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Abstract

We generalize Siegel’s theorem on integral points on affine curves to integral points
of bounded degree, giving a complete characterization of affine curves with infinitely
many integral points of degree d or less over some number field. Generalizing Picard’s
theorem, we prove an analogous result characterizing complex affine curves admitting
a nonconstant holomorphic map from a degree d (or less) analytic cover of C.

1. Introduction

Let C ⊂ An be a nonsingular affine curve defined over a number field k and let C̃ be a nonsingular
projective closure of C. Let S be a finite set of places of k containing the archimedean places.
Siegel’s classic theorem [Sie29] states that the set of S-integral points C(Ok,S) = C(k)∩An(Ok,S)
is finite if either C̃ has positive genus or C has more than two points at infinity (i.e. #(C̃\C)(k)
> 2). Conversely, if C̃ has genus zero and C has two or fewer points at infinity, then, for some
finite extension L of k and some finite set of places S of L, the set of S-integral points C(OL,S)
will be infinite. In this case, C is isomorphic, over k, to either A1 or Gm = P1\{0,∞} = A1\{0}.
Since Gm ⊂ A1, we can state Siegel’s theorem as follows.

Theorem 1.1 (Siegel’s theorem). Let C ⊂ An be a nonsingular affine curve defined over a
number field k. Then there exist a finite extension L of k and a finite set of places S of L
such that the set C(OL,S) is infinite if and only if there exists C ′ ⊂ C with C ′ isomorphic, over
k, to Gm.

In fact, one can give precise necessary and sufficient conditions for the infinitude of C(Ok,S)
(see [ABP09]). We will generalize Siegel’s theorem to integral points of bounded degree. There
is one obvious way to construct infinitely many integral points of degree d or less on an affine
curve: one may pull back S-integral points on Gm (i.e. S-units) via an appropriate map of degree
d or less. Our main result asserts that this obvious construction essentially explains all affine
curves with an infinite set of integral points of degree d or less. Let Ok,S denote the integral
closure of Ok,S in k. If L is a finite extension of a number field k and S is a set of places of k,
then let SL denote the set of places of L lying above places in S.

Theorem 1.2. Let C ⊂ An be a nonsingular affine curve defined over a number field k. Let d
be a positive integer. Then there exist a finite extension L of k and a finite set of places S of L
such that the set of S-integral points of degree d or less over L,

{P ∈ C(OL,S) | [L(P ) : L] 6 d} =
⋃
M⊃L

[M :L]6d

C(OM,SM
), (1)
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is infinite if and only if there exist, over k, an affine curve C ′ ⊂ C and a finite morphism
φ : C ′ → Gm with deg φ 6 d.

If C ⊂ An is a singular affine curve, then there exists an infinite set (1) (for some L and S) if
and only if the same is true of the normalization of C (with some affine embedding). Thus, there
is no loss of generality in considering nonsingular affine curves. Theorem 1.2 may alternatively
be stated in terms of points at infinity as follows.

Theorem 1.3. Let C ⊂ An be a nonsingular affine curve defined over a number field k. Let C̃ be
a nonsingular projective completion of C and let (C̃\C)(k) = {P1, . . . , Pq}. Let d be a positive
integer. Then there exist a finite extension L of k and a finite set of places S of L such that the
set

{P ∈ C(OL,S) | [L(P ) : L] 6 d}

is infinite if and only if there exists a morphism φ : C̃ → P1, over k, with deg φ 6 d and
φ({P1, . . . , Pq}) ⊂ {0,∞}.

We will prove Theorem 1.2 in this form (see Lemma 4.1 for the equivalence of the two
statements). Using the Schmidt subspace theorem, Corvaja and Zannier [CZ04] proved the case
d = 2 and q > 4 of Theorem 1.3 (in fact, in this case they proved the stronger statement of
Theorem 4.3(ii)). The case d = 2 and q = 3 was proved for nonhyperelliptic curves in [Lev07,
Theorem 6]. If q > 2d, then there cannot exist a morphism φ as in Theorem 1.3 and so the set
{P ∈ C(OL,S) | [L(P ) : L] 6 d} is always finite. This consequence of Theorem 1.3 was noted
previously [Lev09, Corollary 14.14] as a consequence of a Diophantine approximation inequality
of Vojta [Voj92]. Finding necessary and sufficient conditions similar to Theorems 1.2 and 1.3
for a fixed ground field k and a finite set of places S of k appears to be a subtle issue (see
Examples 5.1 and 5.2).

As first noticed by Osgood and Vojta, there is a surprising correspondence between certain
statements in Diophantine approximation and certain statements in Nevanlinna theory. We refer
the reader to [Voj87] for Vojta’s dictionary between the two subjects. At the qualitative level,
Siegel’s theorem on integral points on curves is related to Picard’s well-known theorem that
a nonconstant holomorphic function omits at most one finite complex value. More precisely,
Siegel’s theorem corresponds to the following result of Picard, which we state in a way analogous
to Theorem 1.1.

Theorem 1.4. Let C be a nonsingular complex affine curve. Then there exists a nonconstant
holomorphic map f : C → C if and only if there exists C ′ ⊂ C with C ′ isomorphic to Gm.

Unsurprisingly, using Vojta’s dictionary, the proof of Theorem 1.3 can be used to obtain
an analogous result in value distribution theory, generalizing Picard’s theorem. We call a map
π : M → C a finite analytic covering of C if M is a connected Riemann surface and π is a proper
surjective holomorphic map. In this case π has a well-defined finite degree, denoted deg π. Note
that the map π may ramify over infinitely many points of C. An infinite set of integral points of
degree d on a variety X corresponds to a nonconstant holomorphic map from a d-sheeted analytic
covering of C to X (viewing X as a complex analytic space). We obtain the following theorem.

