NOTE ON THE MODULAR REPRESENTATIONS OF SYMMETRIC GROUPS

HIROSI NAGAO

1. Let p be a fixed prime number. We denote by $k(n)$ the number of partitions of n and set

$$
\begin{align*}
l(\lambda) & =\sum_{\lambda_{1} \ldots \ldots, \lambda_{p}} k\left(\lambda_{1}\right) k\left(\lambda_{2}\right) \ldots k\left(\lambda_{p}\right) \tag{1}\\
l^{*}(\lambda) & =\sum_{\lambda_{1}, \ldots, \lambda_{p-1}}^{p} k\left(\lambda_{1}\right) k\left(\lambda_{2}\right) \ldots k\left(\lambda_{p-1}\right) \tag{2}
\end{align*} \quad\left(\sum_{1}^{\nu-1} \lambda_{i}=\lambda, \quad 0 \leqslant \lambda_{i} \leqslant \lambda\right) .
$$

Recently it was shown by Nakayama and Osima [8] and Robinson [12] that the number of ordinary irreducible representations belonging to a p-block of weight β is equal to $l(\beta)$. For the number of modular irreducible representations Robinson [12] showed that it is independent on the p-core, and using this result, Osima [10] proved that it is actually equal to $l^{*}(\beta)$. In this note we shall give a direct computation of this number.

Now we mention some theorems necessary for the computation without proof. For Young's diagrams $[\alpha]$ and $\left[\alpha^{\prime}\right]$ of S_{n} and $S_{n^{\prime}}\left(n^{\prime}<n\right)$, we set $r\left(\alpha, \alpha^{\prime}\right)=(-1)^{r}$ if $[\alpha]$ contains an $\left(n-n^{\prime}\right)$-hook of leg length r such that $\left[\alpha^{\prime}\right]$ can be obtained from [α] by removing it, otherwise we set $r\left(\alpha, \alpha^{\prime}\right)=0$.

Denote by $\chi(\alpha ; G)$ the ordinary irreducible character of S_{n} corresponding to [α], then Murnaghan-Nakayama's recurrence rule [$7, \mathrm{p} .182 ; \mathbf{6} ; \mathbf{1 5}$] is as follows:

If G is an element of S_{n} containing a g-cycle P and \bar{G} is the permutation of $n-g$ letters arising from G by removing this cycle, then

$$
\begin{equation*}
\chi(\alpha ; G)=\sum_{\left[\alpha^{\prime}\right]} r\left(\alpha, \alpha^{\prime}\right) \chi\left(\alpha^{\prime} ; G\right) \tag{3}
\end{equation*}
$$

where $\left[\alpha^{\prime}\right]$ runs over all Young's diagrams of S_{n-0}.
Now let $\left[\alpha^{(0)}\right]$ be a p-core ${ }^{1}$ with m nodes and $n=m+\beta p$. Then the number of Young's diagrams of $S_{m+\lambda p}$ with p-core $\left[\alpha^{(0)}\right]$ is equal $[8 ; 9 ; 12 ; 13]$ to $l(\lambda)$. We denote these diagrams by

$$
\left[\alpha_{1}^{(\lambda)}\right], \ldots,\left[\alpha_{l(\lambda)}^{(\lambda)}\right] .
$$

In case $\lambda \geqslant \mu>0$ we set

$$
\begin{equation*}
\Re_{j}^{(\lambda, \mu)}=\left(r\left(\alpha_{1}^{(\lambda)}, \alpha_{j}^{(\lambda-\mu)}\right), \ldots, r\left(\alpha_{l(\lambda)}^{(\lambda)}, \alpha_{j}^{(\lambda-\mu)}\right)\right) \tag{4}
\end{equation*}
$$

Received December 12, 1952.
${ }^{1}$ For the notion of p-cores, see [7], and for the relation between p-cores and p-blocks, see [7] and [3].
and

$$
\begin{equation*}
R_{j}^{(\lambda, \mu)}(G)=\sum_{k=1}^{l(\lambda)} r\left(\alpha_{k}^{(\lambda)}, \alpha_{j}^{(\lambda-\mu)}\right) \chi\left(\alpha_{k}^{(\lambda)} ; G\right) \quad(j=1,2, \ldots, l(\lambda-\mu)) . \tag{5}
\end{equation*}
$$

