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1. Introduction

For n ^ 1 consider the non-homogeneous linear differential equation

/<"> + / ^ ( z ) / ^ - 1 ' + • • • + P0(z)f = H(Z), (1.1)

where Po(z),P\(z),...,Pn-i(z) are polynomials with Po(z) ^ 0, and H(z) ^ 0 is an
entire function of finite order. It is well known that every solution / of equation (1.1) is
an entire function.

For an entire function g, let p(g) denote the order of growth of g, and when g ^ 0, let
\{g) denote the exponent of convergence of the sequence of zeros of g.

For solutions / of equation (1.1), we investigate the possible values of />(/), and the
relationships between the values of />(/), A(/), p(H) and X(H). We give examples to
illustrate the sharpness of our results.

2. Statement of results

To discuss the possible orders of solutions of equation (1.1), we need to know the possible
orders of the solutions of the corresponding homogeneous equation

/<"> + P n - ! { z ) f l n - l > + ••• + P 0 ( z ) f = 0 , (2.1)
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where PQ(Z), P\(Z), . . . , Pn-\(z) are the polynomials in (1.1). In [3], the authors present
an algorithm which generates a non-empty finite set <P of at most n positive rational
numbers that includes all the possible orders of the transcendental solutions of (2.1).
This algorithm to obtain the set $ uses only simple arithmetic with the degrees of the
coefficients in (2.1). Others have obtained such a set by appealing to the Newton-Puiseux
diagram (see [6,7,10,11]). For the reader's convenience, we now state the algorithm in [3].

For each polynomial Pj{z) in (2.1), we set dj = degP, when Pj(z) ^ 0, and we set
dj = — oo when Pj(z) = 0 . We define a strictly decreasing finite sequence of non-negative
integers,

si > s2 > • • • > sp > 0, (2.2)

in the following manner. We choose si to be the unique integer satisfying

d3s\ = min^ j : —-— = max1 n — j o^fc^
dk \

ix >.
ra-1 71 — K )

Then, given Sj (j ^ 1), we define s^+i to be the unique integer satisfying

. f . di — ds dk - ds
Sj+i = min< i : f- = max -f- > - 1

For a certain p, the integer sp will exist, but the integer sp+i will not exist, and then the
sequence si, s%,..., sp terminates with sp. Then p ^ n, and (2.2) holds.

Correspondingly, define for j = 1,2,..., p,

where we set SQ = n and dSo = dn = 0. Let <T> denote the set

# = { a i , a 2 , . . . , Q p } . (2.3)

We see that each a.j € ^ has the form

ai = mj/<lj, (2A)

where rrij and qj are positive integers with qj ^ n. We also note that

When p ^ 2, we have

max d e g ,fc. (2.5)

> a 2 > • • • > a p .

From Theorem 1 and Corollary 3 in [3], we have the following theorem.

Theorem 2.1 (see [3]). The following statements hold for equation (2.1).

(i) If f is a transcendental solution of (2.1), then p(f) € <P.
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(ii) There exists a solution f0 of (2.1) satisfying p(/o) = ai-

The next result gives the possible orders of solutions of the non-homogeneous equation
(1.1).

Theorem 2.2. Let <£ be the set in (2.3). Iff is a solution of (1.1), then

either p(-f) = p(H), or p(f) = a G #, where a > p(H). (2.6)

Moreover, there exists a solution /o of (1.1) satisfying

p(/o) = max{,(10,1 + ̂ ^ ^ } . (2.7)

Regarding Theorem 2.2, it is easy to see from Lemma 3.1 in § 3 that there exist equa-
tions of the form (1.1) where p(f) = p(H) for every solution / . On the other hand,
there exist equations of the form (1.1) where every solution / satisfies p(f) > p{H)\ see
Example 4.1 in §4.

In the case when p(H) is an integer in (1.1), the following result gives a lower bound
for p(f) when p(f) > p(H).

