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SECOND ORDER OPERATORS 
WITH NON-ZERO ETA INVARIANT 

H. D. FEGAN 

ABSTRACT. We give an example of an elliptic second order pseudodifferential op
erator with a non-zero eta invariant. The operator is constructed on homogeneous bun
dles over compact Lie groups and is formed by composing differential operators and an 
operator of class OPS^ L. In general it is not elliptic but in the special case of even di-

2 ' 2 

mensional bundles over SU(2) it is elliptic. The eta invariant is calculated in the special 
case and in the non elliptic case a difference eta invariant is obtained. 

1. Introduction. In this paper we shall give an example of a second order elliptic 
pseudodifferential operator on homogeneous bundles over a Lie group with non zero eta 
invariant. Previously, a non zero eta invariant had only been computed for first order 
operators of Dirac type. 

Let M be a compact smooth Riemannian manifold of dimension m without boundary 
and let E be a smooth vector bundle over M. Let P: T(E) —> T(E) be an operator acting 

on the space of sections of E. If P has eigenvalues À with multiplicty m\ then the eta 

function of P is defined by 

(1.1) 71p(s)=^Tsign(\)mx\\\-
s 

where 

n ON . / 1 if A > 0 
(L2) « S ^ U ifA<0. 
If P is a self adjoint elliptic differential operator of degree d then this series converges 
absolutely for Re(s) > mjd. Furthermore this defines a holomorphic function on Re(s) > 
m/d which has a meromorphic extension to the whole complex plane with simple poles. 
If P is only pseudodifferential we again have a holomorphic function defined by the series 
but the meromorphic extension may have poles which are not simple. However, there are 
no known examples where double or higher order poles actually occur. This and other 
related results are discussed in [7]. 

It is a deep theorem that rjP(s) is regular at s = 0. We then define the eta invariant of 
P tobe 

(1.3) f](P) = TIP(0). 
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This differs from the more usual definition, which is 77(F) — 77/>(0) + dimKerP, but is 
more convenient for this paper. Since rj-P(s) = —r]p(s) the eta invariant is a measure of 
spectral asymmetry of P. This regularity if far from obvious. In [5] there are examples of 
operators whose local eta functions are not regular at s = 0. Of course these integrate to 
give global eta functions which are regular. However, the existence of these non regular 
local eta functions means that there is no apriori reason for rip(s) to be regular at s — 0. 
This deep theorem was first proved in [ 1 ] for the case m odd. It was extended to the case m 
even in [6]. Both proofs use global methods and are topological in nature. A proof using 
local formulae was offered in [14], but needs some additional global considerations to 
complete it, see [15]. 

If P is a first order operator then 77(F) plays an important role in the Atiyah-Patodi-
Singer index theorem, see [1] and also [10] for further details. For operators of Dirac type 
77(F) has been extensively studied and many examples are known. There are many other 
uses for the eta invariant: to name just one it can be used to detect exotic differentiable 
structures, see [11]. 

However, if m is odd and d — 2 there are no examples for which a non zero eta 
invariant has been computed previously. It is very difficult to compute the eta invariant 
of operators not of Dirac type. Here we compute the eta invariant of a pseudodifferential 
operator of the form F = RLR where R is a first order differential operator. Our methods 
are group theoretic and do not rely on the index theorem. 

In Section 2 we start by fixing some notation and defining the operators R and L. A 
very important step in this Section is the introduction of the difference eta function. This 
is given by the formula 

(1.4) r7(5) = - 2 ^ ( A , M ) - 2 ^ ( A + p)J(A + /x + p), 
A 

where the sum is over the dominant weights À and d is the dimension polynomial. We 
also compute the symbol ofR and show that R is elliptic on even dimensional irreducible 
bundles over SU(2) but non elliptic in the other cases. 

