
Bull. Aust. Math. Soc. 108 (2023), 472–479
doi:10.1017/S0004972723000151

PILOT-WAVE HYDRODYNAMICS: QUANTISATION OF
PARTIAL INTEGRABILITY FROM A NONLINEAR

INTEGRO-DIFFERENTIAL EQUATION OF THE SECOND ORDER

JAMES DAY

(Received 18 November 2022; accepted 21 January 2023; first published online 27 February 2023)

Abstract

Vertically vibrating a liquid bath may allow a self-propelled wave-particle entity to move on its free
surface. The horizontal dynamics of this walking droplet, under the constraint of an external drag force,
can be described adequately by an integro-differential trajectory equation. For a sinusoidal wave field, this
equation is equivalent to a closed three-dimensional system of nonlinear ODEs. We explicitly define a
stability boundary for the system and a quantised criterion for its partial integrability in the meromorphic
category.
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1. Introduction

Pilot-wave hydrodynamics as a field of study was initiated in 2005 with the discovery
by Couder et al. [3] that a droplet may self-propel along the surface of a vibrating
bath of fluid, guided by the waves it generates on each impact. Moláček and Bush [12]
developed a hydrodynamically consistent equation of motion for this walking droplet
(or ‘walker’) of mass m given by nondimensional position xp governed by its real and
analytic wave field h(x, t). By time averaging over the bouncing period, the vertical
dynamics are eliminated from consideration which produces the trajectory equation

κẍp + ẋp = F − β∇h(xp, t),

such that F = F (ẋp) is an external force and

κ =
m

DTFMe
, β =

FkFTFM2
e

D
, Me =

Td

TF(1 − γ/γF)
,

where F = mgAkF, D is the drag coefficient, TF is the Faraday period, Td is the decay
time of waves without forcing, kF is the Faraday wavenumber, γ is forcing acceleration,
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γF is the Faraday instability threshold, A is the amplitude of a single surface wave and
t is nondimensional time (see [14]). The guiding potential h is approximated by an
integral over the particle’s prior trajectory:

h(x, t) =
∫ t

−∞
W(|x − xp(s)|)es−t ds,

such that W is real and entire. Writing xp(t) as x(t)j, for an arbitrary horizontal unit
vector j, we arrive at a dimensionless integro-differential equation:

κẍ + ẋ = F − β
∫ t

−∞
W ′(x(t) − x(s))es−t ds. (1.1)

For vibration amplitudes close to but below the Faraday threshold, waves created
by the walker on each bounce extend far in space and decay slowly in time. In this
regime, predicting the walker’s future dynamics not only requires knowledge of its
present state but also of its past, creating memory in the system and nonlocality in
time. Durey [4] and Valani et al. [16] investigated the high-memory regime using
an idealised pilot-wave model that implements a sinusoidal waveform for the waves
generated by the droplet and discovered an equivalence in orbital dynamics to the
Lorenz system.

For a two-dimensional pilot-wave system in a rotating frame, Oza et al. [14]
demonstrated quantisation of orbitally unstable and chaotic regions. The differential
Galois criterion for partial integrability can be interpreted as a measure of orbital
complexity (in the sense that complexity is determined by whether a solution to a
given dynamical system S is expressible in terms of first integrals). So, it is natural
that this criterion is connected to classifying whether or not the dynamics of S are
chaotic in its parameter space.

The main methods used in the present paper are due to Ruiz’s applications of differ-
ential Galois theory [13] and Bogoyavlensky’s extension of Liouvillian integrability to
dynamical systems [2]. In Section 2, the equivalence of (1.1) to the Lorenz system and
its linear stability is provided. In Section 3, we shall formulate a criterion for partial
integrability (specifically, ‘B-integrability’ as defined in [2]), which is the main result.

2. The trajectory equation as a nonlinear differential system in R3

The following theorem expresses (1.1) as an infinite dimensional system of non-
linear ODEs. Referring to [15, 16], this form of (1.1) is more tractable and, in special
cases, such as when considering a waveform in the absence of spatial decay, the infinite
system reduces to a finite dimensional system.

