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ASYMPTOTICAL WELL BEHAVIOUR
FOR CONSTRAINED MINIMISATION PROBLEMS

D. AUSSEL AND C.C. CHOU

This paper is devoted to the study of the links between stationary sequence and
minimising sequence for constrained minimisation problems. The constraint set is not
supposed to be convex and no differentiability assumption is made on the objective
function. New tools are developed in this general framework and we prove a necessary
and a sufficient condition for such problems to have a "constrained asymptotical well
behaviour" (that is, each stationary sequence is a minimising sequence). Our work
extend that of Auslender, Cominetti and Crouzeix.

1. INTRODUCTION

Let us consider the general constrained optimisation problem

m = inf f(c)

where / is a lower semicontinuous function from a Banach space X t o l u {+00} and
C is a nonempty subset of X. Numerical methods, being in general based on descent
methods, generate stationary sequences (that is, in the differentiable unconstrained case,
sequences such that Vf(xn) tends to 0 whenever n —t +00). It is thus crucial to be
able to answer to the following question (already raised by Powell [22] in 1976): for
which classes of optimisation problems one can ensure that each stationary sequence is a
minimising sequence (f{xn) -t m whenever n -t +00)?

Besides the simple case of the minimisation in a finite dimensional space under some
compactness assumptions on C or on / (inf-compactness), a first answer has been given
in Auslender and Crouzeix [2] and Auslender, Cominetti and Crouzeix [3]. Here the
authors obtained a characterisation of nonsmooth unconstrained convex problems (of
proper closed convex functions) having an asymptotical well behaviour, that is, each
stationary sequence (that is, the distance of df(xn) to 0 tends to 0) is a minimising
sequence.

Some extensions to nonconvex unconstrained problems have been proposed in Penot
[19] and Huang, Ng and Penot [15], while a dual characterisation and the study of the
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multiobjective case are respectively due to Angleraud [1] and Bernoussi, Bolintineanu and
Chou [6]. The concept of asymptotical well behaviour is strongly linked to the notion of
well-posedness (see [17, 18, 19, 20] and references therein).

For constrained problems, the only attempt, to our knowledge, is a paper of Chou, Ng
and Pang [12] in which they consider problems with continuously differentiable objective
functions and convex constraint set. This lack of interest in constrained well behaviour
is essentially due to the fact that constrained problems are often considered as particular
cases of unconstrained problems by simply adding the indicator function of C to the
objective function (see for example, [15]). But this reduction of the problem is not
adapted to the algorithmic point of view, and does not allow us to consider asymptotically
feasible sequences (d(xn, C) tends to 0). Thanks to our approach we shall be able to work
with such sequences (see Definition 3.2 and Theorem 4.4).

Our aim in this paper is to develop a new theory of asymptotical well behaviour
adapted to constrained optimisation. In Section 2 we define the fundamental concept
of the local infimum value, and Section 3 is devoted to the study of basic properties of
stationary sequences and minimising sequences in the setting of constrained optimisation
problems. Finally in Section 4 we prove our main result, namely, a sufficient condition
(Theorem 4.4) for a nonconvex constrained optimisation problem to have an constrained
asymptotical well behaviour. This result, unlike those of [12], is established in infinite
dimensional space and does not need any differentiability assumption on the function nor
any convexity hypothesis on the constraint set.

2. LOCAL INFIMUM VALUE

Throughout this paper, X stands for a real Banach space, X* for its topological dual
and (•, •) for the duality pairing. For e > 0, (x,y) e X2 and || • || a norm on X, we use
the notations

Be(x) = { y e X : \\y - x\\ < e}

and

Bs(x) = {yeX : \\y-x\\^e}.

For any subset C of X, int(C), C (or cl(C)), dc(x) or d(x, C), Be(C) will denote respec-

tively the interior of C, the closure of C, the distance dc{x) = d(x, C) = inf ||a; - c\\ and

the open subset B£(C) = { i 6 l : dc{x) < e).