In Section 3 we use the results of [12] to show that L is a pseudodifferential operator. 
Since R is only elliptic on the group SU(2) it is only necessary to describe L in this case. 
In fact L is closely related to the projection operator F of L2(M) onto J C C°°(M), the 
space of Fegan potentials, see [9] and Section 3 for more details on this. We show, that for 
M — SU(2), F is a pseudodifferential operator in the sense F G OPS^ x, see [12] for the 
definitions involved. The classical zero order pseudodifferential operators are denoted 
by OPS? 0 and both F and L are not of this type. Furthermore, the nature of F on groups 
other than SU(2) is not clear but, in light of the non-ellipticity of R on these groups, is 
not needed in our case. It is also very mysterious why these isospectral potentials should 
arise in the construction of second order operators with non zero eta invariant. 

The special case of the group SU(2) = S3 is studied in Section 4. Here the irreducible 
homogeneous bundles are indexed by their fiber dimension k. If k is even then the op
erators R and RLR are both elliptic. Applying the general theory of [7] and studying the 
difference eta function give the following result. 
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THEOREM 1.1. T](RLR) = - (7 Jk + 1 ) / 6. 

This is proved by the formula (4.5). This formula also confirms that RLR is not a 
Z2 admissible operator since the eta invariant of such operators consists entirely of 2-
torsion, see [8] for the definitions involved. In the case when k is odd R is not elliptic and 
the general theory does not apply. Infact the series (1.1) for r]R2(s) never converges in 
this case. However, the difference eta function does converge to a holomorphic function 
with a meromorphic continuation to the whole plane. The value ?7(0) is given by (4.5) 
for this case as well as the case k even. 

The last Section, 5, is concerned with compact, simply connected, semi simple groups 
other than SU(2). Here the operator R is never elliptic. Thus the general theory does not 
apply and r](R2) does not exist. However, the difference eta function does exist and has a 
meromorphic continuation to the whole plane. Its value at s = 0 is given by the formula: 

THEOREM 1.2. 7̂(0) = El=0(-l)
k+l "k*{]%&!2, where n is the integer part of 

^ dim G — \,Bk is the kth Bernoulli number and a^ and m are constants which depend 
upon G. 

This result and a description of both ak and m are given in Section 5. The author 
would like to thank Peter Gilkey for raising the question of eta invariants of. second 
order operators and for explaining many of the known results referred to in this paper. His 
constructive criticism of the early drafts of this paper have led to its great improvement. 
The author would also like to thank Michael Taylor for his help in describing OPS*) x and 

2 '2 

with the proof of Theorem 3.3. The author was supported by an Efroymson Memorial 
Lectureship. 

2. Description of the operators. Let us start by fixing some notation. Let G be a 
compact semisimple Lie group of rank L Fix a maximal Torus T and a system of positive 
roots « i , . . . , ak. Let p = 1 /2 £ at be half the sum of the positive roots and (, ) be the 
killing form metric on G. On the Lie algebra Ç, (, ) is the negative of the killing form. 
Define the dimension polynomial by 

(2.1) d(X) = Tli(\,ai)/ni(p,(xi) 

with the product taken over all positive roots a,, so that if ix\ : G —• Aut V\ is the irre
ducible representation with highest weight À then dim V\ = d(X + p). Fix a nontrivial 
irreducible representation 7^ : G —> Aut E so (E — V^) and denote by E the homogenous 

bundle over G associated to 7rM. This bundle E can be trivialized by using left translation 

on G. Thus the sections of E decompose 

(2.2) r(E) = C°°(G)®E, 

and using the Peter-Weyl theorem 

(2.3) r(E) = EdimVx®E> 
A 
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where the sum is over all À which are dominant weights. Now decompose 

(2.4) Vx®E = Y,nti(\,O)V0, 
e 

where the sum is over all dominant weights 9. The n^(A, 9) are the Clebsch-Gordan num
bers and have the following properties. 

1) If n^{\, 9) ^ 0 then 9 — \ + v where v is a weight of n^. 

2) n^(A,A + / i )= 1. 

3) Generically (if A is sufficiently far from the walls of the dominant Weyl chamber) 
n^(\, A + v) = multiplicity of weight i/inir^. 

4) The multiplicity in 3) is often more complicated and for A near the walls there is 
some extensive cancellation which may take place. 

We wish to define two operators on T(E)- Let Xi , . . . , Xn be an orthonormal basis of 

Ç for ( , ). By left translation regard Xi , . . . , Xn as vector fields on G. The operators are 
defined by 

* = XX^O ® M*,-) and 
(2*5) L=l~l onVx^ 

1 1 otherwise. 