THEOREM 2.1. Let

Mn = −
∫ t

−∞
W (n+1)(x(t) − x(s))es−t ds
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for all n ∈ N. Equation (1.1) holds if and only if

ẋ = v,

v̇ =
1
κ

( βM0 − v + F ),

Ṁn = −Mn −W (n+1)(0) + vMn+1. (2.1)

PROOF. The first two linear ODEs are easily verified, since (1.1) may be expressed as

ẍ =
1
κ

( βM0 − ẋ + F ).

Given that the integrand of Mn is analytic, we may apply the Leibniz integral rule.
Observe that for all n ≥ 0,

Ṁn = −
∂

∂t

∫ t

−∞
W (n+1)(x(t) − x(s))es−t ds

= −W (n+1)(0) −
∫ t

−∞
es−t(ẋW (n+2)(x(t) − x(s)) −W (n+1)(x(t) − x(s))) ds

= −W (n+1)(0) +
∫ t

−∞
W (n+1)(x(t) − x(s))es−t ds−ẋ

∫ t

−∞
W (n+2)(x(t) − x(s))es−t ds

= −Mn −W (n+1)(0) + ẋMn+1,

as claimed. �

2.1. The linear stability of a sinusoidal waveform system. According to Durey [4],
we may define W(s) = cos(s) for the high memory regime, such that letting σ = 1/κ,
r = β and b = 1, (2.1) is reduced to the vector field V : R3 → R3, defined by

Ṗ = V(P) = (σ(Y − X + F ), rX − Y − XZ, XY − bZ), (2.2)

where X = v, Y = βM0, Z = β(1 −M1) and P = (X, Y , Z). For all F such that F (0) = 0,
an equilibrium point occurs at P∗ = (0, 0, 0) and the Jacobian matrix of V at P∗, letting
F ′(X) = ∂F /∂X, is

JVP∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ(F ′(0) − 1) σ 0

r −1 0
0 0 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

So, we now consider the linearised system to first order in ε ∈ R, where P = P∗ + εu:

u̇ = JVP∗u. (2.3)

Setting det(λI − JVP∗) = 0 for λ ∈ R yields the characteristic equation

0 = (λ + b)(λ2 + λ(1 + σ − σF ′(0)) + σ(1 − F ′(0) − r)). (2.4)

Hence, we have λ0 = −b and may derive the remaining eigenvalues explicitly:

λ1,2 =
1
2

(
σF ′(0) − σ − 1 ±

√
4σ(F ′(0) + r − 1) + (σF ′(0) − σ − 1)2

)
.
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This explicit formula for eigenvalues is useful when calculating the linearised
approximation Pt ≈

∑2
i=0 Cieλitvi for the stable region given in Theorem 2.3, where

vi is the corresponding eigenvector to λi and Ci ∈ R. Note that the accuracy of the
approximation is determined by how close the initial conditions are to P∗, which
follows from Lemma 2.2.

LEMMA 2.2 (Hartman–Grobman theorem, [6]). If all the eigenvalues λj of JVP∗ have
nonzero real part, then the nonlinear flow is topologically conjugate to the flow of
the linearised system in a neighbourhood of P∗. If 
(λj) > 0 for at least one j, the
nonlinear flow is asymptotically unstable. If 
(λj) < 0 for all j, the nonlinear flow is
asymptotically stable.

THEOREM 2.3. The asymptotically stable region S of (2.2) is

r < 1 − F ′(0),

such that σ(F ′(0) − 1) < 1 and r,σ ≥ 0. Letting ζ denote the stability boundary, the
remaining asymptotically unstable region U := R3 \ (S ∪ ζ) satisfies r > 1 − F ′(0).

PROOF. If λ = iω is a root with ω ∈ R, then according to (2.4),

0 = (σ − σF ′(0) − rσ − ω2) + iω(1 + σ − σF ′(0)). (2.5)

Separately considering real and imaginary parts, the stability boundary satisfies

0 = σ − σF ′(0) − rσ − ω2

= ω(1 + σ − σF ′(0)).