Finally for a lower semicontinuous function / : X -»• K u { + o o } , d o m /
= {x £ X : f(x) < +00}, if A e 1 , L(X) is the A-sublevel set of / (that is
L(X) = {x € X : f(x) ^ A}), and df is the Clarke-Rockafellar subdifferential of
/ defined by

df(x) := {x* G X' I <x', v) ^ f(x, v), Vv e X}
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with
rU x ,. • , }{x' + tv')f{x')
f'(x,v) = sup hmsup inf —

t\o

Let us recall that the Clarke-Rockafellar subdifferential of / coincides with the Fenchel
subdifferential

dFmf(x) = {x'€X* : (x*,y-x)<f(y)-f(x),Vy£X}

whenever the function / is supposed to be convex. It is also well known that df coincides
with the classical Clarke subdifferential ([9]) if / is locally Lipschitz.

Now let / : X —¥ R U {+00} be a lower semicontinuous function and C be a
nonempty subset of X. Since no convexity assumption will be made on C, a natural
way to envisage the minimisation of / on C is to turn our attention to local infimum
concepts. But, on the other hand, since / will not be supposed to be inf-compact (nor
C to be compact), infimum values (global or local) may not be attained. To be able to
deal with this general setting we introduce the notion of local infimum value for the pair
(/.C).

DEFINITION 2.1: Let / : I - > E U {+00} be a lower semicontinuous function and
C C X be a nonempty subset of X. A real A is called a local infimum value for the pair
(/, C) if there exist S > 0 and an open subset U of X such that

A= inf f(x)= inf fix).

The set of all local infimum values for (/, C) will be denoted by A. Clearly the image
of any local minimiser, if exists, is a local infimum value.

Throughout this paper we shall suppose that dom / f l C ^ 0 and

(1) ro = inf/(c)
ego

is finite, that is / is bounded below on C. Consequently A is nonempty and m is the
minimal element of A.

One of the most powerfull result concerning the minimisation of a lower semicon-
tinuous function in a complete space is the variational principle of Ekeland [14]. Some
"smooth versions" of this principle have been proved in [7] and [4] for unconstrained
problems and in [5] for constrained problems using a global concept re of infimum value.
In the same spirit, but based on the concept of local infimum value, we establish a
constrained variational principle which will be useful in the sequel.

THEOREM 2 . 2 . Let f : R" ->• R U {+00} be a iower semicontinuous function
and C be a closed subset of Rn. Let X be a local inGmum value (associated to 6 > 0 and
an open subset U of Rn).
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Let us suppose that U C\C is convex and that x0 € K" and e > 0 satisfy

xo€Ur\C and f(x0) < X + e.

Then for any 77 > 0 such that f is bounded below on Bv{x0), there exist x € Bv(x0) and

K > 0 such that

f{x)<f(xo)+£

0 e df(x) + Kd(func(x) + 2-B*.

REMARK 2.2.1. Using the same proof, one can obtain this result for any subdifferential
satisfying the three properties defining the abstract subdifferential of [5]. In this case,
some smoothness of the norm is needed

P R O O F : Let e' 6 ]0, e[ and 6' e ]0, 6[ be such that

(2) f(x0) < inf f + e'= inf f + e'.

Let us denote by A the closed subset A = UC\C and by Av the subset Av — Br)(xo)r\A.
Accordingly to (2) we have f(x) > f(x0) — e', for any x 6 A and thus, using the lower
semicontinuity of / and the compactness of Av, there exists 6 > 0 satifying

(3) f(xo)<J(x)+e'

for any x 6 Bg(Av).

Now we shall denote by J the real <$ = inf{6', 6/2} and by B the closed subset
Bv(x0) U [ B-g(A) fl C]. Then we define the lower semicontinuous function g = f + K<fA

with K > 0 satisfying

(4) f{x0) <mif + Kt + e'.
B

We claim that g(x0) < infB g + e. Indeed, if x € Bj(A) (~l C then, according to (2),
we have

g(x0) = f(x0) < _ inf / + e < f(x) +e'^ g{x) + e'.
Bj{A)nC

Now if x € B^XQ) \ Bj(A), formula (4) immediately yields

g(x0) < inf/ + Kt + e' ^ f(x) + Kd\{x) + e' = g(x) + e'.
B

Finally, let us suppose that x is an element of Bn(x0) C\ Bj(A). Due to the definition of
I, x is an element of J3^(x0) PI Bg,2(A). We shall show that x is in fact in Bj(Av).