Here z/(X/) is the directional derivative in the direction of the vector field X; and R acts via 
the decomposition (2.2). In each term of the decomposition (2.3) L acts via the further 
decomposition (2.4) as 1 or —1 as indicated. On each VQ in (2.4) R is constant since 

(2.6) R= i ( J > 0 TT^iXt)2 - v(Xtf 0 1 - 1 ® MX,)2). 

Thus if Q. — — E X2 is the Casimir operator 

(2.7) R = - ( - * / ® M Q ) + ^ Q ) ® 1 + 1 ® M Q ) ) -

Hence the constant on each Ve in (2.4) is 

(2.8) c(A,0) = i(| |A + p||2 + ||^ + p||2-||6 + p | | 2 - | | p | | 2 ) . 

The multiplicity is then given by 

m(A, 9) = dim VA>v(A, 9) dim Ve 

(2.9) =nli(\,0)d(\ + p)d(O + p). 

Thus we have established the following results. 
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THEOREM 2.1. The spectrum of R has eigenvalues C(A,0) with multiplicity 
E AW(A, 9) where the sum over all \,6 that have the same value, C(A, 6), under C. 

COROLLARY 2.2. The spectrum of R2 has eigenvalues C(A,#)2 with multiplied 
y E w(A, 9) and the sum as in Theorem 2. 

THEOREM 2.3. The spectrum ofRLR has eigenvalues C(A, 9)2 (for 9 ^ A + //) and 
—C(A, A + /i)2. The multiplicity in each case is E m(X, 9) with the sum over all X,9 giving 
rise to the same eigenvalue. 

We now calculate the eta functions for our operators R2 and RLR. We see 

(2.10) r/^O) = £signC(A,0)|C(A,0)|-2*m(A,0). 
x,e 

Here the sum is over A, 9 dominant weights. Note that A is no longer the eigenvalue and 
if 9 does not occur in V\ ®E then m(X, 9) = 0. We define the difference eta function l(s) 
by 

(2.11) rj(s) = ilR2(s)-rlRLR(s). 

Then from Corollary 2.2 and Theorem 2.3 we see (for n ^ 0) 

(2.12) rj(s) = 2]TsignC(A, A + /x)m(A, A + /x)|C(A, A + /i)|~25. 
A 

This definition is valid even when the series (2.10) and its analogue for RLR do not 
converge. The computations in Sections 4 and 5 show that fj has an analytic continuation 
in all the cases considered in this paper. Now a simple calculation gives 

(2.13) C(A,A + /i) = -(A,/i). 

Thus we have proved the following: 

THEOREM 2.4. rj(s) = - 2 EA(A, JJL)~2S d(X + p)d(\ + n + p). 

In both (2.12) and Theorem 2.4 the sum is over all dominant weights A which are non
zero. The kernels oïR2 and RLR are the same and come from the sections corresponding 
to A = 0 in the decomposition (2.3). These are the left invariant sections. 

At this point it is convenient to calculate the symbol of/?. 

THEOREM 2.5. The symbol ofR is GR(X, £) = n^Ç), where x G G and £ G Ç which 
is identified as an element ofTx(G) by left translation. 

PROOF. For differential operator D: T(E) —• T(F) between two bundles E and F we 

have the following expression in local coordinates: 

(2.14) D = £ aa(x)Da. 
\a\<m 

Here aa(x): Ex —» F* and a is a multi index. The symbol of D is then 

(2.15) (TD(X,0= E M*)Éa, 
|ar|=m 

where £ = (£i , . . . , £n) is an element of the tangent space TX(M). Applying this general 
definition in the case of R yields the result in the theorem. 

https://doi.org/10.4153/CMB-1992-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-046-0


346 H. D. FEGAN 

COROLLARY 2.6. The operator R is elliptic when 7rM is an even dimensional repre
sentation and G — SU(2). Furthermore R is not elliptic in any other case. 

