SOME REMARKS ON LOCAL RINGS

MASAYOSHI NAGATA

Previously C. Chevalley [1] proved the followings :
1, Let %, ..., x» be algebraically indeperdent elements over a field t
which has infinitely many elements. Then:

a) If yis an element of t[xi, ..., x»] and if y is not in f, then there exist
elements 32, . . ., ¥» of [%1, . . ., xx] such that t[x;, . . . , x»] is integral over
Ly, Y2y o v oy Yl

b) If p is a prime ideal of t[x;, ..., x»], then there exist elements 1y,
w..,yn of t[x1, ..., xa] such that i) t[x,....x,] is integral over t[1i,
e oo, Yudandii) POy, « -« 5y Ynd=Wmt1, - .« , ¥V, . .., 3] (with some
m=mn).

2. Any geometric local ring contains no nilpotent element; more generally,
if o is a local ring which admits a nucleous and if o contains no nilpotent element
then the completion of o contains no nilpotent element.

Further, O. Zariski [5] proved the following:

3. Let P be a point of an irreducible algebraic variety V and let 0 be the
local ring of P on V. If V is locally normal at P, that is, if o is integrally
closed, then the completion of o is aiso an integrally closed integrity domain.

On the other hand, P. Samuel [3] stated the following, but his proof con-
tained a falsy argument:"”

4. Let o be a local ring and let o™ be its completion. If aand b are ideals
of o then (aNb)o* = ao* M bo™.

In the present note, we first give a corrected proof of 1 (for semi-local
rinzs) (§1). In §2 we prove a refinement of 1 dealing with finite ground field
too (Theorems 2 and 3). §3 gives a generalization of 2; we define a gener-
alized notion of geometric local rings and that of nuclei and we prove 2 in our
generalized sense. In §4, 31is proved also for geometric local rings in Chevalley's
sense.

Received March 13, 1953.

1) Samuel [3] made use of the following lemma: Let o be a local ring with maximal ideal

m. If b is an ideal of o and if @ is an element of o, then (b, m"): a@ov=((b: a@o), M)
with s{n) which increases infinitely with »n.
He applied this lemma for a sequence {a,} (lim a,=a). These s(n) are distinct for distinct
am's. s(n) must te denoted by, say,.s(n, m) for an. Then the lemma asserts only that
s(n, m) increaces infinitely with »# for a fixed m. and we see easily that s(», #) may not
increase. But his proof needs that s(n, ) increases inflnitely with z.
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§1. LemMma 1. Let abe an ideal of a semi-local ring 0 and let & an element
of 0. If o™ denotes the completion of o, then ao®:bo™ = (a:bo)o™. (Zariski [4])

Proof. Since it is evident that av™: 5™ contains (a:50)0*, we have only to
prove an”: 0¥ S (a:52)0". Let % be an element of ao™:&0*. We take #;E0 such
that #; =2 (mod mv™) (= 1,2, ...), where m denotes the intersection of ali
maximal ideals of 0. Then wb& (ub, bm'o*) and therefore wibe (a0™, bn'o™) = (a,
bmi)o*. Therefore ude (a, bin'), which shows ;e ((a: ), m').

LEMMA 2. Let a be an ideal of a commutative ring o and let » be an
element of 0. Then a\bo = b(a: bo).

Proof is easy.

Now we prove

TueoreM 1. Let 0* be the completion of a semi-local ring o andletay, . . . , Gn
be ideals of 0. Then (N ...Nax)o" =a0 N ... Nano™.

Proof. Tt is sufficient to treat the case n=2: (a;Na:)0* = ap® MNa0™.

1) When a:= (b, ;Na:): We may assume that a;(Na:=(0). Then a. is
principal: .= bn. By Lemma 2 we have a;Naz = b(a;: o), ;0" Nazo™ = b(ay0™ 1 bo™).
Now by Lemma 1 we see that (a;Na:)0* = a;0™ Naw0™.

2) The above case being settled, we consider the general case: Take
b1, ..., b from a: so that as= (b, ..., b, i(Na:). We prove our assertion
by induction on 7. Set b=(b,, ). Then aNaz=a;NbNa, HNaz= (b,
(hnaz) = (br, ﬂlnhﬂﬂz) and a = (b1, e e broy, bMNas). Therefore (010(’!2)0* =
(N (6Na2))0™ = a* N (BN az)o™* by 1).

(0Naz)o™ = " MNaxn™ by our induction assumption.
Thus (a;Na:)o™ = a0 N bo* Nax™ = a;0%MNaswn™.

CoOROLLARY. Let ay,...,ar be ideals of a semi-lccal ring o such that
N ...Na,=(0). Then o is a closed subspace of the direct sum of semi-local
rings o/ay, . . ., 0/ay.

For this, cf. Nagata [2], Theorems 2 and 3.

§2. Turowvem 2. Let xi, ..., Xx be algebraically indzpendent elements over
a field . If an eleinent y of t{xi, ..., xnl, which is not in ¥, is given, we can
choose elewments ¥, .« ., yn of ¥[%s, . . ., xnl 5o that t{x:1, . . ., x4) is integral
over t{y, 32, « o o, ¥al.

