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Abstract

Let D C R" be a bounded domain and L: dom L C L2(D) -» L2(D) be a self-adjoint operator of
finite dimensional kernel. Let /: D X /?-»/? be a function satisfying the Caratheodory condition.
Assume that there are constants A > 0 and 8 £ [0,1) such that

\f(x,t)\<6\\tf + b(x) fora.e. x

and that

\D).

Then with the aid of a generalized Krasnosel'skii's theorem it has been proved that under conditions
exactly analogous to those of Landesman and Lazer there exists u G L2(D) such that L(u)(x) =
f(x, u(x)) for Vx £ D. This result is then used to prove the existence of weak solutions of nonlinear
elliptic boundary value problems.

Other abstract results applicable to ordinary and partial differential equations have also been
proved.

1980 Mathematics subject classification (Amer. Math. Soc): primary 47 H 15; secondary 47 A 50, 34 B
15, 35 J60.

Introduction

Let D be a bounded domain in R" and L be a formally self-adjoint elliptic second
order operator on D with real valued coefficients which are measurable and
bounded functions on D. Assume that Ker L (kernel of L) is one dimensional and
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[2] Nonlinear elliptic boundary value problems 317

spanned by w. Let / : D X R -» R be a function such that/(jc, M(X)) G L2(D) for
each w G L2(D) and the mapping «(*) ->/(*, u(x)) is continuous from L2(D)
into L2(D). Assume that there exist functions h ± G L2(D) such that

lim / (x , r) = / i ± (x )

/->± 00

and that there exists a constant k such that

\(f(x,u(x)),w)\<k for all u G L2{D).
Under these conditions Landesman and Lazer [10] have proved that the

Dirichlet problem

(L(u))(x)=f(x,u(x)), xGD,
u(x) = 0, x G dD (boundary of D)

has a weak solution if

(0.2) [/ h+(x)\w(x)\dx-f h_(x)\w(x)\dx\
[J[w>0] •'[w<0] J

X \ f h_(x)\w(x)\dx- f h+(x)\w(x)\dx\<0
[J[w>0] J[w<0] \

where [w ̂  0] = {JC G D: w(x) ^ 0}. Moreover if in addition to the above
conditions/, h+ and h_ satisfy the condition

h_{x) <f(x, t) < h+ (x) for a.e. x in D and \ft G R

then the condition (0.2) is also necessary for the existence of a solution of the
boundary value problem (0.1). This result has been extended by Williams [16] and
also by Browder [1] to the case of a higher order formally self-adjoint elliptic
operator L with arbitrary finite dimensional Ker L. In fact, various other aspects
of the paper of Landesman and Lazer [10] have been exploited in different
directions by Hess [7], Nirenberg ([13], [14]), Schechter [15], de Figueiredo [2],
Gaines and Mawhin [6], Fucik ([3], [4]), Fu6ik, Kucera and Necas [5], Hetzer [8]
and many others (see Remark 3.2).

Of these our particular interest is in the generalization of Landesman and
Lazer's result by de Figueiredo [2] and also by Gaines and Mawhin [6] (Theorem
VIII.2, page 156). We first summarize this result:

Let D C R" be a bounded domain. With a = (a,, a 2 , . . . ,an), ft —
(£,,#,,.••>&)> a,, ft. £ JV and | a | = 2 ? = , o , , let aaP, 0 < | a | , | 0 |< m, be real
valued LX(D)-functions. Also let aa/3 = a^a and moreover aa/3 with | a | = | /? | = m
be uniformly continuous. Assume that there exists a constant c such that
2 M = m , | / l | = ( B a^x)?? >c\£\2m for V£ G R" and x G D. Let / : D X R - R be
a function satisfying the Caratheodory condition. Assume that there are constants
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318 E. Tarafdar 13]

A > 0, S G [0,1) and a function b £ L2(D) such that

\f(x, t)\^\\t\s + b(x) fora.e. x £Z)andV(6«,

and that there are functions H± G L2/(l~s\D) such that

km tt*'p =h±(x) forVxGZ).
I 11<-»±oo

Under these conditions it is proved in de Figueiredo [2] and Gaines and Mawhin
[6] that there exists a u G H™ satisfying

(0.3) 2 faaP(x)Dau(x)D^(x)dx=f f(x,u(x))v(x)dx

for all v G #o
m, that is, u is a solution of the nonlinear elliptic boundary value

problem (0.3) if for every w e Ker L with || w \\ Li{D) = 1,

(0.4) [ h+(x)\w(x)\l+sdx- f h.(x)\w(x)\l+'dx>0.
J[w>0] J[w<0]

Moreover, if h_(x) <f(x, t) < h+ (x) holds for a.e. x in D and all t G R, then
the condition (0.4) is necessary for the existence of a solution of (0.3). If we are to
find an analogy between conditions (0.2) and (0.4) it is apparent that an analogue
of condition (0.2) would be the following:

For each w G Ker L with || w || L2(O) = 1,

(0.5) [ / + ( ) \ ( ) r f

x( ,
\w<0)

In this paper we will show that the boundary value problem (0.3) has a solution if
(0.5) holds. In the sequel it will also be shown that (0.3) implies (0.5). In fact we
will prove this result under a more general setting (see Theorem 2.2).

