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Abstract

For n ∈ Z and A ⊆ Z, define rA(n) and δA(n) by rA(n) = #{(a1, a2) ∈ A2 : n = a1 + a2, a1 ≤ a2} and
δA(n) = #{(a1, a2) ∈ A2 : n = a1 − a2}. We call A a unique representation bi-basis if rA(n) = 1 for all n ∈ Z
and δA(n) = 1 for all n ∈ Z\{0}. In this paper, we prove that there exists a unique representation bi-basis A
such that lim supx→∞ A(−x, x)/

√
x ≥ 1/

√
2.
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1. Introduction

For sets A, B of integers and any integer c, we define the sets

A + B = {a + b : a ∈ A, b ∈ B}, A − B = {a − b : a ∈ A, b ∈ B}

and the translations

c + A = {c + a : a ∈ A}, c − A = {c − a : a ∈ A}.

For n ∈ Z and A ⊆ Z, let

rA(n) = #{(a1, a2) ∈ A2 : n = a1 + a2, a1 ≤ a2},

δA(n) = #{(a1, a2) ∈ A2 : n = a1 − a2}.

The counting function for the set A is A(y, x) = #{a ∈ A : y ≤ a ≤ x}.
A set B of integers is called a Sidon set if rB(n) ≤ 1 for all n ∈ Z. A set A of integers

is called an additive basis of Z if rA(n) ≥ 1 for all n ∈ Z, and a unique representation
basis if rA(n) = 1 for all n ∈ Z. A set A of integers is called a unique representation
bi-basis of Z if rA(n) = 1 for all n ∈ Z and δA(n) = 1 for all n ∈ Z\{0}.

In 2003, Nathanson [5] proved that a unique representation basis of Z can be
arbitrarily sparse, but it remains open how dense they can be. Nathanson [6] considered
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similar problems for asymptotic bases. In 2007, Chen [1] proved that for any ε > 0,
there exists a unique representation basis A of Z such that A(−x, x) ≥ x1/2−ε for
infinitely many positive integers x. In 2010, Lee [4] extended this result to the existence
of such bases with arbitrary prescribed representation function. In 2011, the present
author [7] proved that there exist a real number c > 0 and an asymptotic basis A
with prescribed representation function such that A(−x, x) ≥ c

√
x for infinitely many

positive integers x. In 2013, Cilleruelo and Nathanson [3] proved that the problem of
finding a dense set of integers with a prescribed representation function f of order h
and lim inf |n|→∞ f (n) ≥ g is ‘equivalent’ to the classical problem of finding dense Bh[g]
sequences of positive integers. In 2014, Xiong and the present author [8] constructed
a unique representation bi-basis of Z whose growth is logarithmic.

In this paper, we obtain the following result.

Theorem 1.1. There exists a unique representation bi-basis A of Z such that

lim sup
x→∞

A(−x, x)
√

x
≥

1
√

2
.

2. Lemmas

Lemma 2.1 [1, Lemma 1]. Let A be a nonempty finite set of integers with rA(n) ≤ 1 for
all n ∈ Z and 0 < A. If m is an integer with rA(m) = 0, then there exists a finite set B
of integers such that A ⊆ B, rB(n) ≤ 1 for all n ∈ Z, rB(m) = 1 and 0 < B.

Lemma 2.2. Let A be a nonempty finite set of integers satisfying rA(n) ≤ 1 for all n ∈ Z,
δA(n) ≤ 1 for all n ∈ Z\{0} and 0 < A. If u and v are integers with rA(u) = δA(v) = 0,
then there exists a finite set B of integers such that A ⊆ B, rB(n) ≤ 1 for all n ∈ Z,
δB(n) ≤ 1 for all n ∈ Z\{0}, rB(u) = δB(v) = 1 and 0 < B.

Proof. Since A , ∅, we have v , 0. Let b = max{|a| : a ∈ A} and choose positive
integers c and d such that

c > 4b + 2|u| + |v|, d > 3c + 2|u| + |v|.

Put
B = A ∪ {u + c,−c, d, v + d}.

