y^{\prime} is the transpose of y. In this case, corresponding to the arithmetic of $A([1])$, the arithmetical theory of V will be discussed to some extent as we establish the arithmetic of quadratic forms over algebraic number fields ([2]). In this note, we shall define a lattice in V with respect to a maximal order in A and determine its structure (Theorem 1), and after giving a structure of a complement of a Lattice (Theorem 2), we shall give a finiteness theorem of class numbers of lattices under some assumption (Theorem 3).
2. Definition and structure of a lattice. The matrix unit ε_{11} in A whose entries are all zero except the $1-1$ entry 1 is used very effectively and will be denoted simply by ε. Consider εV and $\varepsilon A \varepsilon=F \varepsilon$. The latter is isomorphic to F and the former may be considered as a vector space over the latter; namely εV may be considered as a quadratic space over an algebraic number field $F \varepsilon$ in the sense of [2]. The structure of V as an A-module is easily derived from that of εV since $V=A \varepsilon V$. However, arithmetical properties of V are not so simply obtained from those of $\varepsilon \mathrm{V}$, since the arithmetic of V depends on maximal orders in A. Let us take and fix a maximal order θ in A throughout this note.

Canad. Math. Bull. vol. 9, no. 1, 1966

Definition. A system of elements x_{1}, \ldots, x_{m} in V is said to be a basis of V (over A) if $V=A x_{1}+\ldots+A x_{m}$ is a direct sum of A-submodules $A x_{i}$ and if each $A x_{i}$ is a minimal A-Ieft module.

When $\varepsilon x=x$ for an element x in V, we say x is
ε-invariant. If all x_{i} of a basis of V are ε-invariant, we say the basis is an ε-invariant basis,

Definition. A subset L of V is said to be an θ-lattice if 1) L is an Q-left module, 2) L contains a basis of V, and 3) for a basis x_{1}, \ldots, x_{m}, there exists an element φ in F such that $\varphi L \subset Q_{x_{1}}+\ldots+\theta_{x_{m}}$.

Obviously the property 3) does not depend on a choice of a basis. Also, we see that for any basis x_{1}, \ldots, x_{m}, there exists an element ρ in F such that $\rho x_{1}, \ldots, \rho x_{m}$ is a basis of V contained in the lattice L. This shows that any Q-lattice contains an ε-invariant basis.

THEOREM 1. Given an $Q_{\text {-lattice }} L$, there exists an ε-invariant basis e_{1}, \ldots, e_{m} such that $L=a_{1} e_{1}+\ldots+a_{m} e_{m}$ with some $Q_{\text {-left ideals }} Q_{i}$ in A which satisfy $Q_{i} \varepsilon \subset Q_{i}$ for $i=1, \ldots, m$.

Proof. Let x_{1}, \ldots, x_{m} be an ε-invariant basis of V which is contained in L. Put $U=A x_{2}+\ldots+A x_{m}$. Let $A_{1}=\left\{\tau \in A \mid \tau x_{1} \in L+U\right\}$. Then $L \equiv A_{1} x_{1} \bmod U$. Put $Q_{1}=A_{1} \varepsilon+Q_{22}+\cdots+Q_{\varepsilon_{n n}}$. where $\varepsilon_{i i}$ are matrices whose entries are all zero except the iii entries 1 . We shall show
 module, and it contains Q, since $A_{1} \supset Q$ and $Q_{1} \supset \theta_{\varepsilon}+\theta_{22}+\ldots+O_{\varepsilon_{n n}}$. Take φ in F such that $\varphi L \subset \theta_{1}+\ldots+\theta_{x_{m}}$. Then $\varphi Q_{1} x_{1}=\varphi Q_{1} \varepsilon x_{1}=\varphi A_{1} x_{1} \subset \theta_{1}=$ $Q_{\varepsilon x_{1}}$. Therefore $\varphi Q_{1} \varepsilon \subset Q_{\varepsilon}$, since x_{1} is ε-invariant and

