On product varieties of groups M.R. Vaughan-Lee

An example is given of a finitely based variety of groups \underline{V} such that \underline{VA} is not finitely based.

Let \underline{V} be the variety of groups determined by the laws

(1) $[[x_1, x_2], [x_3, x_4], [x_5, x_6]],$

(2)
$$[[x_1, x_2, x_3], [x_4, x_5]] [[x_1, x_2], [x_4, x_5, x_3]]^{-1}, [[x_1, x_2, x_3], [x_1, x_2]].$$

Then <u>VA</u> is not finitely based.

Only an indication of the proof is included as it is very similar to the proofs of the existence of non-finitely based varieties given in [3] and [2]. The crucial step is the following lemma.

LEMMA. If a, b, c, d are elements of a group which satisfies the laws (1) and (2) then

$$[[ab, c, d], [ab, c]] = [[a, c, d], [a, c]]^{b}[[b, c, d], [b, c]]$$

and

$$\begin{bmatrix} [a, bc, d], [a, bc] \end{bmatrix} = \begin{bmatrix} [a, b, d], [a, b] \end{bmatrix}^{c} \begin{bmatrix} [a, c, d], [a, c] \end{bmatrix}.$$
Using this lemma it can be shown that VA is determined by the laws

(3)
$$\left[\left[\left[x_1, x_2 \right], \left[x_3, x_4 \right] \right], \left[\left[x_5, x_6 \right], \left[x_7, x_8 \right] \right], \left[\left[x_9, x_{10} \right], \left[x_{11}, x_{12} \right] \right] \right] \right]$$

Received 20 April 1971.

239

M.R. Vaughan-Lee

(4)
$$\left[\left[[x_1, x_2], [x_3, x_4], [x_5, x_6] \right], [[x_7, x_8], [x_9, x_{10}] \right] \right]$$

 $\cdot \left[\left[[x_1, x_2], [x_3, x_4] \right], [[x_7, x_8], [x_9, x_{10}], [x_5, x_6] \right] \right]^{-1}$

and the laws

240

$$w_{k} = \left[\left[[x_{1}, x_{2}], [x_{3}, x_{4}], [y_{1}, y_{2}], [y_{3}, y_{4}], \dots, [y_{2k-1}, y_{2k}] \right], \\ \left[[x_{1}, x_{2}], [x_{3}, x_{4}] \right] \right]$$

for k = 1, 2, ...

For each $n \ge 1$ a group is constructed which satisfies the laws (3) and (4), and the laws w_k for $k \ne n$, but which does not satisfy the law w_n . This proves that \underline{VA} is not finitely based.

Strongly finitely based varieties were introduced in [1], and it was proved in [1] that if \underline{V} is strongly finitely based and \underline{W} is finitely based then \underline{VW} is finitely based. Thus the variety \underline{V} defined above cannot be strongly finitely based, although it is finitely based.

References

- [1] M.S. Brooks, L.G. Kovács and M.F. Newman, "A finite basis theorem for product varieties of groups", Bull. Austral. Math. Soc. 2 (1970), 39-44.
- [2] M.F. Newman, "Just non-finitely-based varieties of groups", Bull. Austral. Math. Soc. 4 (1971), 343-348.
- [3] M.R. Vaughan-Lee, "Uncountably many varieties of groups", Bull. London Math. Soc. 2 (1970), 280-286.

University of Queensland,

St Lucia, Queensland,

and

Christ Church, Oxford.