Theorem 1.5. Let C̃ be a nonsingular complex projective curve. Let C ⊂ C̃ be a complex affine
curve and let C̃\C = {P1, . . . , Pq}. Let d be a positive integer. Then there exist a finite analytic
covering π : M → C with deg π 6 d and a nonconstant holomorphic map f : M → C if and only
if there exists a morphism φ : C̃ → P1 with deg φ 6 d and φ({P1, . . . , Pq}) ⊂ {0,∞}.
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For M and C̃ as in Theorem 1.5, define a point P ∈ C̃ to be a Picard exceptional point
of a holomorphic map f : M → C̃ if P 6∈ f(M). Then we may view Theorem 1.5 as giving a
characterization of Picard exceptional points.

Theorem 1.6. Let C̃ be a nonsingular complex projective curve. Let {P1, . . . , Pq} ⊂ C̃ be a
nonempty set and let d be a positive integer. Then there exist a finite analytic covering π :
M → C with deg π 6 d and a nonconstant holomorphic map f : M → C̃ with P1, . . . , Pq Picard
exceptional points of f if and only if there exists a morphism φ : C̃ → P1 with deg φ 6 d and
φ({P1, . . . , Pq}) ⊂ {0,∞}.

We are not able to determine the existence of surjective maps f : M → C̃ (when there are no
Picard exceptional points). This problem is analogous to classifying curves with infinitely many
algebraic points of degree d over a number field. As discussed at the end of this section, this
appears to be a more subtle and difficult problem.

To prove Theorem 1.3, we study certain k-rational integral point sets on the dth symmetric
power Symd(C) of a projective curve C. The proof then involves an interplay between the
Abel–Jacobi map Symd(C) → Jac(C) and deep results on integral points on subvarieties of
abelian and semiabelian varieties (the unit equation and theorems of Faltings and Vojta).

The proof of Theorem 1.5 is completely analogous to the proof of Theorem 1.3, and so
we omit the proof. Indeed, the proof of Theorem 1.3 consists of a purely geometric argument
combined with the deep arithmetic theorems of § 3. All of the Diophantine results in § 3 have exact
analogues in value distribution theory, as we now recall. The analogue of Faltings’ Theorem 3.1
for holomorphic curves in subvarieties of abelian varieties is known as Bloch’s conjecture. After
work of Bloch [Blo26], substantial progress towards the conjecture was made by Ochiai [Och77]
and a complete proof of the conjecture was given by Kawamata [Kaw80] (see also Noguchi
and Ochiai [NO90]). The analogous result for holomorphic curves in subvarieties of semiabelian
varieties is due to Noguchi [Nog81]. The hyperbolicity of the complement of an ample effective
divisor on an abelian variety (the analogue of Faltings’ Theorem 3.4) was proved by Siu and Yeung
[SY96]. This was again generalized to semiabelian varieties by Noguchi [Nog98]. Finally, we note
that the analogue of Theorem 3.6 on the unit equation is the Borel lemma. In correspondence
with the arithmetic case, one associates to the holomorphic map f : M → C a holomorphic
map g : C → Symd(C), the so-called algebroid reduction of f (see [Sto87]). The proof of
Theorem 1.5 now proceeds in the exact same way as the proof of Theorem 1.3, substituting
at appropriate steps the appropriate value distribution theory results in place of the arithmetic
results.

After stating the basic definitions, in § 3 we recall the key results on integral points on
subvarieties of semiabelian varieties that underpin the proof of Theorem 1.3. In § 4 we give the
proof of the main result. In § 5 we give some examples clarifying our results and mention some
possible strengthenings of Theorem 1.3.

Finally, for completeness, we recall the situation for algebraic points of bounded degree on
curves (that is, without any integrality assumptions). As detailed below, the natural analogue of
Theorem 1.2 in this setting holds only when d 6 3. In view of this, it is perhaps a bit surprising
that imposing an integrality condition is sufficient to ameliorate the situation.

Let C be a nonsingular projective curve defined over a number field k. Faltings’ theorem (the
Mordell conjecture) asserts that C(L) is infinite for some finite extension L of k if and only if the
genus of C is zero or one. If C admits a degree-d morphism to the projective line or an elliptic
curve, then by pulling back k-rational points via this morphism one sees that, after possibly
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replacing k by a larger number field, the set

{P ∈ C(k) | [k(P ) : k] 6 d}

is infinite. Harris and Silverman [HS91] proved the converse in the case d = 2.

Theorem 1.7 (Harris, Silverman). Let C be a nonsingular projective curve defined over a
number field k. Then the set

{P ∈ C(k) | [L(P ) : L] 6 2}

is infinite for some finite extension L of k if and only if C is hyperelliptic or bielliptic.

More generally, we have the following theorem of Abramovich and Harris [AH91].

Theorem 1.8 (Abramovich, Harris). Let d 6 4 be a positive integer. Let C be a nonsingular
projective curve over a number field k with genus not equal to 7 if d = 4. Then the set

{P ∈ C(k) | [L(P ) : L] 6 d}

is infinite for some finite extension L of k if and only if C admits a map of degree 6 d, over k,
to P1 or an elliptic curve.

Given Theorem 1.8, Abramovich and Harris naturally conjectured that a similar result would
hold for all d. However, Debarre and Fahlaoui [DF93] gave counterexamples to the conjecture
for all d > 4. Frey [Fre94] has shown, however, that the existence of infinitely many algebraic
points of degree d on a curve implies that there exists a map of degree 6 2d to P1.

Theorem 1.9 (Frey). Let d be a positive integer. Let C be a nonsingular projective curve defined
over a number field k. If the set

{P ∈ C(k) | [k(P ) : k] 6 d}

is infinite, then C admits a map over k of degree 6 2d to P1.