It is interesting to note that de Figueiredo [2] has proved his result by using a
perturbation argument introduced by Hess [7] and in Gaines and Mawhin [6] the
result has been proved by using the generalized Leray-Schauder continuation
theorem in the context of coincidence degree and Poincare-Bohl Theorem, while
we have proved our result by using a generalized Krasnosel'skii's result which is
easy to prove. We should mention that many of the application given in Gaines
and Mawhin [6] can be obtained by Krasnosel'skii's theorem as it is done here.
The application of Theorem 2.4 to the existence of periodic solutions of ordinary
differential equations will be considered elsewhere.
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1. Notations and preliminaries

Let X and Z be two vector spaces over the same scalar field and L: dom L C X
-» Z be a linear mapping where dom L stands for the domain of L. Ker L — L~\0)
and Im L denote respectively the kernel and image of L.

An operator P: X -* X is said to be an algebraic projection if P is linear and
idempotent, that is, P2 = P. Let P: X -> X and Q: Z ^ Z b e two algebraic
projections. Then the pair (P, Q) is said to be an exact pair with respect to L if

p L Q
the sequence X -> dom L->Z -»Z is exact, that is, Im P = Ker L and Im L =
Ker £?. Let KP = L^1 where LP is the restriction of L to Ker P n dom L. Clearly
KP: ImL-> dom L D Ker P is a linear mapping. For each exact pair (P,Q) with
respect to L we have the following:

(1.1) PKP = 0.

For each y E Im L,

(1.2) L^( j ) = L(/ - P)KP{y) = LP(I - P)KP{y) = y,

where / is the identity mapping on X.
For each x E dom L,

(1.3) KPL(x) = KPL(I - P)(x) = KPLP(I - P)(x) = (I - P)(x).

Coker L denotes the quotient space Z/Im L and II: Z -» Coker L the canonical
surjection. Obviously

(1.4) Q(z) = 0 « z £ l m L « 7 r ( z ) = 0.

We will also use the well known fact that since I m l = Ker Q, the restriction fl
of II to Im Q is an algebraic isomorphism. We should mention that the same
symbol / will be used for the identity mapping on X as well as on Z. We believe
that this will create no confusion to the reader and will be clearly understood
from the context.

Equivalence theorem

In what follows the following theorem which is only a variant of a result due to
Mawhin (see Gaines and Mawhin [6], page 13) will serve as a main tool.

THEOREM 1.1. Let X and Z be two vector spaces over the same scalar field and Q
be a subset of X. Let L: dom L C X -» Z be a linear mapping and N: Q -» Z be a
mapping which is not necessarily linear. Further assume that there exists a mapping
ip: CokerL -» kerLsuch that^'\O) = {0}.

Then x is a solution of the operator equation

L(x)=N(x)
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320 E. Tarafdar [s|

if and only if x is a fixed point of the mapping M:Q-> X defined by

M(x) = P(x) + ^irN(x) + KP(I - Q)N(x), x £ fi,

where (P, Q) is an exact pair of projections.

We first recall some definitions. Let X be a metric space and S a bounded
subset of X. Then the measure of noncompactness of S, denoted by a(S), is
defined by a(S) = inf{e > 0, S can be covered with a finite number of sets of
diameter less than e}. A continuous mapping/: X -> Y of a metric space Xinto a
metric space Y is said to be a A>set contraction if for each bounded subset S of X,
a(f(S)) < ka(S) where k is a nonnegative real number.

For properties of measure of noncompactness and the degree theory of k-set
contraction mapping / with 0 < k < 1 we refer to Lloyd [11]. We also note that
the results presented here will also hold if we replace the above measure of
noncompactness by ball measure (for definition see Lloyd [11], page 93). Unless
otherwise stated throughout the rest of the paper X and Z will denote real Banach
spaces.

LEMMA 2.1 (Generalized Krasnosel'skii Theorem). Let L: dom L C X -» Z be a
Fredholm mapping of index zero {that is L is linear and dimension KerL =
dimension coker L < oo), £2 C X a bounded open set containing the origin and
symmetric with respect to the origin and N: cl £2 -> Z a mapping satisfying the
following conditions (cl S2 denotes the closure o/B):

(i) N is continuous and N(c\ fl) is bounded;
(ii) KP(I — Q)N is a k-set contraction with 0 < k < 1 where (P,Q) is an exact

pair of continuous projections with respect to L, which always exists as L is a
Fredholm mapping of index zero. Then if

(2.1) (L - N)(x) * p(L - N)(-x)

for every \i G [0,1] and every x G 3fi fl dom L where 3fi denotes boundary of £2,

there exists solution x o £ f l of the equation L(x) — N(x).