Proof. Let Mi;=x"""x3"" ({=1, ..., N) be monomials which occur in

A)
the polyncmial v:v = >a:M; (a;E€¥, a;%0). Then we can find non-negative in-
=1
tegers s, . . ., miy SO that there exists one 7, say 1, such that
LW S 77 Y ST SN S 7/ PV SHE g SRR R o (1 TY AR PR o /7 3P (2£7=N).

Set yi=xi+x1" (2<£i<N). Then evidently t[x1, . . ., 2l =[x, ¥, ..., ¥nl,
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and x; is integral over [y, ¥, . . ., ¥»] as follows readily from our construction

on ;. Therefore t[%:, ..., x.] is integral over [y, v, . . ., ¥ul-

TuroreM 3. If a is an ideal of the polynomial ring t[x:, . ... x.] (in
Theorem 2), then there exist clements v, . . ., ynof tLx1, . . ., %u] such that 1)
1Ly, « .., xnl is integral over ¥y, ..., 2l and 2) aVly, . .., 30t = (3,

w s YO, o .o, yud (with some r<n).

Proof. Let y: be a non-zero element of a. Then by virtue of Theorem 2
wecan find ¥2,1, . . ., ¥n,10f t[x1, . . ., xxlsuch that t{x, . .., x.]is integral
over tly, ¥2,1, ..., ¥s1). Now we assume that there exist ¥, . . . , Y5 Vsi, sy
w..,¥nssothat i) [y, ..., x.] is integral over t[yi, . . ., ¥s, V1,85 « = « »
Yn, sl and i) ¥, ...,5s€a. When aNVt[y, o . ., ¥, Vset, sy - - - » ¥, 51 = (1,
e .., %s), we may set ¥ys+;j =9¥s+j,s (j=1). In the contrary case, we can find a
non-zero element vs+1 of aNIys+1,s, - - ., ¥1,s). Then by Theorem 2 we can
choose elements Vs+2, s#15 « » « 5 Y, s+1 Of 1L¥su1, 5,4 « o , ¥, o1 50 that t{yser, 5, - - .,
Yu, <) is integral over ¥[¥si1, ¥ste,s415 - - « » Yns+1). Then evidently t[x,. ...,
%] is integral over I[yi, . . . , ¥Yst1, Yst2, 5415 Yu,s+1] and Y1, . . ., Vsy 0.

CoroLLARY 1.2 Let o be a ring which is generated by a finite number of
elements over a field . Then there exist elements x1, . . ., x» of o such that
i) %1, ..., %r are algebraically independent over ¥ and ii) o is integral over
t[xl, [P Xr]-

CorOLLARY 2. Let o be the same as in Corollary 1 and let p2Dq be prime
ideals of 0. Then dimq—dimp=rankp—rankq. Therefore all maximal des-
cending chains of prime ideals which begin from p and end to q have the same
length.

§3. We define the notions of geometric local rings, nuclei of local rings,
rings of type t(n:1) and rings of typeT(sn, m: 1) by a similar way as in Chevalley
[11 but we drop the conditions on basic field f that t has infinitely many elements
and that [f:t?1< . Then by virtue of our Theorem 38 we see easily in a
same way as in Chevalley [1] that every geometric local ring adimits a nucleous.

First we observe the following

LemMma 3. Let o be a local integrity domain which admits a nucleous r.
If a field L is a finite algebraic extension of the quotient field of o, then the
totality 0 of o-integers in L is a finite o-module. Therefore if m is a maximal
ideal of B, then t is also a nucleous of Dy

Proof is easy.
The following two lemmas are due to Zariski [4].

2) When o is an integrity domain, our. result is the well known normalization theorem,
which was proved by Noether when ¥t contains infinitely many elements, and was proved
in general case by Cohen (see Zariski [6]).
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LEmMA 4. Let n be an integrally closed Jocal integrity domain and let o*
be its completion. Let b be a prime ideal of o of rank 1. Assume that po™ is
an intersection of prime iceals b, . . ., pi (piZep/ if ix 7). Then op‘ is a valua-
tion ring, and therefore, each p;* contains a unique divisor p* of the zero ideal
of 0" and every formal power pi™® of p; contains P*. Further p'™o* = OD?““.

Proof. Let w be an element of p which is not in p® and let ¢* be an
element of »i'MN ... Np; which is not in pi (when 2 =1, we may set a*=1).
We take an element & of wo : p which is not in p and set ¢* =a*s. Then c¢*
&, pict S o' pb S wo®.  Since D;* is a local ring with maximal ideal pi‘“n;}, itisa
principal ideal ring with unique maximal ideal zuo;}. Since there exists a prime
divisor of zero ideal of o™ which is contained in p;, (s;‘: is a valuation ring. This
being proved, the else is easy.