Then 0 < B and

B + B = S ∪ (A + A) ∪ (u + c + A) ∪ (−c + A) ∪ (d + A) ∪ (v + d + A),
B − B = D ∪ (A − A) ∪ ±(u + c − A) ∪ ±(c + A) ∪ ±(d − A) ∪ ±(v + d − A),

where

S = {2(d + v), 2d + v, 2d, u + v + c + d, u + c + d, v + d − c, d − c, 2(u + c), u,−2c},

D = {±(v + c + d),±(c + d),±(d − c + v − u),±(d − c − u),±(u + 2c),±v}.
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First, we claim that rB(n) ≤ 1 for all n ∈ Z and rB(u) = 1. Observe that

A + A ⊆ [−2b, 2b], −c + A ⊆ [−c − b,−3b − 2|u| − |v|),
u + c + A ⊆ (3b + |u| + |v|, c + b + u],

d + A ⊆ [d − b, d + b], v + d + A ⊆ [d + v − b, d + b + v].

Moreover, (d + A) ∩ (v + d + A) = ∅. In fact, if (d + A) ∩ (v + d + A) , ∅, then there
are a, a′ ∈ A such that d + a = v + d + a′ and thus v = a − a′, which contradicts the
hypothesis that δA(v) = 0. Since −2c < −c − b,

min{2(d + v), 2d + v, 2d} > max{u + v + c + d, u + c + d},
min{u + v + c + d, u + c + d} > max{d + b, d + b + v},

c + b + u < 2(u + c) < v + d − c < min{d − b, d + v − b},
c + b + u < 2(u + c) < d − c < min{d − b, d + v − b}.

Hence, the sets
S , A + A, u + c + A,−c + A, v + d + A, d + A

are pairwise disjoint. By the hypothesis, if n ∈ A + A, then rB(n) = rA(n) = 1. Moreover,
since

u + c + A,−c + A, v + d + A, d + A

are translations, if n belongs to one of these four sets, then rB(n) = 1. Consequently,
rB(n) ≤ 1 for all n ∈ Z and rB(u) = 1.

Second, we claim that δB(n) ≤ 1 for all n ∈ Z\{0} and δB(v) = 1. In fact, we have
A − A ⊆ [−2b, 2b] and

u + c − A ⊆ (3b + |u| + |v|, c + b + u], −u − c + A ⊆ [−c − b − u,−3b − |u| − |v|),
c + A ⊆ (3b + 2|u| + |v|, c + b], −c − A ⊆ [−c − b,−3b − 2|u| − |v|),

d − A ⊆ [d − b, d + b], −d + A ⊆ [−d − b,−d + b],
v + d − A ⊆ [d + v − b, d + b + v], −v − d + A ⊆ [−d − b − v,−d + b − v].

Since δA(v) = 0 and rA(u) = 0,

(d − A) ∩ (v + d − A) = ∅, (−d + A) ∩ (−v − d + A) = ∅,

(u + c − A) ∩ (c + A) = ∅, (−u − c + A) ∩ (−c − A) = ∅.

Moreover,

max{c + b + u, c + b} < u + 2c < d − c − u < min{d − b, d − b + v},
max{c + b + u, c + b} < u + 2c < d − c − u + v < min{d − b, d − b + v},

max{d + b, d + b + v} < min{v + c + d, d + c}.

Hence, the sets

A − A,D,±(u + c − A),±(c + A),±(d − A),±(v + d − A)
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are pairwise disjoint. By the hypothesis, if n(, 0) ∈ A − A, then δB(n) = δA(n) = 1.
Moreover, if n(, 0) belongs to one of the sets

±(u + c − A),±(c + A),±(d − A),±(v + d − A),
then δB(n) = 1. Consequently, δB(n) ≤ 1 for all n ∈ Z\{0} and δB(v) = 1. �

Lemma 2.3 [2, Lemma 3.1]. If C1 and C2 are Sidon sets such that
(Ci −Ci) ∩ (C j −C j) = {0}, (Ci + Ci) ∩ (C j + C j) = ∅ and (Ci + Ci −Ci) ∩C j = ∅

for i , j, then C1 ∪C2 is a Sidon set.

Lemma 2.4 [2, Lemma 3.2]. For each odd prime p, there is a Sidon set Bp such that:

(i) Bp ⊆ [1, p2 − p];
(ii) (Bp − Bp) ∩ [−

√
p,
√

p] = {0};
(iii) |Bp| > p − 2

√
p.

3. Proof of Theorem 1.1
We shall use induction to construct an ascending sequence A1 ⊆ A2 ⊆ · · · of finite

sets of integers such that for any positive integer k:

(i) rAk (n) ≤ 1 for all n ∈ Z, δAk (n) ≤ 1 for all n ∈ Z\{0};
(ii) rA2k (n) = 1 for all n ∈ Z with |n| ≤ k, δA2k (n) = 1 for all n ∈ Z\{0} with |n| ≤ k + 2;
(iii) 0 < Ak.