PROOF. Although the proof is similar to the one given in Gaines and Mawhin
[6] for compact situation we include the proof for the reason that this is basic for
this paper and we want to avoid coincidence degree.

We define N: cl fl X [0,1] -> Z by

N(x,t) = (1 + t)'l[N(x) - tN(-x)], x £ c l 8 , ( G [0,1].
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[ 61 Nonlinear elliptic boundary value problems 321

W e first prove tha t KP(I — Q)N is a /c-set con t rac t ion . Let D b e a subset of
cl Q X [0,1] . T h e n D = C X / where C C cl £2 a n d / C [0,1] . W e set A =
KP(I - Q)N(C) and B = KP(I - Q)(-N(-C)). Obviously then

KP{I ~ Q)N(D) = KP{I - Q)N(C XI) C U (1 + t)~l(A + tB)

C U (1 + t)'\(A U B) + t(A U B)) = co(A Ufl)

where co £ denotes the convex hull of E. Hence using the well known properties
of measure of noncompactness and the ^-compactness of KP(I — Q)N, we obtain

a(KP(I - Q)N(D)) < a(co(A U B)) = a(A U B) = max(«(^), «(£))

< A:a(C) = ka(C X I) = ka(D).

Let us now define the mapping M: cl B X [0,1] -» X by

M(x, 0 =/>(*) + | > n + A r P ( / - e)]^V(x, t), x £ c l Q , / £ [0,1],

where ^ is a linear homeomorphism of coker L onto Ker L and II: Z -» coker L is
the natural surjection. Since P and 4/IYN are 0-set contractions, it follows from
what we have proved above that M is a A>set contraction. Also 0 ¥= ( / —
M( •, /))3fi, for otherwise by virtue of the Equivalence Theorem 1.1 we will have
x £ 3S2 and t £ [0,1] such that L(x) = N(x, t), that is, (L - 7V)(x) = /(L -
N)(-x\ contradicting 2.1. Hence by homotopy invariance theorem of degree
theory for it-set contraction mappings, d(I — Mt, Q, 0), the degree of / — M, on S
over 0, is independent of t where Mt(x) = M(x, t). Thus d(I - Mo, fl,0) = </(/
- M,, fi,0) ¥= 0 as Af,( •) = M( •, 1) is an odd mapping. Hence d(I - M0, fi, 0)
being nonzero, there is x0 G fi such that x — M0(x) = M(x, 0) = P(x) + [^11 +
KP(I ~ Q)]N(x). By Theorem 1.1 L(x0) = N(x0).

REMARK 2.1. The above lemma has also been obtained by Hetzer [8] in a
similar form in the context of coincidence of degree.

Unless otherwise stated we will assume in this section that the kernel of the
linear operator L is nonzero.

THEOREM 2.1. Let L: Dom L C X -» Z be a Fredholm mapping of index zero and
F: X -> Z be a continuous mapping (possibly nonlinear) which maps a bounded set
into a bounded set. Let (P,Q) be an exact pair of continuous projections with respect
to L. Assume the following:

(i) KP(I — Q)F is a k-set contraction on each closed bounded subset of X; with
Q^k< 1.

(ii) There exists S e [0,1), \ 3* 0 and v>0 such that for each x G X, || KP(I -
Q)F(x)\\<\\\x\\s + p.
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(iii) For each R>0, there exists to>0 such that for all t> to,Vv E. KerP D
B(R) andVw G KerL n 3B(1):

Q(F(tw + tsv) - nF(-tw - tsv)) ¥= 0 for alln G [0, l]

where dB(x) = {x G X: \\x\\ = s} andB(s) - {x G X: \\x\\ <s}.
Then for each z elm L, the equation L(x) — F(x) + z has at least one solution.

PROOF. The proof is similar to the one of Theorem VII.4 in Gaines and
Mawhin [6], page 141. For z Elm L, we define N: X -* Z by

N(x) = F(x) + z, x(EX.

Let us assume that for some x e X and ft G [0,1] we have (L — N)(x) = \i(L —
NX~x), that is,

L(x) - F(x) - z = p(-L(x) - F(-x) - z)

or

(1 + ii)L(x) = F{X) - pF(-x) + (1 - M)z.

Now considering the direct sum decomposition Z = Im L © Q(Z) we obtain
from above

(2.2) (1 + M )L(JC) = ( / - Q)(F(x) -

and

(2.3) Q(F(x) - fiFi-x)) = 0.