Let xA G A be such that Hz-z^H ^ 6/2. Since Bv(x0)r\B~g/2(A) is nonempty, there

exists XA € [xo,Xyi] such that ||x,4 — xo|| ^ rj and \\XA — xA\\ ^ 6/2. Indeed the existence
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of a point y e [xo,xA] which is neither in Bv(xQ) nor in B^,2(A) leads to the following

contradiction

\\y - xo\\ + \\y - xA\\ = \\x0 - xA\\ ^ \\x0 - x\\ + \\x - xA\\ ^ JJ + 5/2.

Due to the convexity of A the point xA is also an element of Aq = Bn(x0) n A and

d(x, Av) ^ ||a; - x^H + \\xA - xA\\ ^ 6.

Thus, according to inequality (3), g{x0) < f(x) + e' ^ g(x) + e' and the claim is proved.
Now applying the Approximate Minimum Theorem ([4, Theorem 3.1]), there exists

x € Bv(x0) such that

g(x) < inig + e and 0 G dg(x) + 2{e/r))B'.
B

This immediately implies that

f{x) < g(x) <infg + e^ f{x0) + e.

and using classical subdifferential calculus rules we obtain the announced subdifferential
inclusion. D

3. STATIONARY AND MINIMISING SEQUENCES

Following [2], a sequence (xn)n is said to be feasible if each xn is an element of C
and asymptotically feasible if lim d(xn, C) = 0.

DEFINITION 3.1: A sequence {xn)n C dom/ is said to be locally minimising if the
limit of any converging subsequence of ( / ( i n ))n is an element of A.

Clearly when A = {m} (for example whenever / is convex and C — X) we recover,
up to subsequences, the classical definition of minimising sequence (see [2, 3]).

In the differentiate case, the classical Fermat rule (first order necessary condition)
of optimality is

(5) x local minimum of / on C => (V/(x), d) ^ 0, Vd e Tc(x)

where Tc{x) = cl( |J \(C - {x})) is the Bouligand tangent cone to C at x. Denoting

by Nc{x) the normal cone associated with Tc(x), relation (5) becomes

(6) 0 € V/(x) + Nc{x).

On the other hand, for nonsmooth convex functions and for unconstrained optimisation
problems, the necessary condition of optimality 0 € df(x) leads to the following definition
of stationary sequence ([2, 3]):
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{xn)n is a stationary sequence if and only if lim d(0,df(xn)) = 0.
n—>+oo

To be able to cover nonsmooth and/or nonconvex constrained optimisation problems we

propose the following adaptation of the previous points of view:

For any e > 0 let us denote by

TQ(X) =c\({a(c-x) : a > 0, c 6 B£(x) D C})

the e-tangent cone to subset C at x and by NQ the associated normal cone

For any nonempty convex subset C of X, any a; € C and any e > 0, TQ(X) coincides
with the Bouligand tangent cone Tc(x). But one of the interesting points concerning the
definition of Tc(x) (and the forthcoming Definition 3.2) is that it allows us to consider
non feasible points. Indeed it is not necessary to assume that i g C t o have a nonempty
tangent cone TQ{X).

DEFINITION 3.2: A sequence (xn)n of elements oidomdf is said to be a stationary

sequence for the couple (/, C) if {xn)n is asymptotically feasible and there exists e > 0
such that

The choice, in this definition, of a common e for any n (instead of a sequence
en —> 0+) is guided by the "uniformity" (fixed e) of the concept of local infimum value.

The standard way to reduce the study of constrained optimisation problems to the
study of unconstrained ones is to add to the objective function / the indicator function
^c of the subset C (that is, \Pc(a;) = 0 if x G C and +oo otherwise). Then an equivalent
form of the global problem (1) is

m =

and one can define, as in [15], a stationary sequence to be a feasible sequence satisfying

(7) lim d(0,a(/ + * c ) (x» ) )=0

or, using some subdifferential calculus rules,

(8) Jirn^ d(0, df(xn) + N$(xn)) = 0

where NQ denote the concept of normal cone associated to the subdifferential d (Clarke
normal cone N" for Clarke-Rockafellar subdifferential, Bouligand normal cone Nc for
Hadamard subdifferential and so on). To be able to deal with possibly non feasible
sequences one can replace ^c by the distance function dc and (8) becomes

(9) lim
n>+o
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But none of those approaches is sharp enough to study the relation between stationary

and minimising sequences. For example in the very simple case of the minimisation of

the real function f{x,y) = y — x on the subset C = {0} x [0,1] of R2, the sequence

(xn)n = ((0, — 1/n)) is minimising and stationary (in the sense of Definition 3.2) while

the only sequence satisfying (8) is the null sequence. Observe that the sequence (xn)n

does not either satisfy relation (9).