Then we have [10, §1]
Theorem.

$$
\begin{aligned}
R_{j}^{(\lambda, \mu)}(G) & =0 & & \text { when } G \text { contains no } \mu p-c y c l e, \\
& =\frac{n(G)}{n(\bar{G})} \chi\left(\alpha_{j}^{(\lambda-\mu)} ; \bar{G}\right) & & \text { when } G \text { contains a } \mu p-c y c l e,
\end{aligned}
$$

where \bar{G} is the permutation arising from G by removing this cycle and $n(G), n(\bar{G})$ are the orders of normalizers of G, \bar{G} in $S_{m+\lambda p}, S_{m+(\lambda-\mu) p}$ respectively.
2. First we shall remark that the following propositions are mutually equivalent:
(I) The number of modular irreducible representations belonging to the block of weight β with p-core $\left[\alpha^{0}\right]$ is equal to $l^{*}(\beta)$.
(II) The rank of the vector module generated by

$$
\Re_{j}^{(\beta, \lambda)} \quad(\lambda=1, \ldots, \beta ; j=1, \ldots, l(\beta-\lambda))
$$

is equal to $l(\beta)-l^{*}(\beta)$.
(III) The rank of the module consisting of all solutions of the equation

$$
\begin{equation*}
\sum_{\lambda=1}^{\beta} \sum_{j=1}^{l(\beta-\lambda)} x_{j}^{(\lambda)} \Re_{j}^{(\beta, \lambda)}=0 \tag{6}
\end{equation*}
$$

is equal to

$$
\sum_{\lambda=1}^{\beta} l(\beta-\lambda)-\left(l(\beta)-l^{*}(\beta)\right)
$$

(III') The rank of the module consisting of all solutions of the equation

$$
\begin{equation*}
\sum_{\lambda=1}^{\beta} \sum_{j=1}^{l(\beta-\lambda)} x_{j}^{(\lambda)} R_{j}^{(\beta, \lambda)}(G)=0, \quad G \in S_{n} \tag{7}
\end{equation*}
$$

is equal to

$$
\sum_{\lambda=1}^{\beta} l(\beta-\lambda)-\left(l(\beta)-l^{*}(\beta)\right) .
$$

By Chung [4], Osima [9], and Littlewood [5] it was shown that

$$
\Re_{j}^{(\beta, \lambda)} \quad(\lambda=1, \ldots, \beta ; j=1, \ldots, l(\beta-\lambda))
$$

generate the module consisting of all vectors which are orthogonal with every
column of the matrix of decomposition numbers corresponding to the p-block, namely, the module consisting of all solutions of the following equations:

$$
\sum_{j=1}^{l(\beta)} x_{j} \chi\left(\alpha_{j}^{(\beta)} ; V\right)=0
$$

for every p-regular element V of $S_{m+\beta p}$.
Since the columns of the matrix of decomposition numbers are linearly independent, (I) and (II) are equivalent. The equivalence among (II), (III), and (III^{\prime}) is almost evident.

In the following we shall prove the proposition (III^{\prime}). Let

$$
\left(x_{j}^{(\lambda)}\right)
$$

be a solution of (7). If $G=P_{\lambda} V$ in (7) with a λp-cycle P_{λ} and a p-regular permutation V of the $n-\lambda p$ letters not contained in P_{λ}, then since $\lambda \neq \mu$ implies

$$
R_{j}^{(\beta, \mu)}(G)=0
$$

we obtain

$$
\begin{equation*}
\sum_{j=1}^{l(\beta-\lambda)} x_{j}^{(\lambda)} R_{j}^{(\beta, \lambda)}\left(P_{\lambda} V\right)=0, \tag{8}
\end{equation*}
$$