From (2.2) and (1.3) we have

= KP(I - Q)(F(x) - nF(-x))

Using this and (ii) we get

(1 + M)| | ( / - P)(JC) | | < Xllxll* + n\\\-x\\s + (1

which yields

(2.4) | | ( / - P ) ( x ) | | < \ | U I | 5 + l l^zl l +v.

Let M = P(x) and v = (1 - .P)(*) and r = || KPz \\ + v. Then (2.4) reduces to

(2.5) Hull <X| |« + o i l * + r.

Let us assume that \\u\\ =£ 0. Then from (2.5) we obtain

Hull

l u l l 1 " * H u l l 8 H u l l 4 '
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where the last inequality is obtained by applying the Mean Value Theorem to the
real valued function/(f) = (1 + f )*• Let /, > 0 be the number such that whenever

tt, y €E X, we have

XS 1
~ * 2

Thus if || u II s* r,, (2.6) implies

< 2(X + rtTs) — R, say.
Hull* v '

Let V = {y G KerP: \\y\\*z R). Now by (iii) there exists t0 > 0 such that for all
t s* /„, w £ KerL D dB(\) a n d j £ V,

(2.7) QF(tw + tsy) - nQF(-tw - tsy) ¥= 0.

Therefore if Hull > max(r,, / 0 ) , we have | | u | | / | | « | | s £ V and W = M/| |M|| G
K e r L n 35(1), and by (2.7),

QF(x) - \iQF(-x) = QF(u + v) - nQF(-u - v)

¥=0

which contradicts (2.3). Hence we can conclude that we have always Hull <
max(f0/,) = t. Now (2.5) implies that

(2.8) Hull < \ ( * + H u l l ) ' + r.

Let / be the unique positive solution of the equation a — \(t + a)s — r = 0.
Then (2.8) implies that \\v\\ < /. Thus we have obtained an a priori bound of x,
namely

11*11 <t + t.
Let R > (t + t) be any positive real number and R = {x G X: \\x II < R}. Now an
application of Lemma 2.1 to the triple (L, N, S) proves the theorem.

COROLLARY 2.1. Let H be a Hilbert space and L: dom L C H — H be a closed
linear mapping with dense domain and closed range with the property that Ker L =
KerL* or equivalently I m l = (KerL)"1 and dimKerL < oo (note that a closed
selfadjoint operator L on H with dim Ker £ < oo satisfies all these conditions). Let
F: H -> H be a continuous mapping which maps a bounded set into a bounded set.
Noting that L is a Fredholm mapping of index zero assume that (i) and (ii) of
Theorem 2.1 hold. Further assume that
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(a) for each R > 0, there exists to>0 such that for all t > to,w G K e r L D 9.6(1),

v G Kerf n B(R) and/x G [0,1]:

(F(fw + ?sc) - nF(-tw - f*o), w) ^ 0,

w^ere (•, •) denotes the inner product on H.
Then the equation L(x) — F(x) + Z has a solution for every z G Im L.

PROOF. Clearly H = Im L © Ker L and Ker P — Im L where P is the orthogo-
nal projection of H onto Ker L. Thus we can take Q = P. Let dim Ker L — n and
w,, w2,..., wn be an orthonormal basis of Ker L. Thus for each x G H,

P(x) = Q(x)= £(x,w>,.

We need only to verify the condition (iii) of Theorem 2.1. Let R > 0 be given.
Then there exists t0 > 0 satisfying the condition (a) above. We claim that t0

satisfies (iii) of Theorem 2.1.
Let t > t0, w G KerL n 35(1), v G Keri5 n B(R) and p G [0,1]. Let w =

2^=i a.-w,-. Then

+ /*u) - /i^-Zw - fsu), w)

i=i i=i

= (F(tw + tsv) - nF(-tw - tsv), w) ¥= 0 by (a).

This implies that Q(F(tw + tsv) - nF(-tw - tsv)) ¥= 0. Hence all the conditions
of Theorem 2.1 are fulfilled.

REMARK 2.2. If the condition (a) of the above corollary is replaced by
(a)' for each R > 0 there exists /0 > 0 such that for all t > t0, w G Ker L n 35(1)

andu G KerPD B(R):

(F(tw + tv),w) >0,

then the conclusion of the corollary still holds. This is because (a)' implies (a). For
clearly (F(-tw - tsv, w) = ~F(~tw - tsv, -w)) < 0.

THEOREM 2.2. Let D be a bounded domain in R" and H = L2(D). Let L:
dom L C H -» H be a Fredholm mapping of index zero and be as in Corollary 2.1,
(P, Q) being an exact pair of continuous projections with respect to L. Let f:
D X R -> R be a function satisfying Caratheodory conditions, that is, for each fixed
u G R, the function x -»/(JC, U) is measurable in D and for each x G £2 (a.e.) the
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function u -> f{x, u) is continuous. Assume that there are constants X > 0, S G [0,1)
and function b G L2(D) such that

(2.9) \f(x,u)\*z\\u\* + b(x) fora.e.xG DandVu&R.

