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Abstract

For n€Z and A C Z, define rq(n) and d4(n) by ra(n) = #{(a;,a2) € A’ :n=a; +a,a <ap) and
Sa(n) =#(a1,a) €A% :n=a; —a). Wecall A a unique representation bi-basis if r4(n) = 1 foralln € Z
and 54 (n) = 1 for all n € Z\{0}. In this paper, we prove that there exists a unique representation bi-basis A
such that lim sup,_,., A(—x, x)/ Vx> 1/ V2.
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1. Introduction
For sets A, B of integers and any integer ¢, we define the sets
A+B={a+b:acA,beB}, A-B={a—-b:acA,beB}
and the translations
c+A={c+a:a€A}, c—A={c—a:acA}.
ForneZand A C Z, let
ra(n) = #(ay,ay) €A® n=ay +ax,a, <a),
Sa(n) =#{(ar,an) € A’ :n=a, —ay).

The counting function for the set A is A(y,x) =#{la€ A:y <a < x}.

A set B of integers is called a Sidon set if rg(n) < 1 for all n € Z. A set A of integers
is called an additive basis of Z if r4(n) > 1 for all n € Z, and a unique representation
basis if ra(n) = 1 for all n € Z. A set A of integers is called a unique representation
bi-basis of Z if ra(n) = 1 for all n € Z and 5,(n) = 1 for all n € Z\{0}.

In 2003, Nathanson [5] proved that a unique representation basis of Z can be
arbitrarily sparse, but it remains open how dense they can be. Nathanson [6] considered
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similar problems for asymptotic bases. In 2007, Chen [1] proved that for any € > 0,
there exists a unique representation basis A of Z such that A(—x,x) > x'/>~* for
infinitely many positive integers x. In 2010, Lee [4] extended this result to the existence
of such bases with arbitrary prescribed representation function. In 2011, the present
author [7] proved that there exist a real number ¢ > 0 and an asymptotic basis A
with prescribed representation function such that A(—x, x) > ¢ v/x for infinitely many
positive integers x. In 2013, Cilleruelo and Nathanson [3] proved that the problem of
finding a dense set of integers with a prescribed representation function f of order A
and lim inf}, f(n) > g is ‘equivalent’ to the classical problem of finding dense Bj[g]
sequences of positive integers. In 2014, Xiong and the present author [8] constructed
a unique representation bi-basis of Z whose growth is logarithmic.
In this paper, we obtain the following result.

THeorREM 1.1. There exists a unique representation bi-basis A of Z such that

A(- 1
lim sup SN

e VR N2

2. Lemmas

Lemma 2.1 [1, Lemma 1]. Let A be a nonempty finite set of integers with ra(n) < 1 for
allneZ and 0 ¢ A. If m is an integer with ra(m) = 0, then there exists a finite set B
of integers such that A C B, rg(n) < 1 foralln € Z, rg(m) = 1 and 0 ¢ B.

Lemma 2.2. Let A be a nonempty finite set of integers satisfying ra(n) < 1 foralln € Z,
0a(n) <1 for all n € Z\{0} and 0 ¢ A. If u and v are integers with ra(u) = 64(v) =0,
then there exists a finite set B of integers such that A C B, rg(n) <1 for all n € Z,
o0p(n) < 1 forall n € Z\{0}, rg(u) = 65(v) =1 and 0 ¢ B.

Proor. Since A # (), we have v # 0. Let b = max{|a| : a € A} and choose positive
integers ¢ and d such that

c>4b +2ul + |v|, d>3c+2lul+ .

Put
B=AU{u+c,—c,d,v+d}.

Then O ¢ B and

B+B=SUA+AUu+c+A)U(-c+AUd+AUE+d+A),
B-B=DUA-A)Uzx(u+c—-A)Ux(c+A)Ux(d-A)Uzx(v+d-A),

where

S ={2d+v),2d +v,2d,u+v+c+du+c+d,v+d-c,d—c,2(u+c),u,—2c},
D={x(v+c+d),x(c+d),x(d-c+v—u),=(d—-c—u),x(u+2c), +v}.
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First, we claim that rg(n) < 1 for all n € Z and rg(u) = 1. Observe that

A+AC[-2b,2b], —c+AC[-c—b,—3b-2lul -],
u+c+AC@Bb+ul+v,c+b+ul,
d+ACd-b,d+b], v+d+AC[d+v—-b,d+b+v].
Moreover, (d+ A)N (v+d+ A) = 2. In fact, if (d + A) N (v + d + A) # @, then there
are a,a’ € A such that d + a =v +d + @’ and thus v = a — a’, which contradicts the
hypothesis that §4(v) = 0. Since —2¢ < —c — b,
min{2(d + v),2d + v,2d} > max{u + v+ c+d,u + c + d},
min{u+v+c+d,u+c+d}>max{d+b,d+b+v},
c+b+u<2u+c)<v+d-c<min{d - b,d +v — b},
c+b+u<2u+c)<d-c<min{d—-b,d +v - b}.

Hence, the sets
S,A+Au+c+A,—c+Av+d+Ad+A

are pairwise disjoint. By the hypothesis, if n € A + A, then rg(n) = r4(n) = 1. Moreover,
since
u+c+A,-c+Av+d+A,d+A

are translations, if n belongs to one of these four sets, then rg(n) = 1. Consequently,
rg(n) < 1forallneZand rg(u) = 1.

Second, we claim that g(n) < 1 for all n € Z\{0} and 65(v) = 1. In fact, we have
A—AC[-2b,2b] and

u+c—AC@Bb+ul+,c+b+u]l, -u—c+AC[-c—b-—u,-3b-ul-|v),
c+AC@Bb+2lul+v,c+b], —-c—AC[-c—b,-3b-2lul—v|),
d—AC[d-b,d+b], —-d+AC[-d-b,—d+Db],
v+d—-AC[d+v-b,d+b+v], -v—-d+AC[-d-b-v,—-d+b-v].