Theorem 2.3. Let p(H) be an integer, and let f be a solution of (1.1). Ifp(f) > p(H),
then

p(f) > p(H) + l/n. (2.8)

The inequality (2.8) is sharp. Example 4.1 gives an equation of the form (1.1), where
p(H) is an integer, such that (2.8) becomes an equality for every solution / . Example 4.1
also gives equations of the form (1.1) where p(H) is an integer, such that (2.8) becomes
a strict inequality for every solution / . We cannot delete the condition that p(H) be an
integer from the hypothesis of Theorem 2.3; see Example 4.2.

We now consider the relationships between the values of />(/), A(/), p(H) and \(H)
for solutions / of (1.1). Of course, it is well known that X(w) ^ p{u>) for every entire
function w ^ 0. Gao proved the following two results.

Theorem 2.4 (see [1]). Iff is a solution of (1.1), then X(f) > \(H).

Theorem 2.5 (see [1]). If \{H) = p(H) in (1.1), then every solution f of (1.1)
satisfies A(/) = p(f).

Another proof of Theorem 2.4 is given in [4]. We prove the following result.

Theorem 2.6. If f is a solution of (1.1), then

P{f) - Hf) ^ P(H) - \(H). (2.9)

Theorem 2.5 is a corollary of Theorem 2.6. Since any solution / of (1.1) clearly satisfies
p(f) > p{H), we see that Theorem 2.4 is also a corollary of Theorem 2.6.
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The inequality (2.9) is sharp. Theorem 2.9 and Example 4.3 show that it is possible
for an equality to occur in (2.9), while Examples 4.4 and 4.5 show that it is possible for
a strict inequality to occur in (2.9).

The next result is analogous to Theorem 2.3, and it shows that we can say more than
what is stated in Theorem 2.4 in the case when X(H) is an integer in (1.1).

Theorem 2.7. Let \{H) be an integer, and let f be a solution of (1.1). IfX(f) > X(H),
then

X(f)>X(H) + l/n. (2.10)

The inequality (2.10) is sharp; see Example 4.4. Regarding Theorem 2.7, there exist
equations of the form (1.1), where X(H) is an integer, such that every solution / satisfies
(2.10); see Example 4.6. Thus there exist equations of the form (1.1) where every solution
/ satisfies A(/) > X(H). We cannot delete the condition that X(H) be an integer in the
hypothesis of Theorem 2.7; see Examples 4.2 and 4.5.

For the case when p(H) > X(H) in (1.1), the next theorem shows that there exists a
positive lower bound C > 0, depending only on H and the order of the equation, such
that for any solution / of (1.1) satisfying p(f) > A(/), we have p(f) — A(/) ^ C.

Theorem 2.8. Let p(H) > \{H), and let f be a solution of (1.1). If p(f) > A(/),
then

Ptf) ~ A(/) > min{l/n, p{H) - \(H)}. (2.11)

The inequality (2.11) is sharp. Example 4.3 gives an equation of the form (1.1), where
p{H) — X(H) < 1/n, which possesses a solution / 0 satisfying p(fo) - A(/o) = p{H) -
\{H) > 0, while Example 4.4 gives an equation of the form (1.1), where p{H) — X(H) >
1/n, which possesses a solution / 0 satisfying p(/o) - A(/o) = 1/n. These examples give an
equality in (2.11), and also show that neither of the constants '1/n' and 'p(H) — A(i/)'
can be deleted or replaced with larger constants in (2.11). It is also possible for a strict
inequality to occur in (2.11); see Example 4.5.

By combining Theorems 2.6 and 2.8, we obtain the following result.

Theorem 2.9. Letp{H)-\(H) < 1/n, and let f be a solution of (1.1). Ifp(f) > A(/),
then

P(f) ~ A(/) = P(H) - \(H). (2.12)

Theorem 2.9 is sharp. Specifically, if in the hypothesis of Theorem 2.9 we replace the
condition 'p(H) - X(H) ^ l /n ! with the condition 'p(H) - X(H) < /?'. where /? is any
fixed constant satisfying (3 > 1/n, then (2.12) does not necessarily hold; see Example 4.5.