Under these conditions it is well known that the mapping defined by N(u)(x) —
f(x, u(x)), u G H maps H into H, is continuous, and maps a bounded set into a
bounded set; in fact we have \\N(u)\\ < ^ | | « | | 8 + \\b\\ where II • || denotes the norm
in H, that is, L2-norm.

Further assume that

(i) KP(I — Q)N is a k-set contraction on each bounded subset of H with
0 < A : < 1;

(ii) there are functions h+ , h_E L2/1~S(D) such that

Urn £±£ = hAx).,

(in) for each v G KerL n 85(1) and all ju G [0,1]

( _ \ \ f h + \ v \ l + s

[v>0]
h + \ v \ l + s - f h _ \ v \ l + ' ¥ - i i \ ( h _ \ v \ l + s - f

] ><0] [ J[v>0] ><0]

where [v ^ 0] = {x G D; v(x) ^ 0}.
Then the operator equation L(u) = N(u) has a solution.

PROOF. By virtue of Corollary 2.1 it will suffice to prove that for every R > 0,
there exists t0 > 0 such that for all t > t0, w G KerL D 3B(1), o £ R e r P fl B(R)
and ju G [0,1]:

(N(tw + tsv), w) ¥= n(N(-tw - tsv), w)

where (•, ) denotes the inner product in L2(D). We prove by contradiction.
Suppose that the above is false. Then (3R > 0) (3{nn), nn G [0,1]), (3{tn), tn>0
and tn -» oo), (3{vn), vn G KerP n B(R)) and (3{wn], wn G KerL n 95(1)):
(N(tnwn + ts

nvn), wn) = !in(N(-tnwn - t%), wn), that is,

(2.10)

f [ /(*, tnwn(x) + ts
nvn(x))wn(x) - iLnf(x,-ts

nwn(x) - ts
nvn(x))wn(x)] dx = 0.

Since dim KerL < oo and nn G [0,1], we may assume (going to subsequence if
necessary), ( i , ^ ( i e [0,1], wn -» w in || • ||, wn + ts

n~\ -+ w in || • || and wn(x) +
ts

n~
xvn(x) -> w(x) a.e. in D. Thus for almost all x G [w > 0] (resp. [w < 0]) there

exists a positive integer no(x) such that for all n > no(x)

(
(resp.
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326 E. Tarafdar [11]

Hence for a.e. in [w > 0] (resp. [w] < 0), as n -» oo

Unwn{x) + ts
nvn(x) -» +oo (resp. -oo), and

\-tnwn(x) - tfrn(x)-*-co (resp.+oo.)

Let us first consider the integral

(2.12) j V / ( * , -'„"„(*) " ts
nvn(x))wn(x) dx

rn
sf(-, .)w(x)dx+f rn

sf(-, .)w(x)dx
w>0] J[w<0]

+ frn
sf(-,-)(wn(x)-w(x))dx.

JD

The last integral of the right hand side of (2.12) tends to zero as n -> oo. For

(2.13)

frn
sf(-,-)(Wn(x)-w(x))dx<t[(rn

2SfH-,-)dx)l/2\\wn-w\\
JD \JD I

The first factor of (2.13) is derived from the growth condition (2.9). Again the
sequence {t;sf(x, -tnwn(x) - ts

nvn(x))} is II • H-bounded in L2(D) (being
dominated by the first factor of the right hand side of (2.13) and due to the fact
thatwn + r * " ^ ^ win ||-II).

Similarly

(2.14) f

= f Cft . • M * ) dx+f rn
Sf(- , • )W(X) dx

J[w>0] y[w<0]

+ [rn'f(-,-)Mx)-w(x))dx
JD

and we can show in the same way as in the previous case that the last integral of
the right hand side of (2.14) tends to zero as n -> oo and the sequence
{t-sf(x, tnwn(x) + #>„(*))} is || • ||-bounded in L\D).
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Now using (2.11)

,. /(*. tnwn(x) + tfojx))
lim

t*

= l i m - ; , v . , n i t *,(*) + '* »„(*)*

and

lim

Hence

(2.15) hmt;'[f{x, tHwn(x) + ts
nvn(x)) - nj(x,-tnwn(x) - ts

nvn(x))]

Now as we already know that the sequence {t~s[f(x, tnwn(x) + ?*un(x)) —
finf(x, -tnwn(x) - **»„(*))]} i s II' ll-bounded in L\D) and hence in L2([w ^ 0]),
it converges weakly in L2([w ^ 0]) (going to a subsequence if necessary) to its
pointwise limit given in (2.15). Hence as n -» oo,
(2.16)

' ; ' [ / (* . <>«(*) + &»(*)) ~ tnf{x,-tn™n{x) ~ tS
nVn(X))]w(x) dx

^f ±(h±(x)-nh^(x))\w(x)\s+ldx.