and hence, from the theorem in §1, we have

$$
\begin{equation*}
\sum_{j=1}^{l(\beta-\lambda)} x_{j}^{(\lambda)} \chi\left(\alpha_{j}^{(\beta-\lambda)} ; V\right)=0 \tag{9}
\end{equation*}
$$

for all p-regular elements of $S_{n-\lambda p}$.
If $\lambda=\beta$ then $l(0)=1$ and $x^{(\beta)}=0$, and if $\lambda<\beta$ then, from the result of Chung [4], Osima [9], and Littlewood [5] mentioned above, it turns out that

$$
\left(x_{j}^{(\lambda)}\right)_{j}
$$

is a linear combination of

$$
\mathfrak{R}_{k}^{(\beta-\lambda, \mu)} \quad(\mu=1, \ldots, \beta-\lambda ; k=1, \ldots, l(\beta-\lambda-\mu)) .
$$

Set

$$
\begin{equation*}
\left(x_{j}^{(\lambda)}\right)_{j}=\sum_{\mu=1}^{\beta-\lambda} \sum_{k=1}^{l(\beta-\lambda-\mu)} x_{k}^{(\lambda ; \mu)} \mathfrak{R}_{k}^{(\beta-\lambda, \mu)} . \tag{10}
\end{equation*}
$$

Next suppose that $\lambda_{1}+\lambda_{2} \leqslant \beta$ and set $G=P_{\lambda_{1}} P_{\lambda_{2}} V$ in (7) where no two of $P_{\lambda_{1}}, P_{\lambda_{1}}$, and V have common letters. If $\lambda_{1} \neq \lambda_{2}$ then

$$
\begin{aligned}
0 & =\sum_{j} x_{j}^{\left(\lambda_{1}\right)} R_{j}^{\left(\beta, \lambda_{1}\right)}(G)+\sum_{j} x_{j}^{\left(\lambda_{2}\right)} R_{j}^{\left(\beta, \lambda_{2}\right)}(G) \\
& =\frac{n(G)}{n\left(P_{\lambda_{2}} V\right)} \sum_{j} x_{j}^{\left(\lambda_{1}\right)} \chi\left(\alpha_{j}^{\left(\beta-\lambda_{1}\right)} ; P_{\lambda_{2}} V\right)+\frac{n(G)}{n\left(P_{\lambda_{1}} V\right)} \sum_{j} x_{j}^{\left(\lambda_{2}\right)} \chi\left(\alpha_{j}^{\left(\beta-\lambda_{\mathrm{s}}\right)} ; P_{\lambda_{2}} V\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
= & \frac{n(G)}{n\left(P_{\lambda_{2}} V\right)} \sum_{\mu} \sum_{k} x_{k}^{\left(\lambda_{1} ; \mu\right)} R_{k}^{\left(\beta-\lambda_{1}, \mu\right)}(
\end{array} P_{\lambda_{2}} V\right) .
$$

Hence, $x^{\left(\lambda_{1} ; \lambda_{2}\right)}+x^{\left(\lambda_{2} ; \lambda_{1}\right)}=0$ if $\lambda_{1}+\lambda_{2}=\beta$, and if $\lambda_{1}+\lambda_{2}<\beta$ then

$$
\left(x_{k}^{\left(\lambda_{1} ; \lambda_{3}\right)}+x_{k}^{\left(\lambda_{2} ; \lambda_{1}\right)}\right)_{k}
$$

is a linear combination of

$$
\Re_{j}^{\left(\beta-\lambda_{2}-\lambda_{1}, \mu\right)} \quad\left(\mu=1, \ldots, \beta-\lambda_{1}-\lambda_{2} ; j=1, \ldots, l\left(\beta-\lambda_{1}-\lambda_{2}-\mu\right)\right) .
$$

We set

$$
\begin{equation*}
\left(x_{j}^{\left(\lambda_{1} ; \lambda_{2}\right)}+x_{j}^{\left(\lambda_{3} ; \lambda_{1}\right)}\right)_{j}=\sum_{\mu} \sum_{k} x_{k}^{\left(\lambda_{1} \lambda_{3} ; \mu\right)} \Re_{k}^{\left(\beta-\lambda_{1}-\lambda_{2}, \mu\right)} . \tag{11}
\end{equation*}
$$