Nevertheless every feasible stationary sequence in the sense of Defintion 3.2 satisfies

(8). Indeed, from the definition of T£ it is clear that for any subset C C X and any

x € C one has Tc(x) C T£(x) and thus d(0, (df + Nc){x)) ^ d(0, (df + N^)(x)). The
reverse implication does not hold, in general. For example consider the linear function
/ : R2 —> R defined by f(x,y) = x and the compact subset

C = {(x,-y/Z) : 0 < x ^ 1} U ([-2,0] x [-1,0]).

Then one can prove that every feasible stationary sequence is a minimising sequence
but there exists feasible sequences satisfying (8) (and (9)) (for example (1/n, —y/l/n)n)

which are not minimising sequences.

Actually, Definition 3.2 can be seen as a first step in what could be called a "mixed
nonsmooth optimality condition" in which the concept of normal cone considered for
the epigraph of the objective function (and thus the concept of subdifferential) and the
concept of normal cone considered for the constraint set are chosen independently.

In the following result we show that, roughly speaking, in the neighbourhood of
every feasible minimising sequence converging to a local infimum value there exists a
minimising sequence which is also a stationary sequence.

THEOREM 3 . 3 . Let f : R" -> R be a Lipschitz function and C be a closed

nonempty subset of R". Let (xn)n be a feasible sequence such that A = lim f(xn) is a
n-ioo

local infimum value (associated to the open subset U and the positive real 6).
Suppose that U DC and Bs(U) D C are convex, f is bounded below on B{(U) and

lim d(zn,£/nC) = 0.
n-»+oo

Then there exist a subsequence {xnk)k of {xn)n and a stationary and minimising

sequence (yk)k of elements of R n such that

lim \\yk - xnk\\ = 0 and lim f(yk) - A.

LEMMA 3 . 4 . Let C be a nonempty subset of R and f : R" ->• R. Let X be a local
infimum value for (f,C), associated to the open subset U and to the real 6 > 0. Then,
for any 5' € ]0,6[ there exists 5" > 0 such that

A = inf / = inf /
Anc Btll{A)nc

where A = Bs>{UnC).
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P R O O F : Let 5' be an element of ]0, S[ and 6" G]0,5—S'[. We immediately obtain that
any x G Bg»{A) DC is an element of BS{U) DC since d(x, U) < d(x,UnC) < 6'+ 6" < 6.

On the other hand (Un C) C (ADC). The desired equalities are a direct consequence
of those inclusions. D

P R O O F OF THEOREM 3.3: Let 6' e]0,S[. From Lemma 3.4 there exists 6" > 0 such

that
A = inf / = inf / ,

Anc Bs,,(A)nc

where A = B~S<(U n C). Let us observe that A n C = BS>{U D C) n [£j(I/) flC] is a

convex subset of Rn, as it is the intersection of two convex subsets.

Let {xnk)k be a subsequence of (xn)n such that, for any k € N

f{xnk)<X+\/k2.

For k large enough (say k ~£ k$) xnk G [Bs>/3(U C\C)C\C\ C {AC\C) and thus, applying
Theorem 2.2 with x0 = xnk, U — A, e = 1/k2 and 77 = 1/k there exist yk e Bi/k{xnk)
and Rk > 0 satisfying

f(yk) < f(xnk) + 1/fc2,

(11) . 0edf(yk)+Rkdd\nc(yk)

According to (11) one can find y*k € df(yk), a*k € dd\nC{yk) and $*k € B* satisfying
Rka*k = 2/k0'k.

