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1. Introduction

Some recent papers have revived interest in some questions concerning
the motion of a simple pendulum which is oscillating with small angular
amplitude under gravity, when the length of the pendulum changes with
time in some prescribed manner.

Littlewood, in a series of papers ([1] —[5]) has considered the adiabatic
invariants which arise in a variety of problems where some quantity in each
problem undergoes a slow change. In [1] he considers the pendulum of
varying length and refers to the first Solvay Conference in 1911, when the
problem of the shortening pendulum was raised by Lorentz. It was con-
jectured that if the equation of motion is taken as x-\-to2x = 0, where
co changes slowly with time, and the energy at time t is taken as
E(t) = \{x2-\-(a2x2), then E/co is approximately constant. No rigorous proof
had been forthcoming for this result or for other conjectures made in
relation to this problem.

A rigorous treatment has now been provided by Littlewood. He showed
that if

2£
Hit) = — , x = y, |co(n>| < (constant) X sn,

(o

where a>{n) denotes the w-th derivative, then:
(i)

(1) H(t) = ( ) y U ^ ^ ) y ) $
to* \ft)* or I co*

(ii) The average of H over (t— \p, t+\p), where p = 2njto is the local
period, is

(2)

(iii) If x = (Hlco)i cos a, y = — (Hj(o)i sin a at time t, then the
average over phase a is
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If" . f t ) 2

2n]_n
 8 o>* ? * '

(iv)

(4) # (oo ) — H{— oo) = 0{en) for every n.

In physical terms, these relations include the conclusions: H(t)—H(co)
is of order s; averaging over period improves this to order e2, with similar
result for averaging over initial phase a.

A case of the varying pendulum where the linearized equation of motion
may be solved exactly in terms of known functions has been discussed
recently by Brearley [6]. (See also Relton [7].) This occurs when r is con-
stant, tha t is, when the length r of the pendulum changes uniformly. Let
r = V. When the angular displacement 9 from the vertical is expressed in
terms of r, the solution obtained is

1
(5) 9{r) = — {CJiW^+DY^y/r)},

Vr

where X = 2-^gjV, C and D are arbitrary constants, and J1, Yt are Bessel
functions of order one of the first and second kind.

The physical implications of this solution are however worth examining.
In particular, the variation of energy in the different stages of the motion
needs to be studied.

In the present paper, the authors examine some of the physical con-
sequences of the Brearley solution. The authors also report the existence
of a family of cases where the equation of motion may be solved in terms
of Bessel functions. The existence of this family of solutions does not appear
to have been noticed before.

2. The uniformly lengthening pendulum

From the equations of motion

(6) r—r&2 = —T+g cos 9, r6 + 2f6 = —g sin 6

one deduces, after substituting r = l+Vt, where / is the length at t = 0,
and approximating for small oscillations,

d29 dd g9
7 r (-2 1-— = 0.w dr2 dr F 2

Writing x = iAyV according as V ^ 0 (so that x is always positive) and
y = xd, one obtains

(8) *2S
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which has solutions Jx(x) and Yx(x). Thus, equation (7) has the solution (5).
The general features of the motion may be studied by taking a simpler

form of the solution which is obtained when the initial conditions are such
that at t = 0, 0 = 0 and x = ±2/V\/gl = xx where xx is a positive zero
of Ji(x). For a given V, this may be realised by choosing appropriate value
for /. The arbitrary constant D then vanishes, and we have the solution

yV

If xltxi,x3, • • • are successive zeros of J^x), and Xlt X2, X3, • • •
successive zeros of J2(x), then at the vertical positions (given by 0 = 0)
the lengths of the pendulum are rk = â /A2 (ft = 1, 2, • • •), and at the
extreme positions (given by 6 = 0) the lengths are Rk = X\\)? (k = 1, 2, • • •).

For the energy, we take

and derive, for the case of the lengthening pendulum with V > 0, the
following:

(i)

which tends to g as t ->- oo.