When $\lambda_{1}=\lambda_{2}$, by similar arguments as above, we have $x^{\left(\lambda_{1} ; \lambda_{2}\right)}=0$ if $2 \lambda_{1}=\beta$, and

$$
\begin{equation*}
x_{j}^{\left(\lambda_{1} ; \lambda_{1}\right)}=\sum_{\mu} \sum_{k} x_{k}^{\left(\lambda_{2} \lambda_{1} ; \mu\right)} \Re_{k}^{\left(\beta-2 \lambda_{1}, \mu\right)} \quad\left(2 \lambda_{1}<\beta\right) \tag{12}
\end{equation*}
$$

Repeating the similar arguments, we have a set of coefficients

$$
x_{j}^{\left(\lambda_{1} \ldots \lambda_{t-1} ; \lambda_{t}\right)} \quad\left(1 \leqslant \lambda_{1}+\ldots+\lambda_{t} \leqslant \beta ; j=1, \ldots, l\left(\beta-\sum_{1}^{i} \lambda_{i}\right)\right)
$$

which are independent of the order of $\lambda_{1}, \ldots, \lambda_{t-1}$, and the relations among these coefficients:

$$
\begin{equation*}
\left(\sum_{i}^{\prime} x_{j}^{\left(\lambda_{1}, \ldots \hat{\lambda}_{i} \ldots \lambda_{i} ; \lambda_{i}\right)}\right)_{j}=0 \quad \beta=\sum_{1}^{t} \lambda_{i} \tag{13}
\end{equation*}
$$

$$
\begin{array}{r}
\left.\left(\sum_{i}^{\prime} x_{j}^{\prime} \hat{\lambda}_{1} \ldots \hat{\lambda}_{i} \ldots \lambda_{t} ; \lambda_{i}\right)\right)_{j}=\sum_{\lambda_{t}=1}^{\beta-\lambda_{1} \ldots \ldots-\lambda_{t}} \sum_{k=1}^{l\left(\beta-\lambda_{1}-\ldots-\lambda_{t}+1\right)} x_{k}^{\left(\lambda_{1} \ldots \lambda_{t} ; \lambda_{t+1}\right)} \Re_{k}^{\left(\beta-\lambda_{1}-\ldots-\lambda_{t} ; \lambda_{t+1}\right)}, \tag{14}\\
\sum_{1}^{t} \lambda_{i}<\beta
\end{array}
$$

where $\left\{\lambda_{1} \ldots \hat{\lambda}_{i} \ldots \lambda_{t}\right\}$ denotes the set of λ^{\prime} 's arising from $\left\{\lambda_{1} \ldots \lambda_{t}\right\}$ by removing λ_{i}, and $\sum_{i}{ }^{\prime}$ indicates the summation over all different $\left\{\lambda_{1} \ldots \hat{\lambda}_{i} \ldots \lambda_{t}\right\}$.

Conversely, it is easily seen from the above arguments that if

$$
\left\{x_{j}^{(\lambda)} ; x_{k}^{\left(\lambda_{1} ; \lambda_{2}\right)} ; \ldots\right\}
$$

satisfies the relations (13) and (14), $x_{j}^{(\lambda)}$ is a solution of (7).
The propositions (I)-(III') are true for $\beta=0$. We shall now assume that the
propositions have already been shown for all numbers less than β and prove those for β by induction. Then the rank of the module generated by

$$
\Re_{k}^{(\beta-\lambda, \mu)} \quad(\mu=1, \ldots, \beta-\lambda ; k=1, \ldots, l(\beta-\lambda-\mu))
$$

is equal to $l(\beta-\lambda)-l^{*}(\beta-\lambda)$. Fix a basis for each $\lambda(1 \leqslant \lambda \leqslant \beta)$ that contains $\Re^{(\beta-\lambda, \beta-\lambda)}$, and set