LEMmMA 5. Let o and o be the same as in Lemma 4. Assume that there
exists a non-unit d of o such that for every prime divisor p; (1=:<h) of db,
pio™ is an intersection of prime ideals pi\1, . « - , bi,ma (P72 1 if jx k). Then
0" contains no nilpotent element.

Proof. Let Bf, ..., Ps be the totality of prime divisors of zero ideal of
0* which are contained in at least one b;;. Then

PN .. NP NN . L ois) = Npet < Na’* = (0.
4, L) °

Now we prove

TueoreM 4. If a class & of local rings satisfies the following three condi-
tions, then the compleiion o™ of a member o of & has no nilpotent element:

1) If o€ G, then o contains no nilpotent element ;

2) If v&® and if D is a prime ideal of v, then o/p is in &;

3) If v&® and if 0 is an integrity domain, then i) the integral closure© of
o in its quotient field is a finite c-module and ii) for every maximal ideal m of
D, Oy is in ©.

Proof. When dimo =0 our assertion is evident. We prove our assertion
by induction on the dimension of 0 (pE®).

By Theorem 1 and by conditions 1) and 2), we may assume that o is an
integrity domain. Further by condition 3), we may assume that o is integrally
closed. Then applying Lemma 5, we see that o™ contains no nilpotent element.

CoroLLARY 1. Let 0 be a local ring which admits a nucleous. If o con-

©

When p is a prime ideal of a ring o, p'*) denotes the formal n-th power of p, ie., pi®
=p"op No.

Y That n po*S Na@ko* follows from Theorem 1 and from that do has no imbedded prime

1y, 2 ®
divisor (since o is integrally closed).
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tains no nilpotent element, then also the completion of v contains no nilpotent
element.

CoROLLARY 2. Any geometric local ring contains no nilpotent element.

§4. Lemma 6. Letobe an integrally closed local integrity domain and let
0™ be its completion. Further let 7* be the integral closure of o™ in its total
quotient ring. Assume that there exists an element d(=0) of o such that i)
dv*<o* and ii) for every prime divisor p of do, po* is an intersection of prime
ideals. Then o* is an integrally closed integrity domain. (Zariski [51)

Proof is easy by virtue of Lemma. 4.

‘Now we prove

THEOREM 5. Let 0 be an integrally closed local integrity domain which admits
a nucleous v. Let R and K be the quolient field of v and o respectively.
Assume that there exists a finite algebraic extension field R' of R such that i)
the totality ' of r-integers in R' is a regular local ving and ii) L=R'K is
separable over R'. Then the completion o™ of o is an integrally closed integrity
domain.

Proof. By Theorem 4, we have only to prove the existence of a non-zero
element d of o which satisfies the condition i) in Lemma 6. Let 3 and i be the
totalities of r-integers in L and K respectively. Further let 3* and i* be the
completions of 3 and i respectively and let §* and i* be the integral closure of
3* and i* in their respective total quotient rings. We take an element a of $
so that L=R'(a). Let d' be the discriminant of the irreducible polynomial
over R’ which is satisfied by a. Then @'3*<1'*[a]= 3%, where 1’* is the com-
pletion of t'. Therefore & is integrally closed by virtue of Lemma 6.” Now
let 1, a1, . . . ,as€1 be a linearly independent basis of K over R and let 1, bi.
.., eS8 be a linearly independent basis of L over R with a;=5&; for i=1,
..., 8. Now 1*& 3% because 3* is integrally closed. Let d be a non-zero element
of t cuch that d3<e[by, ..., b-1. Then d3*<1*[by, . ... b-] and therefore
di*sv*[by, . .., bs], where t™ is the completion of r. That di*St*[by, .. .,
b1 shows di*=t*[ay, . . ., as] and therefore di* =t*, which chows, by virtue
of Lemma 6, i* and therefore 0* are integrally closed again.

CororLrarY 1. Let o be an integrally closed local integrity domain such
that either o admits a nucleous of type t(n:t) or o admits a nuclecus and has
a basic field t such that [t:1?]1< «. Then the completion of » is an integrally
closed integrity domain.

CoroLLARY 2. Let 0 be a local integrity domain such that either o admits
a nucleous of type v(n:t) or v admits a nucleous and has a basic field t such

5 It is easy to generalize Lemma 6 for integrally closed semi-local integrity domains.
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that [t:{?1< ., Let 0 be the integral closure of o in its quotient field. Then
the completion T° of 0 is the integral closure of the completion 0¥ of o in its
total quotient ring.
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Added in Proof

1. Our proof of Theorem 5 is not correct unless that o* is an integrity
domain is proved. We can correct our proof. Further we can prove that if an
integrally closed local integrity domain o admits a nucleous (in our generalized
sense), then the completion of o is an integrally closed integrity domain. This
will be proved in a latter paper “Some remarks on local rings II” to appear in
Memo. Kydto.

2. As for the proof of Lemma 3 for the case that the nucleoust is of type
T(n, m : 1), see appendix of the above paper.

3. It was communicated to the writer that some of our results was discussed
independently by P. Samuel (Algébre Locale, Mémo. Sci. Math. No. 128 (1953) ).
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