On the other hand, for k large enough (k ̂  kx ^ Ao), Bs>/3(yk) C .4 and thus,

(«;, c - 2/fc> < 0, Vc G Bc/sfo*) n C

since >1 n C is convex. Consequently, for any k ̂  Aj, yj + ./?*£*£ is an element of df(yk)

+ Nc/3(Vk) and lim y*k + Rka*k = 0.
k—>oo

The sequence (y/t)* is therefore a stationary sequence. But it is also a minimising
sequence since, according to (10) and to the Lipschitz continuity of / (with Lipschitz
rank Kf)

/ ( x n j - Kj/k ^ f(yk) < f(xnk) + 1/k2 < A + 21k2. fj

4. CONSTRAINED ASYMPTOTICAL WELL BEHAVIOUR

Based on the previous definitions, the two main results of this last section (Theorems
4.4 and 4.7) establish respectively a sufficient and a necessary condition for a couple (/, C)
to have "constrained asymptotical well behaviour", that is, any stationary sequence is a
locally minimising sequence.
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D E F I N I T I O N 4 . 1 : Let / : I - > R U {+00} be a lower semicontinuous function and

C be a nonempty subset of X. The couple (f,C) will be said to have a constrained

asymptotical well behaviour if every stationary sequence is a locally minimising sequence.

Let us denote by Tc (respectively by Ts
c) the set of couples (/, C), with / lower

semicontinuous and C closed nonempty subset of X, such that

For any compact segment J of 1R with J D A = 0 one has

(12) inf inf *(*] X > 0

respectively

(13) inf inf — ^ — ^ — > 0 ) .

Clearly T' is a subset of Tc and corresponds to a stronger assumption on the couple

(/.<?)•

Those definitions are some natural extensions of the following property used in [3]
to characterise, for unconstrained optimisation problems, the set T of convex functions
for which every stationary sequence is a minimising sequence:

(14) j£T o- V A > m , / ( A ) - inf !}X\~\ > 0.
xex\i(A) d(x,L{\))

PROPOSITION 4 . 2 . Let f : X -> R U {+00} be a proper lower semicontinuous
convex function. Then

feT*=>(f,X)efc^ (f,X) erc.

PROOF: The implication / € T => (f,X) € Tc is a direct consequence of the
increasing property of / (see [3, Proposition 6.2 and 6.3]), that is, l(X') ^ /(A) for any
A '^ A.

For the reverse implication, suppose that (/,X) € Tc and A > inf/ and consider

J = [A, A + 1]. Then / is an element of T since

inf # ^ > i n f inf J^L > 0
*«t(A) d(:r,L(A)) "£./ x««") d(u, L(i^))

and, for any x $. L(A) with /(x) £ J one clearly have, using the convexity of / ,

f(x)-X . f(u) - A
d(x,L(X)) " . !«») d(u,L(A)) D
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Let us recall that a function / : X - > R U {+00} is said to be weakly convex provided
that there exists p ̂  0 such that, for any x, y € dom / and any t £ [0,1] one has

f(tx + (1 - t)y) ^ tf(x) + (1 - t)f(y) + pt{\ - t)\\y - x\\2.

The weak convexity has been introduced by Janin [16] (in a local form) postulating that
the function / can be decomposed into the sum of a convex function and p\\ • ||2. If X is
an Hilbert space this definition is equivalent to the previous one (see [24, 8]). Weakly
convex functions are particular cases of lower-C2 functions and have been extensively
studied (Cornet [10], Cornet and Vial [11], Rockafellar [23], Vial [24], for example). Let
us observe that any weakly convex function is Lipschitz continuous on its domain (see
[24]).

As a straightforward extension of [24, Proposition 4.8] we obtain

PROPOSITION 4 . 3 . Let X be an Hilbert space and / : I - > t U {+00} be a
function with convex domain.

Then f is p-weakly convex if and only if for any x, y 6 dom/ and any x* € df(x),

one has

(x\y-x)^f(y)-f(x)+p\\y-x\\2.

We are now in position to state our main result concerning constrained asymptotical
well behaviour of a nonconvex optimisation problem.

THEOREM 4 . 4 . Let C be a closed nonempty subset of an Hilbert space X and
f : X —> R be a lower semicontinuous weakly convex function.

(i) If (/, C) € T'c then any stationary sequence is a locally minimising sequence

(ii) If (/, C) € Tc then any feasible stationary sequence is a locally minimising

sequence.

Moreover, if f is convex, assertions (i) and (ii) hold true for any real Banach space X.

Let us first prove the following lemma.

LEMMA 4 . 5 . Let C be a closed nonempty subset of an Banach space X and
/ : X -> E be a Lipschitz function. Let (xn)n be an asymptotically feasible sequence
such that X — lim f(xn) g A with AeM.

n—KX>

If (/, C) e T'c or if (f, C) G Tc and (xn)n is feasible, then there exist p. > 0, a
subsequence (xnic)k of (xn)n and a sequence (yk)k of elements of C satisfying lim \\xt

t-*oo
— 2/fc|| = 0 and, for any k,

0 < n\\xnk -yk\\^ f{xnk) - f(yk).

