A UNIQUE REPRESENTATION BI-BASIS FOR THE INTEGERS. II

MIN TANG

(Received 6 September 2015; accepted 25 October 2015; first published online 8 January 2016)

Abstract

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, define $r_{A}(n)$ and $\delta_{A}(n)$ by $r_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}+a_{2}, a_{1} \leq a_{2}\right\}$ and $\delta_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}-a_{2}\right\}$. We call A a unique representation bi-basis if $r_{A}(n)=1$ for all $n \in \mathbb{Z}$ and $\delta_{A}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$. In this paper, we prove that there exists a unique representation bi-basis A such that $\lim \sup _{x \rightarrow \infty} A(-x, x) / \sqrt{x} \geq 1 / \sqrt{2}$.

2010 Mathematics subject classification: primary 11B13; secondary 11B34.
Keywords and phrases: unique representation bi-basis, Sidon set.

1. Introduction

For sets A, B of integers and any integer c, we define the sets

$$
A+B=\{a+b: a \in A, b \in B\}, \quad A-B=\{a-b: a \in A, b \in B\}
$$

and the translations

$$
c+A=\{c+a: a \in A\}, \quad c-A=\{c-a: a \in A\} .
$$

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let

$$
\begin{gathered}
r_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}+a_{2}, a_{1} \leq a_{2}\right\}, \\
\delta_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}-a_{2}\right\} .
\end{gathered}
$$

The counting function for the set A is $A(y, x)=\#\{a \in A: y \leq a \leq x\}$.
A set B of integers is called a Sidon set if $r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}$. A set A of integers is called an additive basis of \mathbb{Z} if $r_{A}(n) \geq 1$ for all $n \in \mathbb{Z}$, and a unique representation basis if $r_{A}(n)=1$ for all $n \in \mathbb{Z}$. A set A of integers is called a unique representation bi-basis of \mathbb{Z} if $r_{A}(n)=1$ for all $n \in \mathbb{Z}$ and $\delta_{A}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$.

In 2003, Nathanson [5] proved that a unique representation basis of \mathbb{Z} can be arbitrarily sparse, but it remains open how dense they can be. Nathanson [6] considered

[^0]similar problems for asymptotic bases. In 2007, Chen [1] proved that for any $\varepsilon>0$, there exists a unique representation basis A of \mathbb{Z} such that $A(-x, x) \geq x^{1 / 2-\varepsilon}$ for infinitely many positive integers x. In 2010, Lee [4] extended this result to the existence of such bases with arbitrary prescribed representation function. In 2011, the present author [7] proved that there exist a real number $c>0$ and an asymptotic basis A with prescribed representation function such that $A(-x, x) \geq c \sqrt{x}$ for infinitely many positive integers x. In 2013, Cilleruelo and Nathanson [3] proved that the problem of finding a dense set of integers with a prescribed representation function f of order h and $\liminf \operatorname{ln|\rightarrow \infty } f(n) \geq g$ is 'equivalent' to the classical problem of finding dense $B_{h}[g]$ sequences of positive integers. In 2014, Xiong and the present author [8] constructed a unique representation bi-basis of \mathbb{Z} whose growth is logarithmic.

In this paper, we obtain the following result.
Theorem 1.1. There exists a unique representation bi-basis A of \mathbb{Z} such that

$$
\limsup _{x \rightarrow \infty} \frac{A(-x, x)}{\sqrt{x}} \geq \frac{1}{\sqrt{2}} .
$$

2. Lemmas

Lemma 2.1 [1, Lemma 1]. Let A be a nonempty finite set of integers with $r_{A}(n) \leq 1$ for all $n \in \mathbb{Z}$ and $0 \notin A$. If m is an integer with $r_{A}(m)=0$, then there exists a finite set B of integers such that $A \subseteq B, r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}, r_{B}(m)=1$ and $0 \notin B$.

Lemma 2.2. Let A be a nonempty finite set of integers satisfying $r_{A}(n) \leq 1$ for all $n \in \mathbb{Z}$, $\delta_{A}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$ and $0 \notin A$. If u and v are integers with $r_{A}(u)=\delta_{A}(v)=0$, then there exists a finite set B of integers such that $A \subseteq B, r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}$, $\delta_{B}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}, r_{B}(u)=\delta_{B}(v)=1$ and $0 \notin B$.