PROOF. The operator D of (2.14) is elliptic if the symbol aD(x, £) is invertible for all 
£ T̂  0. In the case of R this gives R is elliptic if and only if TT^ (£) is invertible for all £ ^ 0. 
In the case G = SU(2) and 7^ is an even dimensional representation it follows that 0 is 
not a weight of ir^ and so TT^(0 is invertible. If G = SU(2) and 7rM is odd dimensional 
then 0 is a weight and ?!>(£) is never invertible. If G is any group other than SU(2) the 
Lie algebra Q has non zero singular elements. Picking an element £ in the Lie algebra of 
the maximal torus such that /z(£) = 0 gives a non zero £ such that 7rM(£) is not invertible. 

If we had taken 71̂  to be the trivial representation then R would have been the zero 
operator. The results of this section would either not make sense or be vacuously true in 
this case. 

3. The operator L. To show that L is a pseudodifferential operator we need to con
sider the decomposition (2.3) in more detail. However, to begin let us define 

(3.1) < />=^( l -L) . 

Then using the decomposition (2.4) and the definition of (2.5) we see the following: 

LEMMA 3.1. The map <j>: T(E) —• ^(E) is projection onto the spaces V\+^. 

Clearly L is a pseudodifferential operator if and only if <f> is pseudodifferential. 
Let v\ be the highest weight vector of V\, relative to a fixed maximal torus of G, and 

let ( , ) be a G invariant innerproduct on V\ which is normalized so that (v\,v\) = 1. 
Complete vA to an orthonormal basis {vx, vA l , . . . , VA„ } for V\ where n = dim V\ — 1 
depends on À. In the case of the space E, which of course is V ,̂ we denote this basis by 
e^,e\,...9en, again with the appropriate value of n. The decomposition (2.3) now gives 
the following expression for/ G T(£): 

(3.2) f(x)= J2 a\Uk(vi^\(x)vj)ek, 
\,ij,k 

where the sum is over all A which are dominant weights all / and j in the set 
{A, Ai, . . . , Xn} and all k in {/x, 1, . . . , n}. The action of G on this section is then 

(3. 3) g -f(x) = ^2aXijk(^x(g)^h n\(x)vj)7r^(g)ek. 

To identify the spaces V\^ we observe that 

(3.4) fXj(x) = (vA, irx(x)Vj)e^ 

for each/ is in the space V\+II and is the highest weight vector of its copy of V\+ll. Define 
the maps p:E->E and F: C°°(G) —> C°°(G) by 

(3.5) P(ek)=\e» if
fJ

 = / i 

10 otherwise 
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and 
F(<V,-,^)V;))=(^A(*)V,> « = A 

i 0 otherwise. 

From these we form F 0 p: T(E) —> T(E) by 

(3.6) F®p(f) = E*x,xj,»fxj 

where/ is given by (3.2), which defines the ax,xj,n> and/A/ is given in (3.4). Since fxj is 
the highest weight vector of VA+̂  there is a subset GXJ of G such that {gfxj : geG^-} is a 
basis for VA+/Z. NOW define S(F®p) by 

(3.7) S(F®p){vi,*x(x)vj)ek = Eg(F®p)g-l(vhirx(x)vj)ek, 
8 

where the sum is over g e GXj and the action of g is given by (3.3). 

PROPOSITION 3.2. The operator <j> - S(F ® /?). 

PROOF. By construction both <j> and S(F (g) /?) are G invariant maps such that 

(3.8) <j>(fxj) = S(F®p)(fxj)=fxj. 

Thus <j)\Vx^ = S(F®/>)|VA+/i. Now if/ - (V.-.TTAWV;)^ £ VA+/i then 

(3.9) <t>{f) = S(F®p){f) = 0. 

This completes the proof that 0 = S(F ® /?). 
The main step in proving that Lisa pseudodifferential operator is the following result. 

THEOREM 3.3. ForG = SU(2), F e OPS*? ,. 
2 ' 2 

PROOF. We decompose the complexified Lie algebra: 

(3.10) Çc = Hc(B Ça. 

Then the range of F can be described as the set of functions on G which are annihilated 
by Ea, a > 0, the "raising operators". Here Ea spans Qa. In the case G = SU(2) there is 
one such operator Ea which can be identified with db corresponding to the CR-structure 
of SU(2) = S3 as the unit sphere in C2. Thus in this case F is a Szego projector and from 
the results in [12] (see also [3]) it follows that F G OPS*? ,. 