$$
\begin{equation*}
x_{k}^{\left(\lambda_{1} \ldots \lambda_{t}-1 ; \lambda_{t}\right)}=0 \tag{15}
\end{equation*}
$$

when

$$
\mathfrak{R}_{k}^{\left(\beta-\lambda_{2}-\ldots-\lambda_{t}-\lambda_{1}, \lambda_{t}\right)}
$$

is not contained in the fixed basis. Then the systems of coefficients which satisfy the relations (13), (14), and (15) form a module isomorphic to the module of the solutions of (7), and hence it is sufficient to prove that the rank of this module is equal to

$$
\sum_{\lambda=1}^{\beta} l(\beta-\lambda)-\left(l(\beta)-l^{*}(\beta)\right) .
$$

Lemma. Define the linear forms f, g, and h in $x^{\left(\lambda_{2} \ldots \lambda_{t} ; \mu\right)}$ as follows:
(i) for $\lambda_{1}+\ldots+\lambda_{t}=\beta$ we set

$$
f^{\left(\lambda_{1} \ldots \lambda_{t}\right)}(x)=\sum_{i}^{\prime} x^{\left(\lambda_{2} \ldots \hat{\lambda}_{i} \ldots \lambda_{t} ; \lambda_{i}\right)},
$$

(ii) for $\lambda_{1}+\ldots+\lambda_{t}<\beta$ we set
$f_{j}^{\left(\lambda_{t} \ldots \lambda_{t}\right)}(x)=\sum_{i}^{\prime} x_{j}^{\left(\lambda_{1} \ldots \hat{\lambda}_{i} \ldots \lambda_{t} ; \lambda_{i}\right)}-\sum_{\mu} \sum_{k} x_{k}^{\left(\lambda_{t} \ldots \lambda_{t} ; \mu_{r}\right.}\left(\alpha_{j}^{\left(\beta-\lambda_{1} \ldots-\lambda_{t}\right)} ; \alpha_{k}^{\left(\beta-\lambda_{1} \ldots \ldots-\lambda_{i}-\mu\right)}\right) ;$
(iii) when $1 \leqslant \lambda_{1}+\ldots+\lambda_{t-1} \leqslant \beta-1$ and

$$
\mathfrak{R}_{j}^{\left(\beta-\lambda_{1}-\ldots-\lambda_{t}-1, \lambda_{t}\right)}
$$

is not contained in a fixed basis we set

$$
g_{j}^{\left(\lambda_{1} \ldots \lambda_{t-1} ; \lambda_{t}\right)}(x)=x_{j}^{\left(\lambda_{1} \ldots \lambda_{t-s} ; \lambda_{t}\right)},
$$

(iv) for $\Re^{(\beta ; \lambda)}$ which is not contained in a fixed basis, we set

$$
h_{k}^{(\lambda)}(x)=x_{k}^{(\lambda)} .
$$

Then the linear independence of f and g, and that of f, g, andh are both equivalent to the propositions (I)-(III'), under the assumption that the propositions (I)-(II') are true for all numbers less than β..

Proof. We denote by A, B, C, and D the numbers of

$$
x_{j}^{\left(\lambda_{1} \ldots \lambda_{t-1} ; \lambda_{t}\right)}, f_{j}^{\left(\lambda_{1} \ldots \lambda_{t}\right)}, g_{j}^{\left(\lambda_{1} \ldots \lambda_{t--} ; \lambda_{t}\right)}, h_{k}^{(\lambda)}
$$

respectively, and first compute A, B, and C.
(a) Computation of A. The number of

$$
x_{j}^{\left(\lambda_{1} \ldots \lambda_{t-1} ; \lambda_{t}\right)}
$$

with $\lambda_{1}+\ldots+\lambda_{i}=\lambda$ is equal to

$$
l(\beta-\lambda)\left\{\sum_{\mu=1}^{\lambda} k(\lambda-\mu)\right\},
$$

and hence

$$
\begin{equation*}
A=\sum_{\lambda=1}^{\beta} \sum_{\mu=1}^{\lambda} l(\beta-\lambda) k(\lambda-\mu) . \tag{16}
\end{equation*}
$$