2. Definitions

Let k be a number field. We let Ok denote the ring of integers of k. We have a canonical set
Mk of places of k consisting of one place for each prime ideal p of Ok, one place for each real
embedding σ : k → R, and one place for each pair of conjugate embeddings σ, σ : k → C. Let
kv denote the completion of k with respect to v. For a finite set of places S of k containing
the archimedean places, we let Ok,S denote the ring of S-integers of k, Ok,S denote the integral
closure of Ok,S in k, and O∗k,S denote the group of S-units of k.

There are various, essentially equivalent, notions of integral points on varieties. It will be most
convenient for us to use the language of (D,S)-integral points, which we now recall. We will also
briefly discuss the relation with other notions of integral points that we will occasionally use.

Let D be a Cartier divisor on a projective variety X, with both X and D defined over a
number field k. We let SuppD denote the support of D. From the theory of heights, for each
place v ∈ Mk we can associate to D a local Weil function (or local height function) λD,v :
X(kv)\SuppD → R, unique up to a bounded function (extending | · |v to an absolute value on kv
in some way). When D is effective, the Weil function λD,v gives a measure of the v-adic distance
of a point to D, being large when the point is close to D. By choosing embeddings k → kv and
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k → kv, we may also think of λD,v as a function on X(k)\SuppD or X(k)\SuppD. A global
Weil function consists of a collection of local Weil functions, λD,v, v ∈ Mk, satisfying certain
reasonable conditions as v varies. We refer the reader to [BG06, HS00, Lan83, Voj87] for details
on Weil functions.

Definition 2.1. Let D be an effective Cartier divisor on a projective variety X, with both
X and D defined over a number field k. Let S be a finite set of places of k containing the
archimedean places. Let R ⊂ X(k)\SuppD. Then R is called a set of (D,S)-integral points on
X if there exist constants cv, v ∈Mk, with cv = 0 for all but finitely many v, and a global Weil
function λD,v such that for all P ∈ R, all v ∈Mk\S, and all embeddings of k in kv,

λD,v(P ) 6 cv.

When D is very ample, (D,S)-integral points coincide with the natural notion of S-integral
points coming from affine models of X\SuppD (see [Voj87, Lemma 1.4.1]).

Theorem 2.2. Let D be a very ample effective divisor on a projective variety X, with both
X and D defined over a number field k. Let R ⊂ X(k)\SuppD. Then R is a set of (D,S)-
integral points on X if and only if there exists an affine embedding X\SuppD ↪→ An such that
R ⊂ (X\SuppD)(k) ∩ An(Ok,S).

There is also the scheme-theoretic notion of S-integral points which is used, for instance,
in the statement of Theorem 3.2. Again, there is a natural relationship between sets of (D,S)-
integral points on X and S-integral points on models of X\SuppD over Ok,S . Since this will not
be directly used in our proofs, we refer the reader to [Voj87, Proposition 1.4.7] for the precise
relationship.

If D is a Cartier divisor on X and V ⊂ X is an (irreducible) subvariety with V 6⊂ SuppD,
we let D|V denote the Cartier divisor i∗D, where i : V ↪→ X is the inclusion map. We define the
irregularity of a projective variety X over a field of characteristic 0 to be

q(X) = dimH1(X ′,OX′) = dimH0(X ′,Ω1
X′),

where X ′ is a desingularization of X. This is independent of the choice of X ′ and is equal to the
dimension of the Albanese variety of X ′. Suppose now that X is nonsingular. If D is a divisor on
X, we let c1(D) denote the first Chern class of D. For divisors D and E on X, we write D 6 E
if E−D is an effective divisor. We say that the effective divisors D1, . . . , Dq on X are in general
position if, for any subset

I ⊂ {1, . . . , q}, |I| 6 dimX + 1,

we have

codim
⋂
i∈I

SuppDi > |I|.

If G is an abelian group and gi, i ∈ I, are elements of G, we let rank{gi}i∈I denote the (free)
rank of the subgroup of G generated by the elements gi, i ∈ I.

3. Integral points on abelian and semiabelian varieties

In this section we recall the fundamental results on integral points on abelian and semiabelian
varieties that will be used in the proof of our main theorem. First, we recall Faltings’ result [Fal91,
Fal94] on the structure of rational points on subvarieties of abelian varieties.
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Theorem 3.1 (Faltings). Let X be a closed subvariety of an abelian variety A, with both X
and A defined over a number field k. Then the set X(k) equals a finite union ∪Bi(k), where each
Bi is a translated abelian subvariety of A contained in X.

Vojta [Voj96] generalized Faltings’ theorem to cover integral points on closed subvarieties of
semiabelian varieties.

Theorem 3.2 (Vojta). Let X be a closed subvariety of a semiabelian variety A, with both X and
A defined over a number field k. Let S be a finite set of places of k containing the archimedean
places. Let X be a model for X over Ok,S . Then the set X (Ok,S) equals a finite union ∪Bi(Ok,S),
where each Bi is a subscheme of X whose generic fiber Bi is a translated semiabelian subvariety
of A.

As noted by Vojta [Voj96, Corollary 0.3], if an effective divisor D on a projective variety X
has enough irreducible components, relative to certain geometric invariants of X, then X\SuppD
embeds into a semiabelian variety and one can use Theorem 3.2 to show that any set of k-rational
(D,S)-integral points on X is not Zariski dense. We will use this result in the following form.

Lemma 3.3 ([NW02, Lemma 4.4]1, [NW14, Theorems 4.9.7 and 9.7.5]). LetD1, . . . , Dq be effective
divisors on a nonsingular projective variety V . Let W ⊂ V be a subvariety of V such that
W 6⊂ SuppDi for all i, and there exists a Zariski dense set of k-rational (

∑q
i=1Di|W , S)-integral

points on W . Then

rank{Di|W }qi=1 + q(W ) 6 dimW + rank{c1(Di)}qi=1.

Note that rank{Di|W }qi=1 is the rank of the group generated by Di|W , i = 1, . . . , q, as a
subgroup of Div(W ), the group of Cartier divisors on W with no equivalence relation imposed.
Thus, Div(W ) itself is always a group of infinite rank.