Now adding (2.14) and -p.n times (2.13) and letting n -» oo and noting (2.10) and
(2.16) we obtain

h+(x)|w(x) | +ldx —

[w<0]

which contradicts (iii), and the theorem is proved.
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COROLLARY 2.2. In Theorem 2.2 // the condition (iii) is replaced by either of the
conditions

(0) for each o G KerL fl 3B(1)

h + \ v \ l + s - ( h \ v \ l + s } \ ( h \ v \ l + s - ( * + | u | 1

•'[i)<0] J [ J[v>0] J[v<0]

(00) for each » £ KerL (1 3B(1) either

J[v>0]

or

\f h + \ v \ l + s - f h \ v \ l + > ] < \ ( h \ v \ l + s - f h+\v\'+s]<0,
[J[v>0] •/[t)<0] J [ J[v>0] ><O] J

(000) for each o E Ker l n 35(1)

h+\v\'+s-( h_\v\l+s>0,[ \ \ (
[v>0] J[v<0]

then the equation L(u) = N(u) has a solution.

PROOF. Obviously each of (0) and (00) implies the condition (iii). If (000) holds,
then proceeding exactly as in Theorem 2.2 we can show that for each R > 0, there
exists t0 > 0 such that for all t>t0, w e KerL n 35(1), v G KerP D B(R):
(N(tw + tsv), w) > 0. This in turn implies that for all n G [0,1]

(N(+w + tsv),w) =£p(N(-tw- tsv),w).

For (N(-tw - tsv), w) = -(N(-tw - tsv), -w) < 0.

COROLLARY 2.3. Let L and f satisfy all the conditions of Theorem 2.2 with 5 = 0.
In addition assume that for a.e. in D and such u G R either

(2.17) j-(x)<f(x,u)<h+(x),

(2.18) h.(x)<f(x,u)<h+(x).

Then the condition (iii) of Theorem 2.2 is also necessary for the existence of a

solution of the equation L(u) = N(u).

PROOF. Let u be a solution of L(u) = N(u). Let O ^ u G K e r l . Then
jDF(x, u(x))v(x)dx = (N(u), v) = (L(u), v) - 0, as L(u) G KerP and v G
KerL = Im P and P is orthogonal projection. Thus J[v>0) f(x, u(x)) \ v(x) | dx
~ l[v<»\ f(x' " W ) I u ( x ) I ^ = 0. We assume that (2.17) holds. Then
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/ h+(x)\v(x)\dx>[ f(x,u(x))\v(x)\dx
J[v>0] J[v>0]

= ( f(x,u(x))\v(x)\dx>[ h.(x)\v(x)\dx.
J[v<0] J[v<0]

T h u s /[,>oi h+ I v I - / [KOi h-\ v | > 0. Also / [ u > 0 ] h_(x) | v(x) \ dx <
/[O>oj /(•*> u(x)) I v(x) I <fc = / [ t ) < 0 ] f(x, u(x)) I t>(x) I dx < / [ o < 0 ] A+ (JC)C(JC) dx,
that is, / [ o > 0] A_« — /[O<o] ^+ < 0- Therefore condition (iii) holds for each \i G
[0,1]. Similarly we can show that (iii) holds under (2.18).

We now consider the Theorem VII. 1 of Gaines and Mawhin [6] in our context.

THEOREM 2.3. Let L: dom L C X -» Z be a Fredholm mapping of index zero and
F: X -* Z a continuous mapping which maps a bounded set into a bounded set. Let
(P, Q) be an exact pair of continuous projections with respect to L. Assume the
following:

(i) there exist real numbers X > 0, r > 0 such that

\\KP(I - Q)F(x)\\ <\\\x\\ + r for all x E X;

(ii) there exist real numbers a > 0 and s > 0 such that each possible solution x of
the system of equations

Q[F(x) - iiF(-x)] = 0, ( . £ [ 0 , 1 ] ,

satisfies the relation

(iii)A(l + a)<l;and
(iv) KP(I — Q)F is a k-set contraction with 0 < k < 1. Then for each z £ Im L,

the equation L(x) = F(x) + z has at least one solution.

PROOF. We define N: X -» Z by

N(x) = F(x) + z, xGX.

We assume that for some x G Xo and some /i G [0,1]

Then using (1.3), conditions (i) to (iii) we can easily show that

.. .. i\ +a)r + a || K,z II +s
M < i - x ( i + « ) = ' ' s a y "

Let R be any number > /. Then the theorem is proved by applying Lemma 2.1 to
(L, N,Q) where Q = {x EX: \\x\\ < R).
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COROLLARY 2.4. Let X - B(S, R"), the space of bounded mappings of S into R"
with a norm satisfying

| | j e | | > s u p | * ( j ) | , xGX.
ses

Let L and F be as in Theorem 2.3. Assume the following:
(i)' there exists /? > 0 such that for each u E Ker L and each s E S,

(ii)' there exists r, > 0 such that for each x E dom L satisfying \ x(s) \> rl for
all s e S,

Q[N(x) - nN(-x)] ¥=0 for all ju E [0,1].