Ax 1_{1} is isomorphic to $A \varepsilon$ as a minimal left A-module. Take θ in F such that $\left.\theta \varepsilon \in Q_{\text {and }} \theta \varphi_{i i} \in Q_{\text {for }} i=2, \ldots, n\right)$.
Then $\theta_{\varphi} Q_{1} \subset Q_{\theta \varepsilon}+C_{\theta} \varepsilon_{22}+\ldots+Q_{\theta \varphi \varepsilon} \subset \theta_{n n}$ and Q_{1} is an Q-Ieft ideal as asserted. Obviously $a_{1} \varepsilon \subset a_{1}$, and $L \equiv Q_{1} x_{1} \bmod U$. Now consider Q_{1}^{-1} in the sense of ideal theory in $A([1])$. We can take $\alpha_{1}, \ldots, \alpha_{r}$ in Q_{1} and $\beta_{1}, \ldots, \beta_{r}$ in Q_{1}^{-1} such that $\beta_{1} \alpha_{1}+\ldots+\beta_{r} \alpha_{r}=1$, because $Q_{1}^{-1} a_{1}$ is a maximal order which naturally contains 1 . If we put $\alpha_{i} x_{1}=\ell_{i}+u_{i}$ with ℓ_{i} in L and u_{i} in U, then $x_{1}=\Sigma \beta_{i} \ell_{i}+\Sigma \beta_{i} u_{i}$. Since $\varepsilon x_{1}=x_{1}, x_{1}=\Sigma \varepsilon \beta_{i} \ell_{i}+\Sigma \varepsilon \beta_{i} u_{i}$. Now put $e_{1}=\Sigma \varepsilon \beta_{i} \ell_{i}$. It is ε-invariant, and $Q_{1} e_{1}=Q_{1}\left(\Sigma \varepsilon \beta_{i}{ }_{i}\right)=$ $a_{1} \varepsilon\left(\Sigma \beta_{i} \ell_{i}\right) \subset a_{1}\left(\Sigma \beta_{i} \ell_{i}\right) \subset Q_{1} Q_{1}^{-1} L=Q_{L}=L$. Since $Q_{1} x_{1} \equiv Q_{1} x_{1} \equiv L \bmod U, L=Q_{1} e_{1}+L \cap U$ (direct).
Now $L \cap U$ is an Q-lattice in U, and we can complete the proof of Theorem 1 by induction on the number of basis elements.

3. Complement of a lattice.

Definition. $L^{*}=\left\{t \in V \mid f(x, t) \in C^{\prime} \mathcal{C l}^{\prime}\right.$ for all x in $\left.L\right\}$ is called a complement of L, where Q^{\prime} is the transpose of θ.

If $e_{1}, \ldots, e_{m_{*}}$ is an ε-invariant basis, we can find an ε-invariant basis $e_{1}^{m_{*}}, \ldots, e_{m}^{*}$ such that $f\left(e_{i}, e_{j}^{*}\right)=\varepsilon$ or 0 according as $i=j$ or $i \neq j$ by the well known argument in $\varepsilon \mathrm{V}$. We call $e_{1}^{*}, \ldots, e_{m}^{*}$ a dual basis of e_{1}, \ldots, e_{m}.

THEOREM 2. If $L=a_{1} e_{1}+\ldots+a_{m} e_{m}$ as in Theorem 1, then $L^{*}=Q_{1}^{*} e_{1}^{*}+\ldots+Q_{m}^{*} e_{m}^{*}$ where $e_{1}^{*}, \ldots, e_{m}^{*}$ is a dual basis of e_{1}, \ldots, e_{m} and Q_{i}^{*} are $Q_{\text {-Ieft ideals such }}$ that $Q_{i}\left(Q_{i}^{*}\right)^{\prime}=Q Q^{\prime}$ in the groupoid of normal ideals of A, where $\left(Q_{i}^{*}\right)^{\prime}$ are the transposes of Q_{i}^{*}.

Proof. We have $f\left(L, Q_{i}^{*} e_{i}^{*}\right)=f\left(Q_{i} e_{i}, Q_{i}^{*} e_{i}^{*}\right)$
$=Q_{i} \varepsilon\left(a_{i}^{*}\right)^{\prime} \subset a_{i}\left(a_{i}^{*}\right)^{\prime}=\theta c^{\prime} . \quad$ On the other hand, if $f\left(L, \alpha e_{i}^{*}\right) \subset C^{\prime} C^{\prime \prime}$, then $A_{i} \varepsilon \alpha^{\prime} \subset Q Q^{\prime}$ and $\varepsilon \alpha^{\prime} \in Q_{i}^{-1} \theta Q_{1}$ $=\left(Q_{i}^{*}\right)^{\prime}$. Therefore, $\alpha \varepsilon \in Q_{i}^{*}$, and $\alpha e_{i}^{*}=\alpha \varepsilon e_{i}^{*} \in Q_{i}^{*} e_{i}^{*}$, which proves Theorem 2.