We will also need a result on integral points on the complement of an effective divisor on an
abelian variety. In the case when the divisor is ample, Faltings [Fal91] proved the finiteness of
integral points on the complement.

Theorem 3.4 (Faltings). Let A be an abelian variety defined over a number field k. Let S be a
finite set of places of k containing the archimedean places and let D be an ample effective divisor
on A. Then any set of k-rational (D,S)-integral points on A is finite.

If the divisor is not ample, then we only have a degeneracy statement.

Theorem 3.5. Let A be an abelian variety defined over a number field k. Let S be a finite set
of places of k containing the archimedean places and let D be a nontrivial effective divisor on
A. Then any set of k-rational (D,S)-integral points on A is not Zariski dense in A.

More generally, Vojta [Voj99] proved a generalization of Theorem 3.5 to semiabelian varieties.
Finally, we recall the fundamental result on the unit equation, proved independently by

Evertse [Eve84] and van der Poorten and Schlickewei [VdPS82].

1 This lemma is incorrectly stated in [NW02] with a term #{Di|W }qi=1 instead of rank{Di|W }qi=1. The same proof
in [NW02] gives, however, the statement in Lemma 3.3. An equivalent, but slightly different formulation, is given
in [NW14, Theorems 4.9.7 and 9.7.5].
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Theorem 3.6 (Evertse, van der Poorten and Schlickewei). All but finitely many solutions of the
equation

u1 + u2 + · · ·+ un = 1, u1, . . . , un ∈ O∗k,S ,

satisfy an equation of the form
∑

i∈I ui = 0, where I is a nonempty subset of {1, . . . , n}.

Geometrically, this may be viewed as a result about integral points on the complement of a
hyperplane in Gn

m. Thus, Theorem 3.6 is again a result about integral points on a semiabelian
variety. Using Theorem 3.6, it is easy to classify when a complement of hyperplanes in projective
space may contain a Zariski dense set of rational integral points. We have the following result
from [Lev08a, Theorem 6A].

Lemma 3.7. Let H be a set of hyperplanes in Pn defined over a number field k and let L be a
corresponding set of linear forms. There does not exist a Zariski dense set ofK-rational (

∑
H∈HH,

S)-integral points on Pn, for all number fields K ⊃ k and S ⊂MK , if and only if L is a linearly
dependent set. Furthermore, in this case any set R of K-rational (

∑
H∈HH,S)-integral points

on Pn is contained in a finite union of hyperplanes of Pn defined over K.

4. Proof of the main theorem

We first prove the equivalence of Theorems 1.2 and 1.3. This is an immediate consequence of the
following result.

Theorem 4.1. Let C be a nonsingular affine curve over an algebraically closed field k. Let C̃
be a nonsingular projective closure of C and let (C̃\C)(k) = {P1, . . . , Pq}. There exist an affine
curve C ′ ⊂ C and a finite morphism φ : C ′ → Gm of degree d if and only if there exists a
morphism φ : C̃ → P1 of degree d with φ({P1, . . . , Pq}) ⊂ {0,∞}.

Proof. Suppose that there exists a morphism φ : C̃ → P1 of degree d with φ({P1, . . . , Pq}) ⊂ {0,
∞}. Let C ′ = φ−1(Gm). As is well known, since φ is a nonconstant morphism between projective
curves, φ is a finite morphism. Then, for any open subset U ⊂ P1, φ|φ−1(U) : φ−1(U) → U is a
finite morphism. In particular, φ|C′ : C ′→ Gm is a finite morphism of degree d and by assumption
C ′ ⊂ C.

Conversely, suppose that there exist an affine curve C ′ ⊂ C and a finite morphism φ : C ′ →
Gm of degree d. We may extend φ to a morphism φ : C̃ → P1. Let C ′′ = φ−1(Gm). As noted
earlier, φ : C ′′ → Gm is a finite morphism. Clearly, C ′ ⊂ C ′′. Since C ′′ → Gm and C ′ → Gm are
both finite morphisms, it follows that C ′ ↪→ C ′′ is a finite morphism. Since finite morphisms are
closed, this implies that C ′ = C ′′. It follows that φ({P1, . . . , Pq}) ⊂ {0,∞}. 2

The easy direction of Theorems 1.2 and 1.3 follows from the next result. We construct
infinitely many integral points of degree d (or less) on C by pulling back integral points on Gm

(i.e. S-units) via the morphism φ.

Theorem 4.2. Let C ⊂ An be a nonsingular affine curve and suppose that there exists a finite
morphism φ : C → Gm, with both C and φ defined over a number field k. Let d = deg φ. Then,
for some finite set of places S of k, the set of S-integral points of degree d or less over k,

{P ∈ C(Ok,S) | [k(P ) : k] 6 d},

is infinite.
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Proof. Let x1, . . . , xn be the n coordinate functions on An restricted to C. Since φ is a finite
morphism, each xi satisfies a monic polynomial equation over k[φ, 1/φ]. Taking S large enough
so that O∗k,S is infinite and all of the above monic polynomials have coefficients in Ok,S [φ, 1/φ],
we see that

φ−1(O∗k,S) ⊂ {P ∈ C(Ok,S) | [k(P ) : k] 6 d},

and both sets are infinite.
Alternatively, consider a nonsingular projective completion C̃ of C and extend φ to a

morphism φ : C̃ → P1. Let (C̃\C)(k) = {P1, . . . , Pq}. Let D =
∑q

i=1 Pi. From the proof of
Theorem 4.1, φ({P1, . . . , Pq}) ⊂ {0,∞}. Let S′ be a finite set of places of k containing the
archimedean places. If R is a set of (0 +∞, S′)-integral points on P1, then, from functoriality
of Weil functions, it is immediate that φ−1(R) is a set of (φ∗(0 +∞), S′)-integral points on C̃.
Since D 6 φ∗(0 +∞), φ−1(R) is also a set of (D,S′)-integral points on C̃. Then, for some finite
set of places S ⊃ S′, depending on the embedding C ⊂ An, we have φ−1(R) ⊂ {P ∈ C(Ok,S) |
[k(P ) : k] 6 d}. Since O∗k,S′ is a set of (0 +∞, S′)-integral points on P1, the result follows (for
an appropriate S) on taking R = O∗k,S′ with |S′| > 1 (so that R is infinite). 2

The difficult implication in Theorem 1.3 follows from the next theorem. In fact, when the
affine curve is rational or has enough points at infinity, we obtain an even stronger statement.