(b) Computation of B. The number of

$$
f_{j}^{\left(\lambda_{1} \ldots \lambda_{t}\right)}
$$

with $\lambda_{1}+\ldots+\lambda_{t}=\lambda$ is equal to $l(\beta-\lambda) k(\lambda)$, and hence

$$
B=\sum_{\lambda=1}^{\beta} k(\lambda) l(\beta-\lambda)
$$

(c) Computation of C. The number of

$$
g_{j}^{\left(\lambda_{1} \ldots \lambda_{t}-1 ; \lambda_{t}\right)}
$$

with $\lambda_{1}+\ldots+\lambda_{t-1}=\lambda(1 \leqslant \lambda \leqslant \beta-1)$ is equal to

$$
k(\lambda)\left\{\sum_{\mu=1}^{\beta-\lambda} l(\beta-\lambda-\mu)-l(\beta-\lambda)+l^{*}(\beta-\lambda)\right\},
$$

and hence
(17) $C=\sum_{\lambda=1}^{\beta-1} \sum_{\mu=1}^{\beta-\lambda} k(\lambda) l(\beta-\lambda-\mu)-\sum_{\lambda=1}^{\beta-1} k(\lambda) l(\beta-\lambda)+\sum_{\lambda=1}^{\beta-1} k(\lambda) l^{*}(\beta-\lambda)$
$=\sum_{\lambda=2}^{\beta} \sum_{\mu=1}^{\lambda-1} k(\lambda-\mu) l(\beta-\lambda)-\sum_{\lambda=1}^{\beta-1} k(\lambda) l(\beta-\lambda)+\sum_{\lambda=1}^{\beta-1} k(\lambda) l^{*}(\beta-\lambda)$.
From these computations we have
(18) $A-(B+C)=l(\beta-1) k(0)+\sum_{\lambda=2}^{\beta} l(\beta-\lambda) k(0)-l(0) k(\beta)$
$-\sum_{\lambda=1}^{\beta-1} l^{*}(\beta-\lambda) k(\lambda)$
$=\sum_{\lambda=1}^{\beta} l(\beta-\lambda)-\left(l(\beta)-l^{*}(\beta)\right)$.
It is easily seen that

$$
l(\beta)-l^{*}(\beta)=\sum_{\lambda-1}^{\beta} l^{*}(\beta-\lambda) k(\lambda)
$$

Assume now the linear independence of the linear forms f and g. Since the rank of the module consisting of all solutions of the system of linear equations

$$
\begin{equation*}
\left.f_{j}^{\left(\lambda_{1} \ldots \lambda_{t}\right)}(x)=0, \quad g_{j}^{\left(\lambda_{1} \ldots \lambda_{t}-1\right.} ; \lambda_{t}\right)(x)=0 \tag{19}
\end{equation*}
$$

coincides with that of the module of solutions of (7), and since f and g are linearly independent, the rank is equal to $A-(B+C)$; this proves the proposition (III^{\prime}) from (18).

Conversely, suppose that the propositions (I)-(III') are true. Then from the proposition (II), D is equal to

$$
\sum_{\lambda=1}^{\beta} l(\beta-\lambda)-\left(l(\beta)-l^{*}(\beta)\right)
$$

It is easily seen that the system of linear equations (19) and $h_{j}^{(\lambda)}(x)=0$ has only the trivial solution. Since $A-(B+C+D)=0, f, g$, and h are linearly independent.

By the lemma and the hypothesis of induction, f, g, and h for weight λ less than β are linearly independent. We now prove the linear independence of f and g for weight β.