3. Lemmas

In this section we give lemmas which are used in the proofs of our theorems and examples.
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Lemma 3.1. Every solution f of (1.1) satisfies

p(H) * P{f) < max^H), 1 + ^max^ ^ } . (3.1)

Moreover, there exists a solution f0 of (1.1) satisfying

|i^} (3.2)

Proof. Since statement (3.1) is contained in Lemma 6 in [4], we need only show that
statement (3.2) holds.

For convenience, we set

degPfc
= 1+ max - , (3.3)

o^fc^-i n — k

as in (2.5). If
p(H) =max{p(H),a1},

then, from (3.1), p(/) = p(H) for every solution / of (1.1). Hence, statement (3.2) holds
in this case.

We now assume that

p{H) < max{p(tf),ai} = Ol. (3.4)

Let / be a solution of (1.1). If p(f) = a\, then, from (3.3) and (3.4), we obtain that
statement (3.2) holds. Now suppose that / satisfies p(f) < a\. Prom Theorem 2.1 (ii),
there exists a solution g of the homogeneous equation (2.1) which satisfies p(g) = a\.
Then / + g is a solution of (1.1), and

p{f + 9)=Q1. (3.5)

Thus, from (3.3), (3.4) and (3.5), we see that statement (3.2) holds in this case also. This
completes the proof of Lemma 3.1. D

Lemma 3.2. Let H(z) in (1.1) have the form H = he®, where h ^ 0 is an entire
function and Q is a non-constant polynomial, such that \(h) = p(h) < degQ. Let f be
a solution of (1.1), and set g — fe~Q. Then X(g) = p(g).

Proof. Suppose that the conclusion is not true, i.e. suppose that X(g) < p(g). Then
g has the form g = weR, where w ^ 0 is an entire function and R is a non-constant
polynomial, such that

X(w) = p(w) < deg R. (3.6)

Then / = weR+Q, and so, from (1.1), we obtain that

w ( n > + bn-i{z)wln-1) + ••• + bo(z)w = h(z)e-R(*\ (3.7)
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where bo(z),bi(z),... ,6n_i(z) are polynomials. Prom (3.6) and (3.7),

R) ^ p(w) <p(eR).

It follows that h must have the form h = veR, where v ^ 0 is an entire function satisfying
p(v) < deg R. Thus, p{h) = deg R, and so

X(h) = X(v) ^ p(v) <degR = p(h),

which contradicts the hypothesis that X(h) = p(h). This proves Lemma 3.2. •

We obtain the following result by combining Theorem 2.5 above with Theorem 4 of [4].

Lemma 3.3 (see [1,4]). If f is a solution of (1.1) satisfying p(f) > A(/), then H(z)
must have the form H = he®, where h ^ 0 is an entire function and Q is a non-constant
polynomial, such that A(/i) = p(h) < degQ. Furthermore, f must have the form f = ge9,
where g is an entire function, such that p(g) < deg Q and p(f) = p{H) = deg Q.

Lemma 3.4 (see [2]). Let u{r) and w{r) be monotone non-decreasing functions on
0 ^ r < oo, such that u(r) ^ w(r) for all r £ E U [0,1], where E C (l,oo) is a set of
finite logarithmic measure. Then, for any given constant a > 1, there exists a constant
ro = ro(a) > 0 such that u(r) ^ w(ar) for all r ^ r0.

In the next lemma, M(r,g) denotes the standard maximum modulus function for an
entire function g.

Lemma 3.5. Let g be an entire function satisfying p(g) > 0, and let a be any fixed
constant satisfying a < p(g). Then there exists a set S C (l,oo) that has infinite loga-
rithmic measure, such that

M{r,g)>eT\ (3.8)

for all reS.

Proof. Suppose that Lemma 3.5 is not true. Then, for some constant /? satisfying
P < p(g), there exists a set E C (1, oo) that has finite logarithmic measure, such that

M{r,g)^er\ (3.9)

for all r £ E U [0,1]. By applying Lemma 3.4 to (3.9), we obtain that there exists a
constant TQ > 0 such that

M(r,5)<exp{(2r)'3},

for all r ^ r0. But this implies that p(g) ^ /?, which contradicts /? < p(g). This proves
Lemma 3.5. •
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4. Examples

In this section we give examples to illustrate the sharpness of our theorems, and to exhibit
some possibilities that can occur.