Suppose that σ(F ′(0) − 1) < 1. For ω ≶ ±
√
σ(1 − F ′(0) − r), we must have each real

part of λ1,2 less than zero, which is the criterion for asymptotic stability according to
Lemma 2.2 (the converse applies for asymptotic instability). Hence, simplifying the
imaginary part of (2.5), we have

0 ≶ ±(1 + σ − σF ′(0))
√
σ(1 − F ′(0) − r),

r < 1 − F ′(0). �

3. Nonlinear differential Galois theory and an integrability criterion

We will present an argument for algebraic B-integrability introduced by
Morales-Ruiz [13] and subsequently developed by Huang et al. [7] for its application
to the Lorenz system. From (2.2), we consider the system

Ṗ = V(P), (3.1)

such that P ∈ M is an (n = 3)-dimensional complex analytic manifold with t ∈ C.

DEFINITION 3.1. System (3.1) is completely integrable if it possesses n − 1
functionally independent first integrals Φ1,Φ2.
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DEFINITION 3.2. System (3.1) is B-integrable if it possesses k functionally
independent first integrals Φ1, . . . ,Φk and (n − k) vector fields w1 = V , . . . , wn−k such
that

0 = [wi, wj]

= wj[Φi],

with 1 ≤ i ≤ k ≤ n and 1 ≤ j ≤ n − k. Note that [·, ·] : g × g→ g denotes the Lie bracket
for a vector space g.

B-integrability was introduced by Bogoyavlenskij [2] and it was shown that if a
system is B-integrable, then it is integrable by quadrature. Intuitively, B-integrability
is a generalisation of Liouvillian integrability from Hamiltonian systems to dynamical
systems (see [2]). Referring to Llibre et al. [11], a completely integrable system is
orbitally equivalent to a linear differential system.

Let P̂ = P̂(t) denote a nonequilibrium solution of (3.1). A form of the variational
equation was briefly introduced as (2.3). For the known particular solution, the
variational equation along the phase curve Γ of P̂ is

ν̇ = JVP̂ · ν,
such that ν ∈ TΓM and TΓM is a vector bundle of TM restricted on Γ. With the normal
bundle N = TΓM/Γ, a natural projection π : TΓM→ N and η ∈ N, the variational
equations may be reduced to

η̇ = π∗(T(V)(π−1η)). (3.2)

The differential Galois group of (3.2) can be defined as a matrix group G, with
G ⊂ GL(n − 1,C) acting on the fundamental solutions of (3.2) such that it does not
change polynomial and differential relations between them.

The following theorem is a powerful result which extends Galoisian obstructions
to mermorphic integrability from Hamiltonian systems, provided in [13], to the more
general non-Hamiltonian case.

THEOREM 3.3 [1]. System (3.1) is B-integrable, in the meromorphic category, in a
neighbourhood of Γ if and only if the identity element G0 of the differential Galois
group of the normal variational equations along Γ is abelian.

The following theorem provides necessary conditions for (3.1) to possess a certain
number of first integrals. In the proof of Theorem 3.7, we will show that (3.1) violates
condition (1) and provide a criterion for when condition (3) is violated.

THEOREM 3.4 [10]. If (3.1) has m functionally independent meromorphic first inte-
grals in a neighbourhood of Γ, then the Lie algebra G of the differential Galois
group G of (3.2) has m meromorphic invariants and G0 has at most (n − m − 1)(n − 1)
generators. Hence:

(1) if m = 2, then (3.1) is completely integrable, G = 0 and G0 = {1}, which is the
identity element;
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(2) if m = 1, then G and G0 have at most two generators;
(3) if m = 1, then G and G0 are solvable.

The point P̂ = (0, 0, e−bt) is a nonequilibrium solution to (3.1). Hence, the varia-
tional equations along Γ are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν̇
η̇
ϑ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ(F ′(0) − 1) σ 0

r − e−bt −1 0
0 0 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ν
η
ϑ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.3)

such that P = (ν, η,ϑ + e−bt) is in (3.1). Trivially, this may be reduced to the closed
subsystem (

ν̇
η̇

)
=

(
σ(F ′(0) − 1) σ

r − e−bt −1

) (
ν
η

)
,

0 = ν̈ + (σ − σF ′(0) + 1)ν̇ − σ(r + F ′(0) − 1 − e−bt)ν.