2 ' 2 

COROLLARY 3.4. On the group G — SU(2) the operators <f> and L are pseudodiffer
ential operators in OPS^ L. 

2 ' 2 

We also observe that F is a convolution operator. Let 

(3.11) «W = E(vA,7rAWvy> 
Aj 

Then £ is a distribution and the operator F is convolution with I: F(f) — I * / . In the 
case of G = SU(2) it follows from Theorem 3.3 that t <E&{0. 
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As a further remark we note that in [10], there is an explicit calculation which shows 
that the operator on the circle S1, which is analogous to F, is a pseudodifferential operator. 
The symbol of this operator on the circle is 

1 £ > 0 
(3.12) croix,0 - | Q . < Q 

Thus we see explicitly that the parity condition GQ(X9 —Q — (— \fo§(x, Q fails and the 
operator is not Z2 admissible in the sense of [8]. 

The operator F has an interesting interpretation. In [4], a space of complex valued 
potentials 7 was introduced. In [9], it was shown that these had the property: 

(3.13) if p G 7 then spec(A +p) = spec(A), 

where A is the Laplace operator on G and spec denotes the spectrum. The space 7 is 
the vector space spanned by the functions (vA, TTX(X)VJ) and is called the space ofFegan 
potentials. Thus we have: 

PROPOSITION 3.5. The operator F: C°°(G) —•> C°°(G) is projection onto the space 

7. 
At this point we calculate the group theoretic symbol F This is discussed in [12] and 

our calculation closely follows the procedure described there. In [ 12] this is just called the 
symbol ofF. However, we use the term group theoretic symbol to distinguish this from 
the more traditional symbol of analysis of which the symbol in (3.12) is an example. 

The operator F is a convolution operator and so, following [12], its symbol is 

(3.14) M*,7TA) = 7TA(0, 

where irx is an irreducible representation of G and I is the distribution given in (3.10). 
Notice that in our case the symbol is independent of x. The right hand side of (3.14) is 
defined as 

(3.15) 7TA(*) = JGt(y)7rx(y)dy 

and is a map 

(3.16) 7TX(l):Ex^Ex. 

We now calculate this map 

(3.17) TTX(1)V = £ f(irx(y)v,Vj)t(y)dy, 
j J 

where the sum is over j so that {v/} is the orthonormal basis of Ex described at the 
beginning of this section. Thus by the Schur orthogonality relations we have 

(3.18) ^A(£)v = (v,vA)vA, 

that is 7rA (£) is projection onto the highest weight vector of FA. This gives us the following 
result. 
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PROPOSITION 3.6. The group theoretic symbol ofF, (Jf(x, n\): E\ —> E\, is projec
tion onto the highest weight vector ofE\. 

From this result the symbol of L is implicitly determined. We wish to show that L is 
elliptic but this is not clearly seen from these symbol calculations. However, there is a 
more direct approach which can be used. 

LEMMA 3.7. The operator L is elliptic. 

PROOF. From (2.5) we see that L2 = 1. Thus if CFL(X, 0 is the symbol of L we have 
&L(X, O2 — 1- Thus cjL{x, 0 is invertible and L is elliptic. 

4. The case of SU(2). In the case G — SU(2) we can obtain an expression for V in 
terms of the classical Riemann zeta function. For SU(2) there is one positive root which 
we normalize to be 1. Then p — \ and the non-zero dominant weights are A = ^n where 
n is a positive integer. The killing form is then given by 

(4.1) ( À ^ H ^ À / i 

and the dimension formula is 

(4.2) d(A + p) = 2A + l. 

Thus 

ri(s) = -24s+lv~2s Ë n~2s(n + l)(/i + 2/1 + 1) 

(4.3) = -24s+lfi-2s(C(2s - 2) + (2ji + 2)C(2s - 1) + (2/x + 1)C(2J)). 

Here n — 2A and £ is the classical Riemann zeta function. Hence 

( 4 .4) r?(0) = -2(C(-2) + (2M + 2)C(-D + (2M+ DC(0)). 