Proof. Since $A \neq \emptyset$, we have $v \neq 0$. Let $b=\max \{|a|: a \in A\}$ and choose positive integers c and d such that

$$
c>4 b+2|u|+|v|, \quad d>3 c+2|u|+|v| .
$$

Put

$$
B=A \cup\{u+c,-c, d, v+d\} .
$$

Then $0 \notin B$ and

$$
\begin{gathered}
B+B=S \cup(A+A) \cup(u+c+A) \cup(-c+A) \cup(d+A) \cup(v+d+A), \\
B-B=D \cup(A-A) \cup \pm(u+c-A) \cup \pm(c+A) \cup \pm(d-A) \cup \pm(v+d-A),
\end{gathered}
$$

where

$$
\begin{aligned}
S= & \{2(d+v), 2 d+v, 2 d, u+v+c+d, u+c+d, v+d-c, d-c, 2(u+c), u,-2 c\}, \\
& D=\{ \pm(v+c+d), \pm(c+d), \pm(d-c+v-u), \pm(d-c-u), \pm(u+2 c), \pm v\} .
\end{aligned}
$$

First, we claim that $r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}$ and $r_{B}(u)=1$. Observe that

$$
\begin{gathered}
A+A \subseteq[-2 b, 2 b], \quad-c+A \subseteq[-c-b,-3 b-2|u|-|v|) \\
u+c+A \subseteq(3 b+|u|+|v|, c+b+u] \\
d+A \subseteq[d-b, d+b], \quad v+d+A \subseteq[d+v-b, d+b+v] .
\end{gathered}
$$

Moreover, $(d+A) \cap(v+d+A)=\varnothing$. In fact, if $(d+A) \cap(v+d+A) \neq \varnothing$, then there are $a, a^{\prime} \in A$ such that $d+a=v+d+a^{\prime}$ and thus $v=a-a^{\prime}$, which contradicts the hypothesis that $\delta_{A}(v)=0$. Since $-2 c<-c-b$,

$$
\begin{gathered}
\min \{2(d+v), 2 d+v, 2 d\}>\max \{u+v+c+d, u+c+d\} \\
\min \{u+v+c+d, u+c+d\}>\max \{d+b, d+b+v\} \\
c+b+u<2(u+c)<v+d-c<\min \{d-b, d+v-b\} \\
c+b+u<2(u+c)<d-c<\min \{d-b, d+v-b\}
\end{gathered}
$$

Hence, the sets

$$
S, A+A, u+c+A,-c+A, v+d+A, d+A
$$

are pairwise disjoint. By the hypothesis, if $n \in A+A$, then $r_{B}(n)=r_{A}(n)=1$. Moreover, since

$$
u+c+A,-c+A, v+d+A, d+A
$$

are translations, if n belongs to one of these four sets, then $r_{B}(n)=1$. Consequently, $r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}$ and $r_{B}(u)=1$.

Second, we claim that $\delta_{B}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$ and $\delta_{B}(v)=1$. In fact, we have $A-A \subseteq[-2 b, 2 b]$ and

$$
\begin{aligned}
u+c-A \subseteq(3 b+|u|+|v|, c+b+u], & -u-c+A \subseteq[-c-b-u,-3 b-|u|-|v|), \\
c+A \subseteq(3 b+2|u|+|v|, c+b], & -c-A \subseteq[-c-b,-3 b-2|u|-|v|), \\
d-A \subseteq[d-b, d+b], & -d+A \subseteq[-d-b,-d+b], \\
v+d-A \subseteq[d+v-b, d+b+v], & -v-d+A \subseteq[-d-b-v,-d+b-v] .
\end{aligned}
$$

Since $\delta_{A}(v)=0$ and $r_{A}(u)=0$,

$$
\left.\left.\begin{array}{rlrl}
(d-A) \cap(v+d-A) & =\varnothing, & & (-d+A) \cap(-v-d+A)
\end{array}\right)=\varnothing, ~ 子 \begin{array}{rl}
(u+c-A) \cap(c+A) & =\varnothing, \\
& (-u-c+A) \cap(-c-A)
\end{array}\right)=\varnothing .
$$

Moreover,

$$
\begin{gathered}
\max \{c+b+u, c+b\}<u+2 c<d-c-u<\min \{d-b, d-b+v\} \\
\max \{c+b+u, c+b\}<u+2 c<d-c-u+v<\min \{d-b, d-b+v\} \\
\max \{d+b, d+b+v\}<\min \{v+c+d, d+c\}
\end{gathered}
$$

Hence, the sets

$$
A-A, D, \pm(u+c-A), \pm(c+A), \pm(d-A), \pm(v+d-A)
$$

are pairwise disjoint. By the hypothesis, if $n(\neq 0) \in A-A$, then $\delta_{B}(n)=\delta_{A}(n)=1$. Moreover, if $n(\neq 0)$ belongs to one of the sets

$$
\pm(u+c-A), \pm(c+A), \pm(d-A), \pm(v+d-A)
$$

then $\delta_{B}(n)=1$. Consequently, $\delta_{B}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$ and $\delta_{B}(v)=1$.
Lemma 2.3 [2, Lemma 3.1]. If C_{1} and C_{2} are Sidon sets such that
$\left(C_{i}-C_{i}\right) \cap\left(C_{j}-C_{j}\right)=\{0\},\left(C_{i}+C_{i}\right) \cap\left(C_{j}+C_{j}\right)=\varnothing \quad$ and $\quad\left(C_{i}+C_{i}-C_{i}\right) \cap C_{j}=\varnothing$ for $i \neq j$, then $C_{1} \cup C_{2}$ is a Sidon set.