Applying the change of variable τ = e−bt, the above equation is expressed with
rational coefficients:

d2ν

dτ2 +
b + σ(F ′(0) − 1) − 1

bτ
dν
dτ
− σ(r + F ′(0) − τ − 1)

b2τ2 ν = 0.

Hence, letting ν(τ) = χ(τ)τ(1−σ(F ′(0)−1)−b)/2b,

d2χ

dτ2 =
(σ − σF ′(0) + 1)2 + 4σ(r + F ′(0) − 1) − b2 − 4στ

4b2τ2 χ. (3.4)

Using the convention of Kovačič [9], since the coefficient of χ is a rational function,
when we refer to the poles of the coefficient, we mean the poles in C. If r = z1/z2 with
z1, z2 ∈ C[τ] relatively prime, then the poles of r are the zeros of z2 and the order of
the pole is the multiplicity of the zero of z2. By the order of the coefficient at ∞, we
mean the order of ∞ as a zero of the coefficient so that the order of the coefficient of
χ at∞ is deg z2 − deg z1.

LEMMA 3.5. The differential Galois group G of (3.4) is infinite.

PROOF. The coefficient of χ has two poles at 0 and∞ with orders 2 and 1. According
to the theorem provided in Section 2.1 of [9], the conditions for cases 1 and 3 do not
hold and hence, G is not finite. �

LEMMA 3.6. The identity element G0 of G is solvable if and only if

2
√

(σ − σF ′(0) − 1)2 + 4σr
|b| ∈ Zodd.

PROOF. Letting s = −2
√
στ/|b| and χ̂ = χ/s, (3.4) becomes the Bessel equation

d2χ̂

ds2 +
1
s

dχ̂
ds
+

(
1 − ρ

2

s2

)
χ̂ = 0, (3.5)
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such that

ρ =

√
(σ − σF ′(0) − 1)2 + 4σr

b2 .

Since χ̂′ + s−1χ̂ = 0 has the nontrivial solution s−1 ∈ C, we have G ⊂ SL(2,C).
Referring to [8], when 2ρ ∈ Zodd, we may (replacing ρ by −ρ if necessary) suppose
that μ = ρ − 1

2 ≥ 0 so that

ψ± = e±is
∑

0≤k≤μ

(μ + k)!
k! (μ − k)!

(±i)k2−ks−k−1/2

is a fundamental system of solutions to (3.5), such that each solution is exponential
over C and their product is in C.

Hence, the differential Galois group G is a diagonal group

D =
{(

a 0
0 a−1

) ∣∣∣∣∣∣ a ∈ C, a � 0
}

,

which has a solvable (abelian) identity element G0 if 2ρ ∈ Zodd. Otherwise, when
2ρ � Zodd, [8] demonstrates that G = SL(2,C). Kovačič’s algorithm may also be
applied to derive the Galois group of (3.5) (see [5, 9]). �

THEOREM 3.7. If (3.1) is B-integrable in the meromorphic category, then

r = rn :=
(b(2n + 1))2 − 4(σ(F ′(0) − 1) + 1)2

16σ
, (3.6)

such that σ, b � 0 and n ∈ Z.

PROOF. Since the differential Galois group of (3.3) is a normal subgroup of the
differential Galois group of (3.4), the differential Galois group of (3.3) is also infinite
by Lemma 3.5. The identity element G0 is a normal subgroup of G with finite index.
Hence, G0 is a trivial subgroup if and only if G is finite [13], which implies that
G0 � {1} and (3.1) is not completely integrable with meromorphic first integrals by
Theorem 3.4.

According to Lemma 3.6, if

2
√

(σ − σF ′(0) − 1)2 + 4σr
|b| � 2n + 1, (3.7)

the identity elements of the differential Galois groups of (3.5) and (3.3) are not
solvable. Therefore, the identity element G0 of (3.3) is not abelian. After rearranging
(3.7) and considering the contrapositive, the criterion in (3.6) follows trivially in view
of Theorems 3.3 and 3.4. �
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