From [13] we find((0) - - 1 / 2 , ( ( -1) = - 1 / 1 2 and ((-2) = 0. Thus 

7/x + 4 
(4.5) 7 7 ( 0 ) = - ^ — . 

To compute the eta invariant of RLR we first consider the operator R. The representa
tion 7r̂  with highest weight /i has weights: 

(4.6) /i, fi — 1, [i — 2 , . . . , —/i, 

each with multiplicity 1. Now it is easy to calculate that the tensor product of two repre
sentations decomposes into irreducibles as follows 

( 4 . 7 ) 7TA (g> 71^ = 7TA+/i <g> 7rA + / i_! 0 • • • <g) 7T|A_ / i|. 

Thus if |m is a weight of 7r̂  the representation with highest weight A + \m occurs in the 
decomposition (4.7) providing A > \\i — \m. Let fj, = \k, A = \n and then we have 
from (2.8) the following. 
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LEMMA 4.1. The eigenvalues of R are —nm/4 + (k2 + 2k — m2 — 2m) j 8 w/n'c/z 
occwr vv/r/z multiplicity (n + l)(rc + m + 1) w/iere /: w a fixed positive integers, m G 
{&, A: — 2 , . . . , —k) and n is any integer such that n > ̂ k — ^m. 

There are now two cases for the eta invariant of R2. If k is odd then R is elliptic since 
its symbol 7r^(£) is invertible if £ ^ 0. Since R2 is positive definite the eta function 
of/?2 agrees with the zeta function. Now r]R2(s) is given by a local formula and since 
dim SU(2) = 3 is odd this vanishes. Therefore r/^(0) = 0 and we have the result. 

THEOREM 4.2. Let E be an even dimensional bundle over SU(2) associated to the 

irreducible representation n^. Then r](RLR) = —(7/i + 4)/3. 

The second case is when k is even. Now m = 0 is a weight of 7rM and so the eigenvalue 
(k2 + 2k)/S ofR occurs for each representation space with n ^ \k. Thus this non zero 
eigenvalue occurs with infinite multiplicity. Consequently the series for the eta function 
of R2 does not converge for any value of s. This is the case when R is not elliptic. The 
presence of a zero weight of 7fy means that the symbol of R, n^iO* is never invertible. 
However, even though there are no eta functions for R2 and RLR, the formal series for 
l(s) does converge for Re(s) sufficiently large to a function with a metamorphic contin
uation to the whole plane and the value ^(0) is given by (4.5). 

5. The difference eta function for other groups. If we proceed as in the previous 
section, but with the group SU(3), then using appropriate normalizations we obtain: 

(5.1) 
- 1 ™f (ra + l)(ra + l)(m + « + 2)(« + <3+ l)(ra + fr+ \){n + m +a + b+ 2) 

2(18) J
 m ^ 0 ((2a + b)n + (a + 2b)m) 

Here the prime with the summation sign indicates that the term with m = n — 0 is omit
ted. This expression is not readily identifiable in terms of special functions. However, 
the problem is not to describe f](s) where but to evaluate rj (0) where 

(5.2) T/(J) = - 2 £ (A, n)-2sd(\ + p) d(X + p + p), 
x 

for Re(s) large enough and 1 is defined by analytic continuation for other values of s. 
Using the Mellin transform gives the result 

(5.3) {x^)-2s = J_rt2s-le-M,dt 

1 (2s) JO 

Thus for Re(s) large enough 

(5.4) ri(s) = - - A - r^diX + pWX + v + p^-'e-^'dt, 
T(2s) Jo A 

where we have interchanged the integral and sum. Now we shall use the Hankel contour 
integral. Let C be a contour of Hankel's type, see [13], that is one which starts at +00 
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goes round the origin anticlockwise and returns to +00. The other condition is that C 
misses the points tmi on the imaginary axis. There is then Hankel's formula: 

(5.5) j (-z)2s-le~Mzdz = -2i sin(2™) J°° j * " 1 * - ^ ' dt. 