The following example shows that Theorem 2.3 is sharp, and that there exist equations
of the form (1.1) where every solution / satisfies p(f) > p{H).

Example 4.1. Consider the differential equation

f" + zmf = R(z)ez\ (4.1)

where m ^ 3 is an integer, and R(z) ^ 0 is a polynomial satisfying degi? < m. Let / be
any solution of (4.1), and set

g{z) = f(z)e~*2. (4.2)

Then g satisfies the equation

g" + Azg' + (zm + 4z2 + 2)g = R(z). (4.3)

We see from (4.3) that g cannot be a polynomial. Also from (4.3),

il+AX+zm+Az2 + 2 = ^ l . (4.4)
9 9 9

Since m ^ 3, we can apply the Wiman-Valiron theory [9, pp. 105-108] to equation (4.4)
to obtain that p(g) = 1 + m/2 > 2. Thus, from (4.2), we have p(f) = 1 + m/2.

Since (4.1) is an equation of the form (1.1) where p(H) = 2, and since we just proved
that every solution / of (4.1) satisfies p(f) = 1 + m/2 > 2 = p(H), this shows that
there exist equations of the form (1.1) where p(f) > p(H) for every solution / . In the
particular case when m = 3, the inequality (2.8) becomes an equality (5/2 = 5/2) for
every solution / of (4.1). On the other hand, in the cases when m ^ 4, the inequality
(2.8) becomes a strict inequality (1 + m/2 > 5/2) for every solution / of (4.1). Thus
Theorem 2.3 is sharp.

The next example shows that we cannot delete the condition that p(H) be an integer
from the hypothesis of Theorem 2.3, and that we cannot delete the condition that X(H)
be an integer from the hypothesis of Theorem 2.7. In particular, this example gives an
equation of the form (1.1), where \(H) — p(H) is not an integer, which possesses a
solution /o satisfying both

(a) p(/o) > p(H) with p{fo) arbitrarily close to p{H); and

(b) A(/o) > \{H) with A(/o) arbitrarily close to \{H).

Example 4.2. Let n ^ 2 be an integer, let e be any fixed constant satisfying 0 < e <
1/n, and let G(z) be an entire function satisfying

1 + 1/n - e < p{G) < 1 + 1/n. (4.5)
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Let H(z) be the function denned by

H(z) = G^(z) + zG(z), (4.6)

and consider the differential equation

/<"> +zf = H{z). (4.7)

We first show that p(G) = p{H). Prom Theorem 2.1, all non-trivial solutions of the
homogeneous equation

/(") + 2/ = 0

have order ai = 1 + 1/n. From (4.6), G is a solution of (4.7), and so from Theorem 2.2,
we obtain that either p(G) - p(H) or p{G) = 1 + 1/n. Since p{G) < 1 + 1/n from (4.5),
we have p(G) = p{H).

Since p(G) = p{H), we obtain from (4.5) that

1 + 1/n - e < p{H) < 1 + 1/n. (4.8)

Hence, p(H) is not an integer. From (4.8),

max{p(H), 1 + 1/n} = 1 + 1/n.

Thus, from Lemma 3.1, it follows that there exists a solution / 0 of (4.7) satisfying

p(/o) = 1 + 1/n. (4.9)

Combining (4.8) and (4.9), we obtain that f0 is a solution of (4.7) satisfying

0 < p{fo) - p{H) < e < 1/n. (4.10)

This shows that we cannot delete the condition that p(H) be an integer in the hypothesis
of Theorem 2.3.

Since n ^ 2, we obtain from (4.9) that p(/o) is not an integer, and so A(/o) = p(fo)-
Also, since p(H) is not an integer, we have \(H) = p(H). Thus, from (4.10), we obtain

0 < A(/o) - X(H) < e < 1/n,

which shows that we cannot delete the condition that X(H) be an integer in the hypothesis
of Theorem 2.7.