(ii) ™ = -TV< 0.

Hence the energy steadily decreases with time, and tends to — oo as t ->• oo.
(iii) The expression for E takes the simple form

VC
(12) E = iV*-gr+ — (Jl+Jl).

(iv) The extreme positions 0 = 6k (k = 1, 2, • • •) are such that
10*1 < |0*-il- Ultimately, 6k -> 0 as k -*• oo. Thus the angular amplitude
decreases and tends to zero as t -> oo. (However rdk -> oo).

(v) Meaning by a cycle the motion between two successive vertical
positions with the pendulum moving in the same sense, the A-th cycle
occurs between the values #2*-i and x2k+1 for r. Denoting by rk the time of
the ft-th cycle,

1 V
Tk = — (r2k+i — r2k~l) = — {X2k+l~x2k-l)-
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For large k, asymptotically

Vn 2nW

g S

Hence the time for a cycle increases eventually by a constant quantity for
each cycle.

(vi) The average energy for the k-th cycle is

1 C*2k+1

=

Hic+i hk-i J ttk_1

Ek = :— I Edt
(15)

_ IT/2 Fl 1— -%V X ±\
L

X2k -1) }

which yields

(16) Ek~

and

H 7 \ ft ft , , 172 I __i_l/"2 rr.c2 t r — l l i ' A

where A is a positive finite constant. Thus for large t, the average energy
decreases by a constant quantity for each cycle.

It would be instructive to compare the above results with those of
Littlewood. Littlewood deals with problems of small change, and therefore
comparison may be made only when V is small, of order e.

On substituting x = rd in the equations of motion (7), one obtains

(18)

so that in Littlewood's notation, to2 = (g—r)/r = gjr for the uniformly
changing pendulum. Further

(19) H{t) = j2 (Jl+Jl)Vgr

(20) H(ao) = CWjnl2.

The energy expression (10) which we have used is however different from
that used by Littlewood, which is ^(x2jrco2x2). It appears to us that (10)
is closer to the physical situation, while the latter relates to the energy of
the equivalent constant length pendulum at each instant of time. The com-
parison is therefore not pursued further.
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In the case of the shortening pendulum, it has been pointed out by
Brearley that owing to Yl (r) being unbounded as r tends to zero, the approx-
imation for small oscillation does not remain valid in the general case. The
equations of motion here lead to a non-linear differential equation of the
form

d2 0 sin d
du2 4M3

where u = \\r. The solution of such an equation as u -> oo should be of
interest, and we hope to deal with it in a later paper.

3. A family of soluble cases

If r = f(t), the equation corresponding to (7) is

(22) 6 ^ p

This may be identified with the standard equation (See [8])

1 —2a I «.2—-t>2y2\
(23) 0" + —— 6' + J OV7"1)2 + ^JL-\ 0 = 0
which has the solution

(24) 0 = r«Z,(i8rr)>

where Zv — CJV+DYv and p, a, /?, y are constants.
We consider the following cases:
(a) y = l . Identification then leads to either / = constant or ff2 =

constant. From the latter we obtain a = —|, /3 = \/gJa, p = ± 4 ,

(25) / = {f (V^+6)}? , d = ~Z±i(VgTar).

(b) y ^ 1 and a2 =^p2y2. Then / is constant.
(c) y =£ 1 and a2 = p2y2. Then y = J(3+4a), p = ±2a/(3+4a) and

a, /? are arbitrary but such that

is always real. Then

(2V)

If a = l/2w where n is an integer, then r is always real. Thus there exists a
two-parameter family of solutions.
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When a = — \, /? = 2^/g/V = X, y = \, p = ± 1 , we have / = Vt+b,
d = (l/-y/r)Z1(A\/>') which gives the special case of the uniformly changing
pendulum.

One of the authors (C. J. Eliezer) wishes to thank Professors G. B.
Preston and R. Van der Borght and staff of the Mathematics Department
of Monash University for hospitality.
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