Since 64(v) = 0 and r4(u) =0,

d-ANwv+d-A)=02, (-d+AN(-v—-d+A)=a,
u+c—-A)N(c+A) =0, (-u—c+A)N(-c—-A)=0.

Moreover,

max{c+b+u,c+b}<u+2c<d-c—u<min{d-b,d - b+ v},
max{c+b+u,c+b}<u+2c<d-c—u+v<min{d-b,d—-b+v},
max{d +b,d+b+v} <minfv+c+d,d+ c}.

Hence, the sets

A-AD,x(u+c—-A),x(c+A),x(d-A),x(v+d-A)
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are pairwise disjoint. By the hypothesis, if n(# 0) € A — A, then d5(n) = 54(n) = 1.

Moreover, if n(# 0) belongs to one of the sets
+(u+c—A),x(c+A),x(d-A),x(v+d—-A),

then 65(n) = 1. Consequently, 65(n) < 1 for all n € Z\{0} and 65(v) = 1. O

Lemma 2.3 [2, Lemma 3.1]. If C; and C, are Sidon sets such that
(C;—Ci)ﬂ(Cj—C/-)={0},(Ci+C;)ﬂ(Cj+Cj)=® and (C,-+C,-—C,-)0Cj=®
fori# j, then C; U C; is a Sidon set.

Lemma 2.4 [2, Lemma 3.2]. For each odd prime p, there is a Sidon set B, such that:

(i) B,clLp*-pl
(i) (B, = Bp) N [=+/p, v/p] = {0}
(iii) |B,l > p—2+/p.

3. Proof of Theorem 1.1

We shall use induction to construct an ascending sequence A} C A, C -+ of finite
sets of integers such that for any positive integer k:

(1) ram <1forallneZ,da (n) <1 forall neZ\{0};
(i1) 7a,(n) =1forall n € Z with |n| < k, 04,,(n) = 1 for all n € Z\{0} with |n| <k +2;
(iii) 0 ¢ Ay.
Let A ={-1,1,2}. Then
Ar+A1={0,1,2,-2,3,4}, A, —A; ={0,%1,+2,£3}.
Suppose that we have constructed Aj, A, ...,Ay—1. Let u be an integer with minimum
absolute value and ry4,, () = 0. Let
v=min{n >0:n¢ Axy_1 — Ax_1}.
Then 64,, ,(v) = 64,,_,(=v) =0.

By Lemma 2.2, there exists a finite set B of integers such that Ay;_; € B, rp(n) < 1
for all n € Z, 6g(n) < 1 for all n € Z\{0}, rg(u) = 6g(v) =1 and 0 ¢ B. If rg(—u) =0,
then by Lemma 2.1 there exists a finite set B’ of integers such that BC B’, rgp(n) < 1
forallne€Z, rg(—u) =1 and 0 ¢ B’. Now let

Ao = B if rg(—u) # 0,
2 ZAB if rp(—u) = 0.
If k=1,then uy=1=kand v=4>k+2. If k> 1, since Ay_» C Ay_1, we have
T4y ,(u) = 0and d4,,,(v) = 0. By the inductive hypothesis and (ii), we have |u| > k and
v >k + 2. Thus, Ay satisfies (i), (ii), (iii) and Ay_; C Ay

Let x; = max{|a| : a € Ay} and let p; denote the least prime greater than 4x,f. By

Lemma 2.4, there exists a Sidon set B, such that:

(@ By, C[1,p} - pil;
(b) (Bpk - Bpk) N [—\/P_’ \/ITk] =1{0};
©) IByl> pr = 2+/P-
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Fork > 1, let
2
A1 = A U (B, + pj + Xp).

Then O ¢ Azr1. Now we shall prove that Ay, is a Sidon set for every k > 1.
By the construction, Ay and B, + p,% + x; are Sidon sets. We shall apply

Lemma 2.3 with C| = Ay and C = B, + pi + x; to show that
C1UCy =AU (B, + pi + xi)
is a Sidon set. Note that
Cy — Cy C[-2x%,2x¢) € [-v/prs Vpel, Co—Cr =B, — B),.
By (b), (B, — Bp,) N [=+/Pk, /Pr] = {0}. Thus,
(Ci =C)N(C =) = {0}
If xe Cy + Cy, then x > 2(p]% + x4+ 1) > 2x;, but C; + C; C [-2x, 2x¢]. Thus,
Cr+CHNCL+Cy) =02.
If x € (Cy + Cy — C)), then x < 3xy, but, if x € C, then x > p? + x; > 3x;. Thus,
Ci+Ci-CHNC =0.

If x € (Cy + C; — Cy), then x > 2(p; + x + 1) — (2p; — pi + Xi) = pr + xi + 2 and, if
x € Cy, then x < x;. Thus,

(Cr+Cr—C))NC =0.

Hence, Aoy = Ao U (B, + p? + xy) is a Sidon set.
Let

k=1
By (ii) and A—; € Aok, we have rs(n) = 1 for all n € Z, §4(n) = 1 for all n € Z\{0}.
That is, A is a unique representation bi-basis of Z. Moreover, by the construction of A,
(a), (b) and (¢),

. A(=x,x) _ . A(L,2p; — pr + xi)
lim sup > lim sup
o v (e \lzpi — Pkt Xk
B
> lim sup %
koo 2P = i+ x
. Pr— 2Pk
> lim sup
e 202 - pit VPRS2
1
Nk

This completes the proof of Theorem 1.1.
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