Let

$$
\begin{equation*}
\sum a_{i}^{\left(\lambda_{1} \ldots \lambda_{t}\right)} f_{i}^{\left(\lambda_{1} \ldots \lambda_{t}\right)}(x)+\sum b_{j}^{\left(\mu_{1} \ldots \mu_{s}-1 ; \mu_{t}\right)} g_{j}^{\left(\mu_{1} \ldots \mu_{t}-\mu_{1} ; \mu_{t}\right)}(x)=0 \tag{20}
\end{equation*}
$$

be a linear relation among f and g. The coefficient of $x_{j}^{(\lambda)}$ in the left-hand side is equal to $a_{j}^{(\lambda)}$ and hence $a_{j}^{(\lambda)}=0$. Take a $\lambda(1 \leqslant \lambda \leqslant \beta-1)$ and set

$$
x_{j}^{\left(\lambda \mu_{1} \ldots \mu_{t-1} ; \mu_{t}\right)}=y_{j}^{\left(\mu_{1} \ldots \mu_{t-1} ; \mu_{t}\right)}, \quad x_{j}^{\left(\lambda_{1} \ldots \lambda_{t-1} ; \lambda_{t}\right)}=0
$$

when $\left\{\lambda_{1} \ldots \lambda_{t-1}\right\}$ does not contain λ. Then

$$
f_{j}^{\left(\lambda \mu_{1} \ldots \mu_{t}\right)}(x), \quad g_{j}^{\left(\lambda \mu_{1} \ldots \mu_{t-1} ; \mu_{t}\right)}(x)
$$

are transferred to the linear forms, f, g, and h in

$$
y_{j}^{\left(\mu_{1} \ldots \mu_{t-1} ; \mu_{t}\right)}
$$

in the case of weight $\beta-\lambda$, and (20) becomes a linear relation among these linear forms. Thus it follows that

$$
a_{j}^{\left(\lambda \mu_{1} \ldots \mu_{t}\right)}=0, \quad b_{k}^{\left(\lambda \mu_{1} \ldots \mu_{t-1} ; \mu_{t}\right)}=0
$$

for any λ, and

$$
f_{j}^{\left(\lambda_{1} \ldots \lambda_{t}\right)}(x), \quad g_{k}^{\left(\lambda_{1} \ldots \lambda_{t}-1 ; \lambda_{t}\right)}(x)
$$

are linearly independent. This proves the propositions (I)-(III') by the lemma.

References

1. R. Brauer and C. Nesbitt, On the modular representations of groups of finite order, University of Toronto Studies, Math. Ser., 4 (1937).
2. - On the modular characters of groups, Ann. Math., 42 (1941), 556-590.
3. R. Brauer and G. de B. Robinson, On a conjecture by Nakayama, Trans. Royal Soc. Canada, Sec. III, 40 (1947), 11-25.
4. J. H. Chung, Modular representations of the symmetric group, Can. J. Math., 3 (1951), 309-327.
5. D. E. Littlewood, Modular representations of symmetric groups, Proc. Royal Soc. London (A), 209 (1951), 333-352.
6. F. D. Murnaghan, On the representations of the symmetric group, Amer. J. Math., 59 (1937), 437-488.
7. T. Nakayama, Some modular properties of irreducible representations of a symmetric group I, II, Jap. J. Math., 17 (1948), 165-184, 277-294.
8. T. Nakayama and M. Osima, Note on blocks of symmetric group, Nagoya Math. J., \mathscr{Z} (1951), 111-117.
9. M. Osima, On some character relations of symmetric groups, Okayama Math. J., 1 (1952), 63-68.
10. -, Some remarks on the characters of the symmetric groups, Can. J. Math., 5 (1953).
11. G. de B. Robinson, On the modular representations of the symmetric group, Proc. Nat. Acad. Sci., 38 (1952).
12. On a conjecture by J. H. Chung, Can. J. Math. 4 (1952), 373-380.
13. R. A. Staal, Star diagrams and the symmetric group, Can. J. Math., $2(1950), 79-92$.
14. R. M. Thrall and G. de B. Robinson, Supplement to a paper by G. de B. Robinson, Amer. J. Math., 73 (1951), 721-724.
15. H. Weyl, The classical groups (Princeton, 1939).

Osaka University