The following four examples show that Theorems 2.6, 2.7, 2.8 and 2.9 are all sharp.

Example 4.3. Let n ^ 1 be an integer, let Q(z) be a non-constant polynomial of
degree m, and let A(z) be an entire function satisfying

m - 1/n < X(A) = p(A) < m. (4.11)

Let Po(z), P\(z),..., Pn-i(z) be polynomials with P0{z) ^ 0.
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We now define h(z) to be the function so that /o = AeQ is a solution of the equation

/<»> + Pn-ifz)/*11-1* + • • • + Po(z)f = h(z)eQ^. (4.12)

From (4.12), we see that ft is a polynomial in A, A',..., A^n\ P0,Pi,... ,Pn-i, and
Q',Q",.--,Q( n )- Hence, from (4.11),

p{h) ̂ p(A)<m = degQ. (4.13)

Since /o = Ae®, it follows from (4.11) that

P(fo)-Hfo) = m-p(A). (4.14)

Hence, from (4.14) and (4.11),

0 < p(/0) - A(/o) < 1/n. (4.15)

In equation (4.12) we set

H(z)=h{z)eQ(>z). (4.16)

From (4.13) and (4.16), we have p(H) > X(H). Then, by applying Theorem 2.8 to
equation (4.12) and using (4.15), we obtain that

/o) - A(/o) > min{l/n, p(H) - X(H)} = p{H) - \{H). (4.17)

On the other hand, from (4.13), (4.14) and (4.16), we obtain that

P(/o) - A(/o) =m- p(A) ^ m - p(h) ^ p(H) - X(H). (4.18)

Therefore, from (4.17) and (4.18), we have p(/0) - A(/o) = p{H) - X(H). Hence, from
(4.15),

0 < p(f0) - A(/o) = p(H) - X(H) < l/n. (4.19)

Thus, from (4.19), (4.16) and (4.12), we see that this example gives an equality in (2.11),
and it also shows that the constant 'p(H) — X(Hy cannot be deleted or replaced by
a larger constant in (2.11). Also from (4.19), (4.16) and (4.12), this example gives an
equality in (2.9).

Example 4.4. Let n ^ 2 be an integer, and consider the equation

gW+zn-1g = sin z. (4.20)

Since n ^ 2, it follows from Lemma 3.1 that there exists a solution go of (4.20) such that
p(go) = 1 + (n — l ) /n = 2 — l/n. Since p(go) = 2 — l /n is not an integer, we have

o) = P(go) = 2 - l /n. (4.21)
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Set

fo(z) = go(z)ez\ (4.22)

Since go is a solution of (4.20), it can be verified that /o is a solution of an equation of
the form

/<n> + On-!^)/*"-1) + • • • + oo(z)/ = (smz)ez\ (4.23)

where each <2fc(z) is a polynomial with ao(z) ^ 0. From (4.22) and (4.21),

A(/o) = \{go) = p(go) = 2 - 1/n < 2 = p(/0). (4.24)

Hence,

p(/o) - A(/o) = 1/n. (4.25)

In equation (4.23) we set

H(z) = (sin z)ez\ (4.26)

Since n ^ 2, we have p(H) — X(H) = 1 > 1/n. Hence, from (4.25),

0 < p(/0) - A(/o) = 1/n < p(H) - X(H). (4.27)

Thus, from (4.27), (4.26) and (4.23), we see that this example gives an equality in (2.11),
and it also shows that the constant '1/n' cannot be deleted or replaced by a larger
constant in (2.11). This example gives a strict inequality in (2.9).

We also note that when n = 2 in this example, then, from (4.24), we have A(/o) = 3/2.
Since X(H) = 1 from (4.26), this gives an equality in (2.10). On the other hand, when
n ^ 3 in this example, then, from \(H) = 1 and (4.24), we obtain a strict inequality
in (2.10).

The next example gives an equation of the form (1.1), where p(H) is an integer, that
possesses a solution / 0 satisfying p(/o) = p{H) and A(/o) > A(#), with A(/o) arbitrarily
close to \(H).