COROLLARY. (L*)* = L.
4. Finiteness of class number of lattices. For an C-Iattice L, we consider εL. It is an $I \varepsilon$-module contained in $\varepsilon \mathrm{V}$, where I denotes the ring of all algebraic integers of F. Clearly, εL contains a basis of εV over $F \varepsilon$, namely an ε-invariant basis of V contained in L. If $L=Q_{1} e_{1}+\ldots$ $+Q_{m} e_{m}$ as before, then $\varepsilon L=\varepsilon Q_{1} e_{1}+\ldots+\varepsilon Q_{m} e_{m}$. We can take an element φ in F such that $\varphi \varepsilon a_{i} \subset \mathcal{Q}[I]$, where $Q[I]$ is the maximal order in A consisting of all matrices whose entries are algebraic integers in F. Then $\varphi \varepsilon Q_{i} e_{i}$
 which shows that εL is a lattice in a quadratic space εV in the usual sense [2].

Definition. We say L is integral if $f(L, L) \subset Q Q^{\prime}$.
This definition is equivalent to $L \subset L *$, where L^{*} is the complement of L. Now we consider an $\theta_{\text {-lattice }} \theta_{\varepsilon}$. It is not necessarily contained in L, but we can take an element μ in F such that $Q_{\mu \varepsilon L} \subset L$. When L is integral, $Q_{\mu \varepsilon L}$ is naturally integral.

Definition. The volume of εL in sense of [2; p. 229] is called the ε-volume of L.

Lastly, a class of Q-lattices is introduced in a natural way. An A-automorphism T of an A-module V is called an automorphism of V if it satisfies $f(T(x), T(y))=f(x, y)$. We say that two θ-lattices belong to the same class if and only if they are mapped into each other by some automorphisms of V.

If L and L^{\prime} belong to the same class, then εL and εL^{\prime} belong to the same class in εV in sense of [2], and conversely. For, an automorphism of V induces an automorphism of εV, and an automorphism of εV can be extended to that of V for $V=A \varepsilon V$. In this case, $Q_{\varepsilon} L$ and $Q \varepsilon L^{\prime}$ naturally beiong to the same class. Now we have the last theorem.

THEOREM 3. The number of classes of all integrai θ-Iattices with the same ε-volume is finite.

Proof. Let L be an integral O-lattice with the given ε-volume. Then we can take μ in F such that $\mathcal{Q}_{\mu} L \subset L$ as above. Here the choice of μ does not depend on L; namely we could choose μ such that $\mu \varepsilon \in Q$. Next, we take an eiement ν in I such that $\nu Q \subset Q[I]$. Then $\mathcal{O}_{\mu \nu \varepsilon L \subset L \text {, and }}$ $\mu \nu \varepsilon L$ is integral in εV, since $f(\mu \nu \varepsilon L, \mu \nu \varepsilon L) \subset I \varepsilon$. Since $\mu \nu \varepsilon L$ has a fixed volume and it is an integral lattice, it can belong to only a finite number of classes in εV by [2; p. 309]. Therefore, $Q_{\mu \nu \varepsilon L}$ can belong to only a finite number of classes in V. Let us denote these finite number of classes by K_{1}, \ldots, K_{t}. Then for any automorphism T of V, $T\left(Q_{\mu \nu} \nu L\right)=T^{\prime}\left(K_{i}\right)$ for some automorphism T^{\prime} and some i $(1 \leq i \leq t)$. Then $S\left(Q_{\mu \nu \varepsilon L}\right)=K_{i}$ with $S=T^{T^{-1}} T$. Therefore $K_{i} \subset S(L)$. On the other hand, $S(L) \subset K_{i}^{*}$ since $S(L) \subset S(L) * \subset K_{i}^{*}$. However, there are only a finite number of $Q_{\text {-Lattices between }} K_{i}$ and K_{i}^{*}, because K_{i} and K_{i}^{*} are finite I-modules. This completes the proof of Theorem 3.

REFERENCES

1. M. Deuring, Algebren, Chelsea, 1948.
2. O.T. O' Meara, Introduction to quadratic forms, Springer, 1963.

University of Alberta, Calgary
and
Summer Research Institute, Canadian Mathematical Congress