PROOF: (i) Let us suppose first that (/,C) 6 f'. It is sufficient to consider the

following situations: (f(xn))n decreasing or (/(xn))n strictly increasing.
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[11] Constrained minimisation problems 509

Let 77 > 0 be such that J D A = 0 where J = [A - 77, A + 77].

CASE A. (f(xn)) is decreasing.

Fix e > 0 and define, for any n, the (possibly infinite) value en = d(xn, Mn) with

Mn = {x € B£(zn) n C : f(x) < / (*„ )} .

CLAIM, the sequence (en)n admits a subsequence (ent)k converging to 0.

Indeed, let us suppose, for a contradiction, that there exists /? > 0 such that en

= d(xn, Mn) ^ /?, for any n. Note that in this case some subset Mn could be empty.

If we denote by a the real a — min{e, /?} then for any n and any x e Ba(xn) n C

one has f(x) ^ f{xn)- Since (a;n)n is an asymptotically feasible sequence, for n large
enough (say n ^ n0) Ba/2{xn) f l C i s a nonempty subset. So one can find, for n ^ n0,
un G Ba/2(xn) n C and wn G BQ(a;n) D C verifying

/ K ) > in/ Six) > S(xn), SM > inf fix) > f(xn)

with

(15) ||a;n - un\\ ^ d(xn, C) + \/n and ||xn - un|| ^ d(xn, C) + l/n.

Denoting by U the open subset U = [j Ba/2{xn), we obtain, for n ^ no,

(16) / K ) ^ inf / ( i ) ^ inf /(a:*) - A
xeunc fc^no

and

(17) / ( w B ) ^ inf /(ar)"> in f / ( !* ) = A.
i € B ( t / ) n C fc^n

But / is a Lipschitz continuous function and thus, using (15), the sequences (/(un))
and (SiVn))n converge to A. This leads us to the desired contradiction since, together
with (16) and (17), we can conclude that A = inf f(x) = inf fix) is an element

f A -ru ^ 1 • • A xeUnc *eBa/2(u)ncJ v '
of A. Thus the claim is proved.

According to our claim let {enic)k be a subsequence of (en)n converging to 0 and, for
any k, let xk G Be(xnk) n C be such that

f{xk) < S(xnk) and \\xk - xnk\\ ^ enk + \/nk.

Since / is Lipschitz continuous, one has

(18) lim S(xk) = A,
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and thus, for k large enough (say k ^ A;o) /(?*) is an element of J. On the other hand
xnk $. L(f(xk))- From the definition of Ts

c (used with J) there exists /i > 0 such that,
for k ^ k0,

(19) f(xnk) - f(xk) > iul(xnk,L(f(xk))nC).

Now considering / / 6 ]0, fi[, one can construct a sequence (yk)k of elements of C satisfying,

for k ^ k0, yk e L(f{xk)) n C and

f(xnk) ~ f{Vk) > nd{xnk,L(f{xk))nC) > n'\\yk-xnk\\ > 0, VA: ̂  k0.

Finally, the previous inequality, together with (18) and (19) immediately implies

lim | | i n -yk\\ = 0 .
k-ioo

C A S E B. (f(xn))n is strictly increasing. From the definition of T'c with J = [A — 77, A + 77]
one can find a constant /i > 0 such that for every v 6 J and every x £ L(v), one has

Since, for n large enough, / (x n ) G J and xn +i 0 L(/ (xn)) we obtain

(20) A* d{Xn+l, L(f(xn)) n C) < / (z B + i ) - / ( i B ) .

Let /x' £ R be such that 0 < / / < /z and denote by j / n + 1 an element of L(f(xn)) n C such
that

(21) /i'l^n+i -lfe+i| | <fid(xn+l,L(f(xn)) n C ) .

Then, as in the previous case, by (20) and (21) we obtain, for any n^ n0

fj.'\\xn+l - yn+i\\ ^ / (x n + i ) - f(xn) < f(xn+1) -

and therefore lim ||xn+i - 2/n+i|| = 0.