Example 4.5. Let e be any constant satisfying 0 < e < 1/2, and let h(z) be an entire
function satisfying

A(/i) = p[h) = 3/2 - e. (4.28)

Consider the equation

g" + (z + l)g = h(z). (4.29)

From (4.28), it follows from Lemma 3.1 that there exists a solution go of (4.29) satisfying
p{go) — 3/2. Since p(go) = 3/2 is not an integer, we have

A(5o) = P(9o) = 3/2. (4.30)
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Set

/o(z)=9o(2)exp{iz2}. (4.31)

Since go is a solution of (4.29). we obtain that / 0 is a solution of the equation

/ " - 2zf + (z2 + z)f = h{z) exP{iz2}. (4.32)

In equation (4.32) we set

H(z) = h(z)exp{±z2}. (4.33)

From (4.33) and (4.28),

\(H) = 3/2 - e and p(H) = 2. (4.34)

From (4.30) and (4.31),

A(/o) = 3/2 and p(/0) = 2. (4.35)

Then, from (4.34) and (4.35),

P(fo) - A(/o) = 1/2 < 1/2 + e = p(H) - \(H). (4.36)

Thus, from (4.36), (4.33) and (4.32), we see that this example gives a strict inequality
in (2.9).

This example also shows that Theorem 2.9 is sharp. Indeed, if in the hypothesis of
Theorem 2.9 we replace the condition 'p(H) — X(H) < 1/n' with the condition 'p(H) -
X(H) ^ /?', where (3 is any fixed constant satisfying /3 > 1/n, then, from (4.36), (4.33)
and (4.32), we see that (2.12) does not hold in this case.

We note from (4.34) and (4.35) that

A(/o) = \(H) + e and \{H) = 3/2 - e.

Thus, like Example 4.2, this example illustrates that we cannot delete the condition that
\{H) be an integer in the hypothesis of Theorem 2.7.

We now use this example to show that a strict inequality can occur in (2.11). By
differentiating equation (4.32), we obtain that / 0 is a solution of the equation

/ ' " _ 2zf" + (z2 + z - 2)/ ' + (2z + 1)/ = G(z), (4.37)

where

G(z) = {ti(z) + zh(z)} exp{i2
2}. (4.38)

From (4.38), (4.33) and (4.28), we obtain that p(H) = p{G) = 2 and A(G) s£ p{h) =
\{h) = X(H). Hence, p{H) - \{H) ^ p{G) - A(G), and so, from (4.36),

1/3 < p(/0) - A(/o) = 1/2 < 1/2 + e ̂  p{G) - \{G). (4.39)

Then, from (4.39) and (4.37), we obtain a strict inequality in (2.11) in this case.
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The next example shows that there exist equations of the form (1.1) where every
solution / satisfies A(/) > X(H).

Example 4.6. Let / be a solution of the equation

/ " - 6z2f + (10z4 - 62)/ = exp(z3 + 22). (4.40)

Then the function

g(z)=f(z)exp(-z3) (4.41)

satisfies the equation

Qff -h z Q — expfz ). (4 42)

From (4.42),

(4.43)

We assume that the reader is familiar with the symbols and basic results of Nevanlinna
theory (see [5,7,8]). Since equation (4.42) is a special case of equation (4.1), we obtain
from the calculation in Example 4.1 that p(g) = 3. Then, from (4.43) and Nevanlinna's
fundamental estimate, we obtain

m(r, l/g) ^ m{r, exp(-z2)} + O(logr) = 0{r2), (4.44)

as r —» 00. Since p(g) = 3, we deduce from (4.44) and the Nevanlinna theory that
H9) = P(g) = 3- Thus, from (4.41), we obtain A(/) = p(f) = 3. In (4.40) we set

H(z) =exp(23 + z2). (4.45)

Then (4.40) is an equation of the form (1.1), where every solution / satisfies

p(H) = p(f) = A(/) = 3 > 0 = \(H). (4.46)

Thus, from (4.46) and (4.45), we see that (4.40) is an equation of the form (1.1), where
both (2.9) and (2.10) become strict inequalities for every solution / . This also shows that
there exist equations of the form (1.1), where every solution / satisfies A(/) > X(H).