Using this and (4.4) gives the formula 

(5.6) V(s) = \ U-zfs-1 £ d{\ + p) d(X + p + fi)e-^z dz. 
T(2s)i s i n ^ s ) Je ^ 

this has to be interpreted in the following way. For Re(z) sufficiently large set 

(5.7) 6(z) = £ d(X + p) d(X + p + p)e 
A 

-(A.A*>z 

and now define 8 for other z by analytic continuation. Then equation (5.6) becomes 

(5.8) ^ ) = n i z i £ ) / ( _ z ) 2 - . ^ ) & . 
VK JC 

This is now valid for all s so setting s = 0 gives 

(5.9) #(0)= ^ f z-lÔ(z)dz. 
17T JC 

and by Cauchy's formula we have 

(5.10) f?(0) = -2Res^ f l f e ) ) at z = 0, 

where Res denotes the residue. Now 0 has a pole at z = 0 so it is not sufficient to take 
0(0) as the value of this residue. What we need is the coefficient of z° in the Laurent 
series for 6. 

Now (A,/i) G 1/mZ where m depends on /x, see [2]. Set An = {A G P : (A,/i) = 
n/m} and define a function/? by 

(5.11) p(n) = £ </(A + p) d(X + /x + p). 
A€An 

Then /? is a polynomial and deg/7 = dim G — 1. Thus the function of interest is now 

00 

(5.12) fl(z)=EP(^"w/" 

LEMMA 5.1. 
/ - I d w ^~Z/m x 

PROOF. We calculate: 

(5.13) ^ ; e - « / » = _ f — _ 
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and so 

(-1)* dk ( e~zl" 
ne "~<"' — 

1 
(5.14) Z"ke~nZ,m = -T-4-A— r V 

Hence the result follows. 
Notice that a consequence of this lemma is to provide a formula for 8 which is valid 

for all z except mimi. Thus the complex analysis done earlier is valid. Now from [13], 
we find: 

(5.i5) -^V = ë(-ir^(^r2, 
-z/n 

' /m 
n=\ 

where </>„ is the nth Bernoulli polynomial and 4>f
n(z) = jz <j>n(z)- We also find the following 

values for <j)'n(\)\ 

(5.16) cj>'lk{\) = 0, </4+1(l) = (-l)k-l(2k+ l)Bk9 

where Bk is the fcth Bernoulli number. Now let C* be the coefficient of z° in the expansion 

the coefficient of z° in the Laurent expansion of 6{z) is £ 0*Q. 

LEMMA 5.2. Q = g ^ m 2 * . 

PROOF. We need to differentiate (5.14) k times. The coefficient of z° then occurs 
when n — k + 2. 

COROLLARY 5.3. /)C2fc = 0 and 

Substituting these values into equation (4.10) gives the value of ^7(0). 

THEOREM 5.4. rj(Q) = £J= 0
 (~\£\)ffi+*k+l - Here n = [\dimG-\]is the integer 

part of ^ dim G — ^, ak is given above before Lemma 5.2, Bk is the kth Bernoulli number 
and m is such that ra( A, //) G Zfor all A £ P. Note further that the coefficients ak depend 
on \i. This completes the proof of Theorem 1.2. 

We are working with compact, semisimple and simply connected groups other than 
SU(2). As noted in Section 2 the operator R is never elliptic on these groups. Thus the 
general theory of elliptic operators is not available to guarantee the existence of r](R2). 

If 0 is a weight of ^ then we see that 

(5-17) ^ ( I I M + P I I 2 - | | P I I 2 ) 

is an eigenvalue for infinitely many representation spaces 7rA in (2.3). Thus the formal 
series for rjR2(s) never converges. However, the formal series for V does converge for 
Rt(s) sufficiently large and the value 7̂(0) is given by Theorem 5.4. 
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In general the eigenvalues of R are given by 

(5.18) -2(A,(/>)(||//||
2 + 2(/i-(/>,p)) 

where <j> is a weight of 7^. This follows by a simple computation form (2.8). Since we 
can always find a weight of ir^ which is orthogonal to infinitely many dominant weights 
we see that 

(5.19) ||/i||2 + 2 ( / / - ( M 

is an eigenvalue with infinite multiplicity. Thus the series for the eta invariant ofR2 never 
converges. 
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