(ii) The same proof remains valid if (/, C) is only supposed to be an element of
Tc, providing that the sequence (xn)n is feasible (and invoking definition (12) instead of
(13)). D

P R O O F O F THEOREM 4.4: Let (xn)n be a stationary sequence for (/, C) such that
(/(xn)) converge (to A € R). Thus there exist e > 0 and, for any n, x* 6 df(xn) and
w*n e Nc(xn) such that

(22) lim (x'n + < ) = 0.
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Now if A 0 A then, according to Lemma 4.5 and Proposition 4.3 (or the definition of the

Fenchel subdifferential if / is convex), there exist fx > 0, a subsequence (xnk)k of (xn)n

and a sequence {yk)k, Vk 6 C such that

(23) lim \\xnk - yk\\ = 0
k—*oo

and, for any k,
(x*nk,yk-xnk) ^ -n\\yk - xnk\\ + p\\yk - xnkf.

Finally, for k large enough, yk £ Be(xnk) D C and

112/*: -

which contradicts (22) or (23). D

Item (ii) of Theorem 4.4 only deals with feasible stationary sequences. This could be
considered to be quite restrictive. However, as it will be shown by the next proposition,
even in a restrictive form (feasible stationary sequence and convex function) Theorem
4.4-(ii) is powerfull enough to obtain asymptotical well behaviour results for classes of
nonconstrained optimisation problems which were not covered by previous approaches,
since the function is supposed to be neither convex (as in [3]), quasiconvex (as in [19]),
nor critical (as in [15]).

For any function g : K2 -¥ R we associate the nonempty subset Cg of K3 defined by

Cg = {(x,y,z)eR3 : z = g(x,y)}.

PROPOSITION 4 . 6 . Let F : R2 -» R be a differentiable function defined by
F(x, y) — h(x)+g(x, y) where h is any differentiable convex function and g is a Lipschitz
differentiable function such that there exists e > 0 for which

(24)

If (F, R2) S Tc then any stationary sequence is a locally minimising sequence for (F, R2),
that is,

lim VF(xn,yn) = 0 =>• "if A = lim f(xn.) then A e A".
n-n» k—H-oo

Note that since F is not assumed to be convex it becomes important to use the local
infimum concept (and thus the subset A).

P R O O F : At first let us define the differentiable convex function / : R3 —> R by
f(x,y:z) — h(x) + z. Let us denote by A(f,C9) (respectively A(F)) the set of local
infimum values associated to the pair (f,C9) (respectively, the pair (F, R2)). Clearly, for
any (x,y) € R2 one has F{x,y) = f(x,y,g\x,y)) and thus A(/,CS) = A{F).
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On the other hand, since g is Lipschitz of rank K on K2 and, for any (x, y, z) 6 K3

f(x,y,z)^\ and (x,y,z)eCg <=> F{x,y) «: X

then

dM2 ((*, y), LFW) < dns ((x, y, z), Lf(X) n Ca) < (K + l)du, ({x, y), LF{\))

providing that (x,y,z) is an element of Cg. As an immediate consequence one obtain,
for any A € K, the equivalence between the inequalities

(25) inf J <*f> - * > 0
{x,y)em.2\LF(\) d{(x,y),LF(X))

and

(26) inf M(
 f{X\V\Z)~X

 n , > 0.
(xyz)ec\Lj(\) d({x,y,z),Lf(X)nCg)

Finally let us suppose that ((xn,yn))n is a stationary sequence for (F,R2), that is,

BUm||VF(a;B)yn)||=0.

Due to the assumption (24) on g, there exists e > 0 such that for any n, Vn

= [^(xn,yn),^-{xn,yn),-Vj is an element of Ne
Cg{xn,yn,g{xn,yn)) and

( j ) || U ^ n , yn)\\ = 0.

By Theorem 4.4 -ii), the feasible stationary sequence ((xn,yn,g(xn,yn)))n is a locally
minimising sequence for (f,Cg) and thus, using the equivalence between (25) and (26),
((xn, yn))n is a locally minimising sequence for (F, K2). Q

The function / and the subset C will be said to be compatible if there exists K ^ 1
such that for any x € C and for any A e f(C), one has

d(i,I(A)nC) ^Kd(x,L(X)).

Such a geometric link between the function and the constraint set is essential in the
following result in which we establish a necessary condition for the couple (/, C) to have
a constrained asymptotical well behaviour.