Let A1 = {−1, 1, 2}. Then
A1 + A1 = {0, 1, 2,−2, 3, 4}, A1 − A1 = {0,±1,±2,±3}.

Suppose that we have constructed A1,A2, . . . ,A2k−1. Let u be an integer with minimum
absolute value and rA2k−1 (u) = 0. Let

v = min{n > 0 : n < A2k−1 − A2k−1}.

Then δA2k−1 (v) = δA2k−1 (−v) = 0.
By Lemma 2.2, there exists a finite set B of integers such that A2k−1 ⊆ B, rB(n) ≤ 1

for all n ∈ Z, δB(n) ≤ 1 for all n ∈ Z\{0}, rB(u) = δB(v) = 1 and 0 < B. If rB(−u) = 0,
then by Lemma 2.1 there exists a finite set B′ of integers such that B ⊆ B′, rB′(n) ≤ 1
for all n ∈ Z, rB′(−u) = 1 and 0 < B′. Now let

A2k =

{
B if rB(−u) , 0,
B′ if rB(−u) = 0.

If k = 1, then |u| = 1 = k and v = 4 > k + 2. If k > 1, since A2k−2 ⊆ A2k−1, we have
rA2k−2 (u) = 0 and δA2k−2 (v) = 0. By the inductive hypothesis and (ii), we have |u| ≥ k and
v ≥ k + 2. Thus, A2k satisfies (i), (ii), (iii) and A2k−1 ⊆ A2k.

Let xk = max{|a| : a ∈ A2k} and let pk denote the least prime greater than 4x2
k . By

Lemma 2.4, there exists a Sidon set Bpk such that:

(a) Bpk ⊆ [1, p2
k − pk];

(b) (Bpk − Bpk ) ∩ [−
√

pk,
√

pk] = {0};
(c) |Bpk | > pk − 2

√
pk.
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For k ≥ 1, let
A2k+1 = A2k ∪ (Bpk + p2

k + xk).

Then 0 < A2k+1. Now we shall prove that A2k+1 is a Sidon set for every k ≥ 1.
By the construction, A2k and Bpk + p2

k + xk are Sidon sets. We shall apply
Lemma 2.3 with C1 = A2k and C2 = Bpk + p2

k + xk to show that

C1 ∪C2 = A2k ∪ (Bpk + p2
k + xk)

is a Sidon set. Note that

C1 −C1 ⊆ [−2xk, 2xk] ⊆ [−
√

pk,
√

pk], C2 −C2 = Bpk − Bpk .

By (b), (Bpk − Bpk ) ∩ [−
√

pk,
√

pk] = {0}. Thus,

(C1 −C1) ∩ (C2 −C2) = {0}.

If x ∈ C2 + C2, then x ≥ 2(p2
k + xk + 1) > 2xk, but C1 + C1 ⊆ [−2xk, 2xk]. Thus,

(C1 + C1) ∩ (C2 + C2) = ∅.

If x ∈ (C1 + C1 −C1), then x ≤ 3xk, but, if x ∈ C2, then x > p2
k + xk > 3xk. Thus,

(C1 + C1 −C1) ∩C2 = ∅.

If x ∈ (C2 + C2 − C2), then x ≥ 2(p2
k + xk + 1) − (2p2

k − pk + xk) = pk + xk + 2 and, if
x ∈ C1, then x ≤ xk. Thus,

(C2 + C2 −C2) ∩C1 = ∅.

Hence, A2k+1 = A2k ∪ (Bpk + p2
k + xk) is a Sidon set.

Let

A =

∞⋃
k=1

Ak.

By (ii) and A2k−1 ⊆ A2k, we have rA(n) = 1 for all n ∈ Z, δA(n) = 1 for all n ∈ Z\{0}.
That is, A is a unique representation bi-basis of Z. Moreover, by the construction of A,
(a), (b) and (c),

lim sup
x→∞

A(−x, x)
√

x
≥ lim sup

k→∞

A(1, 2p2
k − pk + xk)√

2p2
k − pk + xk

≥ lim sup
k→∞

|Bpk |√
2p2

k − pk + xk

≥ lim sup
k→∞

pk − 2
√

pk√
2p2

k − pk +
√

pk/2

=
1
√

2
.

This completes the proof of Theorem 1.1.
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