Theorem 4.3. Let C be a nonsingular projective curve defined over a number field k. Let S be
a finite set of places of k containing the archimedean places. Let D =

∑q
i=1 Pi be a nontrivial

sum of distinct rational points Pi ∈ C(k). Let d be a positive integer. Let

Φ(D, d, k) = {φ ∈ k(C) | deg φ 6 d,D 6 φ∗(0) + φ∗(∞)},
Z(D, d, k) =

⋃
φ∈Φ(D,d,k)

φ−1(k).

Suppose that there exists an infinite set of (D,S)-integral points R ⊂ {P ∈ C(k) | [k(P ) : k] 6 d}.
Then the following statements hold.

(i) There exists a morphism φ : C → P1, defined over k, of degree 6 d such that φ({P1, . . . ,
Pq}) ⊂ {0,∞} (the set Φ(D, d, k) is nonempty).

(ii) If q > d or C = P1, then R\Z(D, d, k) is finite.

Before proving Theorem 4.3, we give some preliminary results. Let C be a nonsingular
projective curve over a number field k. We will first relate integral points of bounded degree
on C to rational integral points on symmetric powers of C. Let d be a positive integer and let
Symd(C) denote the dth symmetric power of C. Let ψ : Cd → Symd(C) be the natural map. Let
πi : Cd → C be the ith projection map for i = 1, . . . , d. Define

C(k, d) = {P ∈ C(k) | [k(P ) : k] = d}.

To each point in C(k, d) we can naturally associate a k-rational point of Symd(C) as follows.
Let Q ∈ C(k, d). Let Q = Q1, . . . , Qd denote the d conjugates of Q over k (in some order).
Let ρ(Q) = (Q1, . . . , Qd) ∈ Cd(k). Since every element of the absolute Galois group Gal(k/k)
permutes the coordinates of ρ(Q), it is clear that ψ(ρ(Q)) is a k-rational point of Symd(C). The
next lemma relates this construction and integrality.
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Lemma 4.4. Let D =
∑q

i=1 Pi be a sum of distinct points Pi ∈ C(k) and let S be a finite set of
places of k containing the archimedean places. Let R ⊂ C(k, d) be a set of (D,S)-integral points.
Let Ei = ψ∗(Pi × Cd−1) = ψ∗π

∗
1Pi, i = 1, . . . , q, and let E =

∑q
i=1Ei. Then ψ(ρ(R)) is a set of

k-rational (E,S)-integral points on Symd(C).

Proof. For all Q ∈ R, all v ∈ Mk\S, and all embeddings of k in kv, we have, up to a function
bounded by a constant cv as in Definition 2.1,

λE,v(ψ(ρ(Q))) =

q∑
i=1

λEi,v(ψ(ρ(Q))) =

q∑
i=1

λψ∗π∗1(Pi),v(ψ(ρ(Q))) =

q∑
i=1

λψ∗ψ∗π∗1(Pi),v(ρ(Q))

=

q∑
i=1

λ∑d
j=1 π

∗
j (Pi),v

(ρ(Q)) =

q∑
i=1

d∑
j=1

λπ∗j (Pi),v(ρ(Q))

=

q∑
i=1

d∑
j=1

λPi,v(πj(ρ(Q))) =

q∑
i=1

d∑
j=1

λPi,v(Qj)

=
d∑
j=1

λD,v(Qj),

where Q1, . . . , Qd are the d conjugates of Q over k. Since R is a set of (D,S)-integral points,
it follows immediately from the definitions that ψ(ρ(R)) is a set of (E,S)-integral points. The
k-rationality of ψ(ρ(R)) was noted earlier. 2

Lemma 4.5. The divisors Ei of Lemma 4.4 are all ample and algebraically equivalent.

Proof. Since ψ is a finite morphism, each divisor Ei is ample if and only if ψ∗Ei is ample. Then
the ampleness of Ei follows from the ampleness of ψ∗Ei =

∑d
j=1 π

∗
jPi. Since any two points on

a curve are algebraically equivalent and algebraic equivalence is preserved by flat pull-back and
proper push-forward, it is immediate that the divisors Ei are all algebraically equivalent. 2

In order to effectively apply Lemma 3.3, we need to exert some control over the term
rank{Di|W }qi=1 in the lemma. This will be accomplished by the next lemma, which is a
generalization of the classical fact that the intersection of r ample effective divisors with an
r-dimensional subvariety is nontrivial. The proof uses an idea of Noguchi and Winkelmann
from [NW14, Lemma 7.3.2]. For convenience, we will frequently identify an effective divisor with
its support.

Lemma 4.6. Let D1, . . . , Dq be ample effective Cartier divisors on a projective variety X. Let
r = rank{Di}qi=1 be the rank of the subgroup of Div(X) generated by D1, . . . , Dq. Then, for any
subvariety W ⊂ X with dimW > r,

⋂q
i=1Di ∩W 6= ∅. In particular, if rank{Di}qi=1 6 dimX,

then
⋂q
i=1Di 6= ∅.