( i i i ) ' | |A : p ( / - Q)F(x)\\ <\\\x\\ + r where0 < X < (1 + jS)"1 andr > 0; and
(iv)' KP(I — Q)F is a k-set contraction on each closed bounded set with 0 < k < 1.
Then for each z £ Im L, the equation L(x) = F(x) + z has a solution.

PROOF. By similar argument as in the proof of Theorem VII.2 in [6] we can
show that any solution x of the system of equations

Q[N(x) - liN(-x)] = 0 for all ju E [0,1]

satsfies the relation | |P(x)| | < j8||(/ - PXx)\\ + $rx. Thus with a = 0 and s =
/?/-, the condition (ii) of Theorem 2.4 is satisfied. By (iii)' we have X(l + a) < (1
+ 0 ) / ( l + P) = 1 and the condition (iii) of Theorem 2.3 is satisfied. Thus the
corollary follows from the Theorem 2.4.

COROLLARY 2.5. Let X be as in Corollary 2.4 with additional condition that
\\x\\ = s u p j e s I x(s) I when x is a constant mapping of S into R". Let L: dom L C
X -» Z be a linear mapping such that Im L is closed and of codimension n and
KerL = {x E X: x is a constant function}. Clearly L is a Fredholm mapping of
index zero. Let F be as in Corollary 2.4. Assume that conditions (ii)' and (iv)' hold
and (iii)' holds with X < 1/2. Then for each z E Im L, the equation L(x) = F(x)
+ z has a solution.

PROOF. The condition (i') of Corollary 2.4 holds with /? = 1. Hence the
corollary follows from the Corollary 2.4.

3. Application to elliptic boundary value problems

In this section KerL of the linear mapping L will be assumed to be nonzero.

APPLICATION 1. Let D be a bounded domain in R". With a = (a,, a2 , . . . ,an) ,
j8 = O31,/B2,...,fl1), a , , f l E t f and | a | = Z^.a,. , let aap, 0 < | a | , | fi\< m be
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real valued L°°(Z))-functions. Let aap — a^a and moreover with | a | = | / 3 |= m,
aap be uniformly continuous. We also assume that there exists a constant c > 0
such that

2 aaP(x)e^>c\i\2m, for all* e *" and x G D.

Let HQ(D) be the completion of the space C^{D) under the norm

1/2

We define the bilinear form (in C0°°

a(u,v)= 2 f aafi(x)Dau(x)DPv(x) dx.
\a\ = m\p\ = m D

f
Let / : D X R -* R be a function as considered in Theorem 2.2, that is, / satisfies
the Caratheodory condition and the growth condition 2.9. We are interested in
the existence of u G H™(D) such that

(3.1) a(u,v)=( f(x,u(x))v(x)dx
JD

We define a linear mapping L: dom L C L2(I>) -» L2(D) as follows:

dom L = { i ( £ # " : t)-^a(M,t>)is continuous in / / " with L2-norm}.

Then using the fact that H™(D) is dense in L2(S) and the representation theorem
for functionals on Hilbert-space we have, for each u G dom L, a unique L{u) G
L2(D) such that for all v G H{?(D), a(u, v) = (Lu, v) where (•, •) denotes the
inner product in L2(D). u -» Lu is a linear mapping of L2(D) into L2(D). Now
clearly the existence of « satisfying (3.1) is equivalent to the existence of u
satisfying the operator equation

L(u) = N{u).

THEOREM 3.1. Assume that the assumptions in 3.1 above hold and condition (ii) of
Theorem 2.2 holds. Then the boundary value problem (3.1) has a solution if either the
condition (iii) of Theorem 2.2 holds or any one of the conditions (0) to (000) of
Corollary 2.2 holds.

PROOF. It is known from the L2 theory of elliptic boundary value problems that
L is a Fredholm mapping of index zero and KP is compact. Hence the theorem
follows from Theorem 2.2 and Corollary 2.2 respectively.
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REMARK 3.1. In the case of 8 = 0 the necessary condition of Theorem 3.1 is
exactly the same as in Corollary 2.3.

REMARK 3.2. We have already remarked that Theorem 3.1 was first proved by
Landesman and Lazer [10] with second order linear part, dimKerL= 1 and
5 = 0. Williams [16] generalized the result with KerL of arbitrary finite dimen-
sion and the higher order linear part. Theorem 3.1 was proved by de Figueiredo
[2] with condition (000) of Corollary 2.2 by using a perturbation argument of
Hess [7], and was given in the above form with the same condition (000) by
Gaines and Mawhin [6] by using an extended form of the Leray-Schauder
continuation theorem in terms of coincidence degree and Poincare-Bohl Theorem.