THEOREM 4 . 7 . Let X be an Hilbert space, f : X -> K be a lower semicontinuous

convex function and C be a nonempty closed subset of X. Suppose that f and C are

compatible and

(a) VA : i n f x / < A < M , 3e > 0 : Uji) C Be(L{X))
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(b) 3e > 0 : Vz € C, Ng{x) = Nf,{x).

Then, if(f,C) has a constrained asymptotical well behaviour then (/, C) € Tc.

REMARK 4.7.1. (i) Hypothesis (a) does not implies that the sublevel sets o f / are
bounded. It is fullfilled, for example, by linear functions and inf-compact functions.

(ii) Assumption (b) is obviously satisfied if C is convex or if C is a countable union
of disjoint convex subsets (Ci)i6iN with e = inf d(d, CA > 0.

P R O O F : Let us suppose that (/, C) & J-c. Thus there exist a compact subset J
= \a,/3] of f(C), a sequence (xn)n C C and a sequence (An)n C J such that

(27)

(28) f(xn)e J\L(Xn)

(29) lim /(*") ~ A " = o.
n->ood(a;n,L(An)nC)

One can assume, without loss of generality, that An converge to an element A of J. Let
us denote by An = d(xn, L{\n) n C) and by en = (f(xn) - Xn)/An.

According to (28) and the compactness of J, the sequence (An)n is bounded (let say
by M > 0). Indeed, (xn)n c L(j3) and, for any n, L(a) C L(An) C L(/3). But, due to
assumption (a), L(fi) C Be[L(oi)) for some e > 0. Thus the sequence (d(xn,L(An))) is
bounded as well as (d(a;n, L(An) n C)) since / and C are compatible.

The task is now to construct a stationary sequence. Depending on the behaviour of
(An)n we distinguish two cases:

CASE 1. There exists A > 0 such that An > A, Vn.

Then for any n,

(/ + i>Cn)(Xn) = f(Xn) = ̂  + £nAn

(30) ^ An + Men

where Cn denotes the closed subset Cn = B&(xn) n C. Now applying [21, Theorem
4.10] (or rather the extension of this result to the case of Lipschitz and continuously
differentiable bump functions, see also [13]) there exist xn £ B 4 ( i B ) n C and a Lipschitz
continuously differentiable function gn : X —> K+ satisfying, for n large enough,

(31) d(xn,xn) < A/2

(32) (f + 9n)(xn)= , in f .

(33)
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where a is a positive constant (not depending on n) denned in [21, Theorem 4.10]. We

conclude from (31) and (32) that

(f + 9n)(Xn)= inf (f + 9n)(x)
xeBr(in)nc

where e = min[A/2, e], and hence, according to assumption (b), that

0 G d (f + gn) (xn) + N^n)nc(xn) c df{xn) + Dgn{xn) + N$(xn).

Finally d(0,df(xn) + N£(xn)) ^ H^n^nJlL and thus, using (33) and (29), (xn)n is a
feasible stationary sequence and consequently a locally minimising sequence.

On the other hand, due to (30), (31), (32) and (33) one has

An < f(xn) <(f+ gn) (Xn) ^ U + 9n) (xn) < An + M£n + y/Men/a.

Therefore A = lim Xn = lim f(xn) G A and the desired contradiction is obtained since
n—KX) n—>oo

j n A = 0.
CASE 2. lim An = 0.

n-+oo

For any n, let yn be the projection of xn on the closed convex subset L(Xn). The
sequence (yn)n is asymptotically feasible since d(yn,C) < ||xn - yn\\ ^ An.

On the other hand, an easy computation (see [3, Lemma 6.1]) shows that }(yn) = An

and that y* — an(xn - yn) G df{yn) for some an > 0. It follows that

Ili/n — an\\Xn i/n ^ < K KF
iFn - 2/n|| a(a;n, i(An) n C)

We conclude that (yn)n is a stationary sequence and thus a locally minimising sequence

with lim f(yn) = lim An = A G J D A which is impossible. D
n-*oo n-+oo

Finally, combining Theorem 4.4 with Theorem 4.7, we obtain the following charac-
terisation of constrained optimisation problem for which each stationary sequence is a
locally minimising sequence:

Under the hypothesis of Theorem 4.7, and assuming moreover that any stationary
sequence is feasible, then

(/, C) has a constrained asymptotical well behaviour <=> (/, C) G Tc.
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