Proof. We first prove the contrapositive of the last statement in the theorem. Let n = dimX.
Suppose that

⋂q
i=1Di = ∅. Then we claim that rank{Di}qi=1 > n. Let i1 = 1 and let E1 be an

irreducible component of D1 = Di1 . Note that dimE1 = n − 1. Since
⋂q
i=1Di = ∅, there exists

a divisor Di2 ∈ {D1, . . . , Dq} such that E1 ∩Di2 6= E1. Let E2 be an irreducible component of
E1∩Di2 . Since Di2 is ample, E1∩Di2 has pure dimension n− 2 and dimE2 = n− 2. Continuing
inductively, there exist distinct indices i1, . . . , in+1 and subvarieties E1, . . . , En of X such that
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Em+1 ⊂ Em, m = 1, . . . , n − 1, Em is an irreducible component of
⋂m
j=1Dij , dimEm = n −m,

and Em ∩ Dim+1 6= Em for m = 1, . . . , n. Then we claim that the divisors Di1 , . . . , Din+1 are
independent in Div(X). Suppose that for some m < n+ 1,

n+1∑
j=m

ajDij = 0 (2)

with aj ∈ Z and am 6= 0. Let E be an irreducible component of Dim containing Em. Since
Em 6⊂ Dij , m + 1 6 j 6 n + 1, we have E 6⊂ Dij , m + 1 6 j 6 n + 1. Then, considering the
irreducible component E, clearly (2) is impossible and we conclude that rank{Di}qi=1 > n.

Now suppose that rank{Di}qi=1 = r and let W ⊂X be a subvariety with dimW > r. Re-index
the divisors Di so that for some integer q′, W 6⊂ Di, i = 1, . . . , q′, and W ⊂ Di, i = q′ + 1, . . . , q.
Let Ei = Di|W , i = 1, . . . , q′. Then rank{Ei}q

′

i=1 6 rank{Di}qi=1 6 r 6 dimW . Since the divisors
Ei are ample, from the case proved above

q′⋂
i=1

Ei =

q⋂
i=1

Di ∩W 6= ∅. 2

We now prove Theorem 4.3.

Proof of Theorem 4.3. Let R ⊂ {P ∈ C(k) | [k(P ) : k] 6 d} be an infinite set of (D,S)-integral
points on C. We may reduce to considering the case where every point of R has exact degree d
over k, that is, R ⊂ C(k, d). Let R′ = ψ(ρ(R)), where ψ and ρ are the maps introduced before
Lemma 4.4. Then, by Lemma 4.4, R′ is a set of k-rational (E,S)-integral points on Symd(C),
where E =

∑q
i=1Ei and Ei = ψ∗(Pi × Cd−1). Since ψ ◦ ρ is at most d-to-1, R′ is an infinite

set. Let W be a positive-dimensional irreducible component of the Zariski closure of R′. Since
W ⊂ Symd(C) contains a Zariski dense set of k-rational points, W is necessarily defined over k.
Since R′ ⊂ Symd(C)(k)\SuppE, it follows that W 6⊂ SuppE. Let Fi = Ei|W , i = 1, . . . , q, and
let R′′ = R′ ∩W .

Fix a k-rational divisor D0 of degree d on C (which always exists since C(k, d) is infinite by
assumption). We will frequently identify points of Symd(C) with effective divisors of degree d
on C. We will make use of the Abel–Jacobi map

f : Symd(C) → Jac(C),

Q1 + · · ·+Qd 7→ [Q1 + · · ·+Qd −D0],

where the brackets denote the linear equivalence class of a divisor on C. Let X = f(W ). The
proof will be divided into the two cases dimX = 0 and dimX > 0.

First suppose that X is a point. This implies that W is contained in a complete linear system
V = |D′| ⊂ Symd(C) for some effective divisor D′ of degree d, where f(X) = {[D′ −D0]}. Since
W 6⊂ SuppE, we trivially have V 6⊂ SuppE. Let Hi = Ei|V , i = 1, . . . , q, and let H = {H1, . . . ,
Hq}. Then R′′ is a set of (

∑q
i=1Hi, S)-integral points on V . Let dim |D′| = r. Since dimW > 0,

we have r > 0. We may identify V = |D′| with r-dimensional projective space Pr. Then each
divisor Hi is a hyperplane in V and corresponds to the linear system Pi + |D′ − Pi|.

By repeated application of Lemma 3.7, it follows that there exists a finite union Z of positive-
dimensional linear subspaces L ⊂ V over k, L 6⊂ Hi for all i, such that:

(i) R′′\Z is a finite set;

(ii) for each linear subspace L in the finite union, H|L consists of 6 dimL + 1 hyperplanes of
L in general position.

763

https://doi.org/10.1112/S0010437X15007708 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007708


A. Levin

Let L ⊂ V be an n-dimensional linear space over k, n > 0, such that H|L consists of m 6 n+1
hyperplanes H ′1, . . . ,H

′
m of L in general position. Let

I1 = {i ∈ {1, . . . , q} | Hi|L = H ′j , j ∈ {1, . . . ,m− 1}},
I2 = {i ∈ {1, . . . , q} | Hi|L = H ′m}.

Since the hyperplanes H ′1, . . . ,H
′
m are defined over k, in general position, and m − 1 6 n,

the intersection
⋂m−1
i=1 H ′i =

⋂
i∈I1 Hi ∩ L is nonempty and contains a k-rational point P ′1. Let

P ′ ∈ R′′ ∩ L. Let L′ be the line through P ′ and P ′1 and let {P ′2} = L′ ∩ H ′m. If the points
P ′1, P

′
2 ∈ Symd(C)(k) correspond to the effective k-rational divisors D′1 and D′2, respectively,

then L′ corresponds to a one-dimensional linear system associated to a map φ : C → P1 with
div(φ) = D′1 − D′2. From the definitions,

∑
i∈I1 Pi 6 D′1 and

∑
i∈I2 Pi 6 D′2. Since L′ is not

contained in any of the hyperplanes H ′i, no Pi is contained in the support of both D′1 and
D′2. Then φ has the property that deg φ 6 d and φ({P1, . . . , Pq}) ⊂ {0,∞}. Moreover, since
P ′ ∈ L′(k), it follows that (ψ ◦ ρ)−1(P ′) ⊂ φ−1(k). Therefore, (ψ ◦ ρ)−1(R′′)\Z(D, d, k) is a
finite set.