APPLICATION 2. We now consider the analogue of Theorem VIII.I of [6] as an
application to our Corollary 2.5. Let D be a bounded domain in R" and atj.
D -* R (/', j — 1,2,...,«) be measurable and bounded functions. Assume that
there exist constants m, M with 0 < m < M such that for all x G D and £ G R",

m|| | 2< 2 «,,(*)«,< M| £|2

where | £ | is the Euclidean norm in R" and that /: D X R -> R is a continuous
mapping, where D = cl D. Let H] = Hl2(D) be the completion of C\D), the
space of C'-real functions in D under the Sobolev norm

(2»+ 2 I IA«I
1 = 1

where Dtu = 3M/3X,. Here we are interested to find the existence of u £ Hl

satisfying

(3.2) a(u,v)=f 2 aij{x)Diu{x)Djv{x)dx

= ff(x,u(x))v(x)dx

for all v Gff1.
We now define a linear mapping L: L2(D) -» L2(D) as follows:

Dom L = {u G 7/1: v -* a(u, v) is continuous in Hx in L2-norm).

Since / / ' is dense in L2(D), we have by representation theorem for functional
that for each u G dom L there is a unique L(u) G L2(D) such that

a(u,v) = (L(u)v) foruGi/1
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where (•, •) is as before the inner product in L2(D). Then clearly u -> L(u) is a
linear mapping of L2(D) into L2(D). Thus for h e L2(D) the equation

(3.3) a(u,v) = (h,v) fora l loEtf 1

is equivalent to (L(u), U) = (h, v) for all u e Hl and hence to

(3.4) L(u) = h

as i/1 is dense in L2{D).

It is well known from the classical result of L2-theory of linear elliptic
boundary value problems that under the assumptions made above (3.3) and hence
(3.4) is solvable if and only if h satisfies the relation jDh = 0. In other words
h E Im L if and only if jDh = 0. Thus Lhx= Lh2 implies /i, — h2 is constant. In
particular then u E Ker L if and only if u is a constant function. Thus if we define
the projection P: L2(D) -> L2(D) by PM = (meas D)'x jD u, then KerL = Im /
and Im L = Ker P. Now assuming sufficient regularity assumptions on D and
using the regularization theory for (3.3) it can be shown (see for details [6], page
152) that if L is the restriction of L to L~\C0(D)) and P is the restriction of / to
C0(D), then L: CQ(D) -» C0(D) is a Fredholm mapping of index zero, (P, P) is
an exact pair of continuous projections with respect to L, and there exists a
constant A; > 0 and a G (0,1) such that for each v £ Ker P

(3.5) ll*,©llc<>-(i>)

where

and C0(i>) is the space of real continuous functions on D. (3.5) implies that KP is
compact.

We now define F: C0(D) -> C0(D) by

(F(u))(x)=f(x,u(x)), xGD.

We also assume that there exist ft > 0 and s > 0 such that for all x E Z) and
M E R,

(3.6) | / ( x , « ) | < i 8 | i i | + j .

Clearly F maps a bounded set into a bounded set and is continuous.

THEOREM 3.2. Let D C R" and atj: D -> R (i, j = 1,2,... ,n) satisfy all assump-
tions made above. Let f: D XR -» R be continuous satisfying (3.6). Further assume
that

(a) P < \k where k is as obtained in (3.5);
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(b) there exists R > 0 such that for each u E. C°(D) satisfying \ u(x) \> Rfor all
x G D

f[f(x, «(*)) - pf(x, -«(*))] * 0 for all v. G [0, l].

Then the problem (3.2) has a solution.

PROOF. Clearly (b) implies condition (ii)' of Corollary 2.4. Since Kp is compact,
KP(I — P)N is 0-set contraction and hence (iv)' of Corollary 2.4 holds. Now from
(3.6)

and hence using (3.5)

\\KP(I - P)F(u)\\co(5) < 2*(/M|K| |CO(5) + s).

Thus from this and (a) it follows that condition (iii) of Corollary 2.4 holds with
X < 1/2. Hence proof of the theorem is complete.

COROLLARY 3.1. Let D C R", a,7 (/, j = \,2,...,n) andf be as in Theorem 3.2
and let (a) of Theorem 3.2 hold. Assume that there exists (b)' R>0 such that for
each u G C°(D) satisfying | u(x)\> Rfor all x E D,

(x, u(x)) dxj [^/(x, -u(*)) dx] < 0.

Then the problem (3.2) has a solution.

PROOF, (b') implies (b) of the Theorem 3.2.

REMARK 3.3. In this paper the application of our Lemma 2.1 in the case when
KPN is noncompact but is of A>set contraction with 0 < k < 1 has not been
considered. We will do it in a forthcoming paper.
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