Lemma 2.4 [2, Lemma 3.2]. For each odd prime p, there is a Sidon set B_{p} such that:
(i) $\quad B_{p} \subseteq\left[1, p^{2}-p\right]$;
(ii) $\quad\left(B_{p}-B_{p}\right) \cap[-\sqrt{p}, \sqrt{p}]=\{0\}$;
(iii) $\left|B_{p}\right|>p-2 \sqrt{p}$.

3. Proof of Theorem 1.1

We shall use induction to construct an ascending sequence $A_{1} \subseteq A_{2} \subseteq \cdots$ of finite sets of integers such that for any positive integer k :
(i) $\quad r_{A_{k}}(n) \leq 1$ for all $n \in \mathbb{Z}, \delta_{A_{k}}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$;
(ii) $r_{A_{2 k}}(n)=1$ for all $n \in \mathbb{Z}$ with $|n| \leq k, \delta_{A_{2 k}}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$ with $|n| \leq k+2$;
(iii) $0 \notin A_{k}$.

Let $A_{1}=\{-1,1,2\}$. Then

$$
A_{1}+A_{1}=\{0,1,2,-2,3,4\}, \quad A_{1}-A_{1}=\{0, \pm 1, \pm 2, \pm 3\} .
$$

Suppose that we have constructed $A_{1}, A_{2}, \ldots, A_{2 k-1}$. Let u be an integer with minimum absolute value and $r_{A_{2 k-1}}(u)=0$. Let

$$
v=\min \left\{n>0: n \notin A_{2 k-1}-A_{2 k-1}\right\} .
$$

Then $\delta_{A_{2 k-1}}(v)=\delta_{A_{2 k-1}}(-v)=0$.
By Lemma 2.2, there exists a finite set B of integers such that $A_{2 k-1} \subseteq B, r_{B}(n) \leq 1$ for all $n \in \mathbb{Z}, \delta_{B}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}, r_{B}(u)=\delta_{B}(v)=1$ and $0 \notin B$. If $r_{B}(-u)=0$, then by Lemma 2.1 there exists a finite set B^{\prime} of integers such that $B \subseteq B^{\prime}, r_{B^{\prime}}(n) \leq 1$ for all $n \in \mathbb{Z}, r_{B^{\prime}}(-u)=1$ and $0 \notin B^{\prime}$. Now let

$$
A_{2 k}=\left\{\begin{array}{l}
B \text { if } r_{B}(-u) \neq 0, \\
B^{\prime} \text { if } r_{B}(-u)=0
\end{array}\right.
$$

If $k=1$, then $|u|=1=k$ and $v=4>k+2$. If $k>1$, since $A_{2 k-2} \subseteq A_{2 k-1}$, we have $r_{A_{2 k-2}}(u)=0$ and $\delta_{A_{2 k-2}}(v)=0$. By the inductive hypothesis and (ii), we have $|u| \geq k$ and $v \geq k+2$. Thus, $A_{2 k}$ satisfies (i), (ii), (iii) and $A_{2 k-1} \subseteq A_{2 k}$.

Let $x_{k}=\max \left\{|a|: a \in A_{2 k}\right\}$ and let p_{k} denote the least prime greater than $4 x_{k}^{2}$. By Lemma 2.4, there exists a Sidon set $B_{p_{k}}$ such that:
(a) $\quad B_{p_{k}} \subseteq\left[1, p_{k}^{2}-p_{k}\right]$;
(b) $\left(B_{p_{k}}-B_{p_{k}}\right) \cap\left[-\sqrt{p_{k}}, \sqrt{p_{k}}\right]=\{0\}$;
(c) $\left|B_{p_{k}}\right|>p_{k}-2 \sqrt{p_{k}}$.