Before considering the case dimX > 0, we prove part (ii). If C = P1, then Jac(C) is a point
and X = f(W ) is a point for any W ⊂ Symd(C). It then follows from the above case that
R\Z(D, d, k) is a finite set.

Suppose now that q > d. Then we will show that f(W ) is a point. If q > d, then⋂q
i=1 SuppEi = ∅. It follows that

⋂q
i=1 SuppFi = ∅. We now show that if

⋂q
i=1 SuppFi = ∅,

then f(W ) is a point. Let r = rank{Fi}qi=1 be the rank of the subgroup of Div(W ) generated
by the divisors F1, . . . , Fq. By Lemma 4.5, all of the divisors Ei are algebraically equivalent and
so rank{c1(Ei)}qi=1 = 1. Then, since R′′ is a Zariski dense set of k-rational (

∑q
i=1 Fi, S)-integral

points on W , by Lemma 3.3, r + q(W ) 6 dimW + 1. Therefore,

q(W ) 6 dimW + 1− r. (3)

Now, since
⋂q
i=1 SuppFi = ∅ and each divisor Fi is ample, by Lemma 4.6 we have r > dimW +1.

Therefore, by (3) we must have q(W ) = 0. It follows that W does not admit a nonconstant map
to an abelian variety and f(W ) consists of a single point in Jac(C). Therefore, from the case
proved above, if q > d, then R\Z(D, d, k) is a finite set.

Suppose now that dimX > 0. Then, from the previous argument, we must have that⋂q
i=1 SuppFi is nonempty. Let Y = f(

⋂q
i=1 SuppFi). Suppose first that for some P ∈ Y (k), the

fiber f−1(P ) is not contained in the support of E. Let D′ ∈
⋂q
i=1(SuppFi)(k) with f(D′) = P .

Then, viewing D′ as an effective divisor, we have
∑q

i=1 Pi 6 D′ and degD′ = d. Moreover,
since f−1(P ) is not contained in the support of E, none of the Pi are basepoints of the
complete linear system |D′|. It follows that there exists a morphism, over k, φ : C → P1 with
φ({P1, . . . , Pq}) = {0} and deg φ 6 d, proving the theorem in this case. Therefore, we may assume
now that f−1(Y ) is completely contained in the support of E.

Since the set of k-rational points f(R′′) is Zariski dense in X = f(W ) ⊂ Jac(C), by Faltings’
Theorem 3.1, X must be a translate of an abelian subvariety of Jac(C). Suppose that Y has
an irreducible component (over k) E′ of codimension one in X. Without loss of generality,
after possibly replacing k by a finite extension, we may assume that E′ is defined over k.
Since f−1(Y ) ⊂ SuppE, it follows that f(R′′) is a set of (E′, S)-integral points of X. Then,
by Theorem 3.5, f(R′′) is not Zariski dense in X. This contradicts our assumption that R′′ is
Zariski dense in W . So, we may assume now that every component of Y has codimension at
least two in X. We now show that this is impossible. By (3) and the universal property of the
Albanese variety, we have

dimX = dim f(W ) 6 q(W ) 6 dimW + 1− r,
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where r = rank{Fi}qi=1 is the rank of the subgroup of Div(W ) generated by the divisors F1, . . . , Fq.
Then we have the inequality of relative dimensions dimW−dimX > r−1. Since every component
of Y has codimension at least two in X, there exists a curve C ⊂ X not intersecting Y . Let C ′ be
an irreducible component of f−1(C) with f(C ′) = C. Since dimW−dimX > r−1 and dimC = 1,
we have dimC ′ > r. Now, since rank{Fi}qi=1 = r, by Lemma 4.6,

⋂q
i=1(SuppFi) ∩ C ′ 6= ∅. This

contradicts the fact that Y ∩ C = ∅. 2

5. Some examples and open questions

First, we give an example showing that if C has infinitely many integral points of degree d over
a number field k, then there may not exist any morphism φ as in Theorem 1.2 (or Theorem 1.3)
that is definable over k, even allowing Gm to be replaced by a twist of Gm (or {0,∞} by a pair
of points conjugate over k).

Example 5.1. Let k be a number field and let S be a finite set of places of k containing the
archimedean places. Let P1 ∈ P1(k) with [k(P1) : k] = 3 and let P2 and P3 be the two other
points conjugate to P1 over k. Let D = P1 + P2 + P3, a divisor on P1 defined over k. Then we
claim that there exists an infinite set R of (D,S)-integral points that are quadratic over k. To
accomplish this we will take advantage of the construction in [Lev08b, pp. 99–103] which yields
the density of integral points on Sym2(P1\SuppD) ∼= P2\C, where C is a plane cubic irreducible
over k, but with three components over k. As noted by the referee, such a surface is covered by
images of Gm defined over k, but admits no curve parametrized by Gm defined over k.

Let Pi = (αi, 1), i = 1, 2, 3. Let

R′ = {(a, b, c) ∈ k3 | aα2
1 + bα1 + c ∈ O∗k(α1), a 6= 0}.

Let

R = {x ∈ k | ax2 + bx+ c = 0 for some (a, b, c) ∈ R′}.