5. Proof of Theorem 2.2

Since statement (2.7) follows immediately from Lemma 3.1, we need only prove state-
ment (2.6).

Let / be a solution of (1.1) satisfying p(f) ̂  p{H). Then, from Lemma 3.1,

p(H) < p(f) < 00. (5.1)
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Since / is an entire function of finite positive order, it is well known that / satisfies the
statements (5.2) and (5.3) below (see [7. pp. 199-209], [9, pp. 105-108] or [11, pp. 65-67]).

Let V(r) denote the central index of / . let zr denote a point on the circle \z\ = r that
satisfies |/(-zr)| = M(r,f), and set a = p{f). Then

V(r) = (l + o(l))Cra, (5.2)

as r —> oo, where C is a positive constant. Furthermore, from the Wiman-Valiron theory,
there exists a set E C (0, oo) that has finite logarithmic measure, such that for all
k = 1,2,..., n, we have

as r —¥ oo. r £ E.

From (1.1), we obtain

1 \-Zrf0{Zr) - Zrr /(Zr) ' ^ ' n ^ - , /(zr) ' "T*uv~r, ^ /(*,.) "

Now, from (5.2) and (5.3), we find that if Pk(z) ^ 0, then

= (1 + o(l))Ckr
n-k+d"+ka, (5.5)

' " v r / /(zr)

as r -> oo, r fi E1, where Cfc > 0 is a constant and dk = degPk. Here we set Pn = 1.
From Lemma 3.5 and (5.1), there exists a set 5 C (l,oo) that has infinite logarithmic

measure such that

zr^H^0, (5.6)

as r —> oo, r € 5.
We now suppose that a ^ <&, and use the argument in the proof of Theorem 1 (i) in [3].

More specifically, if a £ <P, then, from the argument in [3, §5], it can be deduced that
there will exist exactly one term on the left-hand side of (5.4) which is unbounded and
dominant relative to the other terms on the left-hand side of (5.4) a s r - > o o , r 6 5 \ B ;
in particular, there will exist exactly one value m where Pm(z) ̂  0, such that in (5.5)
we have

Cm > 0 and n — m + dm + rna > n — k + dk + ka > 0, (5.7)

for all k ^ m for which Pk{z) £ o. From (5.4), (5.5), (5.6) and (5.7), we obtain a
contradiction. Therefore, a = p(f) must satisfy a € <£. This proves statement (2.6), and
thus completes the proof of Theorem 2.2. D
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6. Proof of Theorem 2.3

Let p(H) be an integer, and let / be a solution of (1.1) which satisfies

p(f) > P(H). (6.1)

Then, from Theorem 2.2 and (2.4), we obtain that

p(f) = m/q, (6.2)

where m and q are positive integers with q ̂  n. Prom (6.1) and (6.2), we have m > qp(H).
Since m > 0, q > 0 and p{H) ^ 0 are all integers, it follows that

m > qp{H) + 1. (6.3)

Since 0 < q ̂  n, we obtain from (6.2) and (6.3) that

PU) = m/q > p{H) + l/q > p(H) + 1/n.

This proves Theorem 2.3. D

7. Proof of Theorem 2.6

Suppose first that \(H) = p(H) in (1.1), and let / be a solution of (1.1). Then, from
Theorem 2.5, A(/) = p{f). Hence, p(f) - \{f) = p{H) - \{H), and so (2.9) holds.

Now suppose that X(H) < p(H), and let / be a solution of (1.1). From Theorem 2.4,
A(/) > X(H). If p(f) = p(H), then (2.9) holds. If p(f) ^ p(H), then from Lemma 3.1,
we have p(f) > p{H). Then, from Lemma 3.3, we deduce that A(/) = p(f). Thus,
A(/) - X(H) > p(f) - p{H), and so (2.9) holds. •

8. Proof of Theorem 2.7

Let X(H) be an integer, and let / be a solution of (1.1) which satisfies A(/) > X(H).
Suppose first that X(H) = p{H). Then, from Theorem 2.5, A(/) = p(f). Hence,

PU) = Kf) > KH) = p{H). (8.1)

Since X(H) is an integer, p{H) is an integer. Then, from (8.1) and Theorem 2.3, we
obtain (2.10).