For $k \geq 1$, let

$$
A_{2 k+1}=A_{2 k} \cup\left(B_{p_{k}}+p_{k}^{2}+x_{k}\right) .
$$

Then $0 \notin A_{2 k+1}$. Now we shall prove that $A_{2 k+1}$ is a Sidon set for every $k \geq 1$.
By the construction, $A_{2 k}$ and $B_{p_{k}}+p_{k}^{2}+x_{k}$ are Sidon sets. We shall apply Lemma 2.3 with $C_{1}=A_{2 k}$ and $C_{2}=B_{p_{k}}+p_{k}^{2}+x_{k}$ to show that

$$
C_{1} \cup C_{2}=A_{2 k} \cup\left(B_{p_{k}}+p_{k}^{2}+x_{k}\right)
$$

is a Sidon set. Note that

$$
C_{1}-C_{1} \subseteq\left[-2 x_{k}, 2 x_{k}\right] \subseteq\left[-\sqrt{p_{k}}, \sqrt{p_{k}}\right], \quad C_{2}-C_{2}=B_{p_{k}}-B_{p_{k}} .
$$

By (b), $\left(B_{p_{k}}-B_{p_{k}}\right) \cap\left[-\sqrt{p_{k}}, \sqrt{p_{k}}\right]=\{0\}$. Thus,

$$
\left(C_{1}-C_{1}\right) \cap\left(C_{2}-C_{2}\right)=\{0\} .
$$

If $x \in C_{2}+C_{2}$, then $x \geq 2\left(p_{k}^{2}+x_{k}+1\right)>2 x_{k}$, but $C_{1}+C_{1} \subseteq\left[-2 x_{k}, 2 x_{k}\right]$. Thus,

$$
\left(C_{1}+C_{1}\right) \cap\left(C_{2}+C_{2}\right)=\varnothing .
$$

If $x \in\left(C_{1}+C_{1}-C_{1}\right)$, then $x \leq 3 x_{k}$, but, if $x \in C_{2}$, then $x>p_{k}^{2}+x_{k}>3 x_{k}$. Thus,

$$
\left(C_{1}+C_{1}-C_{1}\right) \cap C_{2}=\varnothing .
$$

If $x \in\left(C_{2}+C_{2}-C_{2}\right)$, then $x \geq 2\left(p_{k}^{2}+x_{k}+1\right)-\left(2 p_{k}^{2}-p_{k}+x_{k}\right)=p_{k}+x_{k}+2$ and, if $x \in C_{1}$, then $x \leq x_{k}$. Thus,

$$
\left(C_{2}+C_{2}-C_{2}\right) \cap C_{1}=\varnothing .
$$

Hence, $A_{2 k+1}=A_{2 k} \cup\left(B_{p_{k}}+p_{k}^{2}+x_{k}\right)$ is a Sidon set.
Let

$$
A=\bigcup_{k=1}^{\infty} A_{k} .
$$

By (ii) and $A_{2 k-1} \subseteq A_{2 k}$, we have $r_{A}(n)=1$ for all $n \in \mathbb{Z}, \delta_{A}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$. That is, A is a unique representation bi-basis of \mathbb{Z}. Moreover, by the construction of A, (a), (b) and (c),

$$
\begin{aligned}
\limsup _{x \rightarrow \infty} \frac{A(-x, x)}{\sqrt{x}} & \geq \limsup _{k \rightarrow \infty} \frac{A\left(1,2 p_{k}^{2}-p_{k}+x_{k}\right)}{\sqrt{2 p_{k}^{2}-p_{k}+x_{k}}} \\
& \geq \limsup _{k \rightarrow \infty} \frac{\mid B_{p_{k} \mid}}{\sqrt{2 p_{k}^{2}-p_{k}+x_{k}}} \\
& \geq \limsup _{k \rightarrow \infty} \frac{p_{k}-2 \sqrt{p_{k}}}{\sqrt{2 p_{k}^{2}-p_{k}+\sqrt{p_{k}} / 2}} \\
& =\frac{1}{\sqrt{2}} .
\end{aligned}
$$

This completes the proof of Theorem 1.1.

References

[1] Y. G. Chen, 'A problem on unique representation bases', European J. Combin. 28 (2007), 33-35.
[2] J. Cilleruelo and M. B. Nathanson, 'Perfect difference sets constructed from Sidon sets', Combinatorica 28 (2008), 401-414.
[3] J. Cilleruelo and M. B. Nathanson, 'Dense sets of integers with prescribed representation functions', European J. Combin. 34 (2013), 1297-1306.
[4] J. Lee, 'Infinitely often dense bases for the integers with a prescribed representation function', Integers 10 (2010), 299-307.
[5] M. B. Nathanson, 'Unique representation bases for integers', Acta Arith. 108 (2003), 1-8.
[6] M. B. Nathanson, 'Every function is the representation function of an additive basis for the integers', Port. Math. 62 (2005), 55-72.
[7] M. Tang, 'Dense sets of integers with a prescribed representation function', Bull. Aust. Math. Soc. 84 (2011), 40-43.
[8] R. Xiong and M. Tang, 'Unique representation bi-basis for the integers', Bull. Aust. Math. Soc. 89 (2014), 460-465.

MIN TANG, School of Mathematics and Computer Science,
Anhui Normal University, Wuhu 241003, China
e-mail: tmzzz2000@163.com

[^0]: This work was supported by the National Natural Science Foundation of China (Grant No. 11471017).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