From [Lev08b, Theorem 7], if we view R′ as a subset of P2 then it is Zariski dense in P2. In
particular, R is an infinite set. Furthermore, R is a set of (D,S)-integral points. To show this, it
suffices to show that for some nonzero constant C, (C/(x− αi)) ∈ Ok(x,αi) for i = 1, 2, 3 and all
x ∈ R. First, there exists a positive integer m such that for all (a, b, c) ∈ R′, ma,mb,mc ∈ Ok.
Let n be a positive integer such that nαi ∈ Ok(αi) for i = 1, 2, 3. Let C = mn. Let x ∈ R be a
root of az2 + bz + c with (a, b, c) ∈ R′. Let x′ be the other root of az2 + bz + c. Then

C

x− αi
=

amn(x′ − αi)
a(x− αi)(x′ − αi)

=
amn(x′ − αi)
aα2

i + bαi + c
.

From our definitions, aα2
i + bαi + c ∈ O∗k(αi)

. We also have amnαi ∈ Ok(αi). Since amx′ satisfies

(amx′)2 + mb(amx′) + (ma)(mc) = 0, we have amx′ ∈ Ok(x′) = Ok(x). Thus, amn(x′ − αi) ∈
Ok(x,αi). So C/(x− αi) ∈ Ok(x,αi) for i = 1, 2, 3 and all x ∈ R.

So there exists an infinite set R of (D,S)-integral points that are quadratic over k. On the
other hand, since P1, P2, and P3 are conjugate over k, it is immediate that there is no quadratic
map φ : P1

→ P1 over k such that φ({P1, P2, P3}) consists of only one or two points.

In the other direction, we note that if there exists a morphism φ, defined over k, as in
Theorem 1.3, then it may be necessary to enlarge S (or extend k) so that there are infinitely
many S-integral points of degree d or less over k on the affine curve.
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Example 5.2. Let d be a positive integer. Let C be a nonsingular projective curve over Q and
let P1, . . . , Pq ∈ C(Q) be distinct points with q > d. Let S = {∞} and let D =

∑q
i=1 Pi. Then

it is a consequence of Bombieri’s version of Runge’s method [Bom83] that all sets R ⊂ {P ∈
C(Q) | [Q(P ) : Q] 6 d} of (D,S)-integral points of degree d or less over Q are finite. Note that
if C = P1 and q 6 2d, then there exist morphisms φ : C → P1 over Q with deg φ = d and
φ({P1, . . . , Pq}) ⊂ {0,∞}.

In view of Example 5.1, we raise the following question.

Question 5.3. If the set {P ∈ C(OL,S) | [L(P ) : L] 6 d} is infinite, can the morphism φ of
Theorem 1.3 always be taken to be defined over L(P1, . . . , Pq)?

Note that Theorem 4.3(ii), where it is assumed that P1, . . . , Pq are k-rational, answers this
question positively when q > d or C = P1. Going further, we may ask whether Theorem 4.3(ii)
holds in general:

Question 5.4. Let C be a nonsingular projective curve defined over a number field k. Let S be
a finite set of places of k containing the archimedean places. Let D =

∑q
i=1 Pi be a nontrivial

divisor defined over k, where Pi ∈ C(k), i = 1, . . . , q, are distinct points. Let d be a positive
integer. Let R ⊂ {P ∈ C(k) | [k(P ) : k] 6 d} be a set of (D,S)-integral points. Is the set
R\Z(D, d, k(P1, . . . , Pq)) always finite?

Along the lines of Question 5.4, we prove the following result.

Theorem 5.5. Under the same hypotheses as Question 5.4, let

Z ′(C, d, k) =
⋃

φ∈k(C)
deg φ6d

φ−1(k).

Then the set

R\Z ′(C, d, k)

is finite.

Proof. We may reduce to considering a set of (D,S)-integral points R ⊂ C(k, d). Let R′ =
ψ(ρ(R)). Let X be the subset of Symd(C) defined by

X = {E ∈ Symd(C)(k) | dim |E| > 0}.
Let g be the genus of C. If d > g, then X = Symd(C) by Riemann–Roch. If d 6 g, then X
is a proper closed subset of Symd(C). Let f : Symd(C) → Jac(C) and E be as in the proof of
Theorem 4.3. So R′ is a set of k-rational (E,S)-integral points on Symd(C). It suffices to show
that R′\X is a finite set. Indeed, if P1 + · · ·+Pd ∈ X(k), then by the definition of X, there exists
a rational function φ ∈ k(C) with deg φ 6 d and φ−1(0) ⊂ {P1, . . . , Pd}. If the points Pi are all
conjugate over k, then we must have φ−1(0) = {P1, . . . , Pd} ⊂ Z ′(C, d, k). It then follows from
the definitions that R\Z ′(C, d, k) is finite.

To complete the proof, we now show that R′\X is a finite set. If f(SuppE) = Jac(C), then
d > g, X = Symd(C), and there is nothing to prove. Otherwise, let E′ = f(SuppE) with, say,
its reduced induced subscheme structure. By a result of Faltings [Fal91], for any ε > 0,∑

v∈S
λE′,v(P ) < εhA(P )

for all but finitely many points P ∈ Jac(C)(k)\E′, where hA is a height associated to any ample
divisor A on Jac(C) (see also [Sil87] for the theory of heights associated to closed subschemes).
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Note that for any finite set T ⊂ Jac(C)(k), the set f−1(T ∪ E′)\(X ∪ SuppE) consists of only
finitely many points. Then, since E ⊂ f∗E′, by functoriality we obtain∑

v∈S
λE,v(P ) 6

∑
v∈S

λf∗E′,v(P ) +O(1) =
∑
v∈S

λE′,v(f(P )) +O(1)

< εhA(f(P )) +O(1)

< εhA′(P ) +O(1)

for all but finitely many points P ∈ Symd(C)(k)\(X ∪ SuppE), where we let A′ = f∗A. Then,
for all P ∈ R′\X, ∑

v∈S
λE,v(P ) = hE(P ) +O(1) < εhA′(P ) +O(1).

Since E is an ample divisor, this implies that R′\X is finite. 2
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algébrique dont l’irrégularité dépasse la dimension, J. Math. Pures Appl. 5 (1926), 9–66.
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