Now suppose that X{H) < p(H). It follows that H(z) has the form

H(z) = h(z)e^\ (8.2)

where h(z) ^ 0 is an entire function and Q(z) is a non-constant polynomial, such that

X{h)=p(h)<degQ. (8.3)
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Set

g(z) = f(z)e-^'l (8.4)

Since / satisfies (1.1), we obtain from (8.4) and (8.2) that g satisfies an equation of the
form

gW + an^(z)g^-^ + ••• + ao(z)g = h(z), (8.5)

where each ak{z) is a polynomial. From (8.4), (8.3), (8.2) and Lemma 3.2, we obtain that
A(/) = \(g) = p(g). Since p(g) = A(/), and since by hypothesis, A(/) > X(H), we obtain
from (8.2) and (8.3) that

p(g)=\{f)>\(H)=p{h). (8.6)

Since X(H) is an integer, p(h) is an integer. From (8.6), we have p(g) > p(h), and so it
follows that in (8.5) we must have a,k{z) ^ 0 for some k satisfying 0 ^ k =Sj n — 1. This
means that we can apply Theorem 2.3 to equation (8.5), regardless of whether ao(z) ^ 0
or ao(.z) = 0. Thus, by applying Theorem 2.3 to equation (8.5), it can be deduced that

P(9) > P{h) + l/n. (8.7)

Then (2.10) follows from (8.7) and (8.6). •

9. Proof of Theorem 2.8

Let p(H) > X(H), and let / be a solution of (1.1) satisfying p(f) > X(f). Then, from
Lemma 3.3, the function H(z) in (1.1) must be of the form

H(z) = h{z)eQ^\ (9.1)

where h(z) ^ 0 is an entire function and Q{z) is a non-constant polynomial, such that

A(JO=p(/i)<degC?. (9.2)

Also from Lemma 3.3, / must have the form

f(z)=g{z)e^\ (9.3)

where g is an entire function, such that

p(g)<degQ = p(f). (9.4)

Since / satisfies (1.1), we obtain from (9.3) and (9.1) that g satisfies an equation of the
form

g™ + an-1(z)g^n-^ + ••• + ao(z)g = h(z), (9.5)
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where each dk{z) is a polynomial. Thus p(g) > p(h). We consider separately the two
cases p{g) — p(h) and p{g) > p{h).

Case 1. Suppose first that p{g) = p(h). Then, from (9.1), (9.2) and (9.3),

A(/) = X(g) ^ p{g) = P(h) = X(H). (9.6)

Since p(f) > A(/), we obtain from Lemma 3.3 that

p(f) = P(H). (9.7)

Combining (9.6) and (9.7) yields

P(f) ~ A(/) ^ p(H) - X(H).

Thus, (2.11) holds in this case.

Case 2. Now suppose that p{g) > p(h). It follows that in (9.5) we must have <Zfc(z) ^ 0
for some k satisfying 0 ^ k ^ n — 1. This means that we can apply Theorem 2.2
to equation (9.5), regardless of whether ao(z) ^ 0 or ao(z) = 0. Thus, by applying
Theorem 2.2 to equation (9.5) and by using (2.4), it can be deduced that p(g) = m/q,
where m and q are positive integers with q ^ n. Then, from (9.3) and (9.4),

and so

P(f) ~ A(/) > p{f) ~ m/q > 0. (9.8)

Thus, qp(f) — m > 0. Since p(/) is a positive integer from (9.4), and since m and q are
also positive integers, it follows that

qp(f) - m ^ l . (9.9)

Since 0 < q ^ n, we obtain from (9.8) and (9.9) that

PU) - A(/) ^ PU) - m/q > \/q > 1/n.

Thus, (2.11) holds in this case also. This completes the proof of Theorem 2.8. •
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