THE LEAST COMMON MULTIPLE OF CONSECUTIVE TERMS IN A QUADRATIC PROGRESSION

GUOYOU QIAN, QIANRONG TAN and SHAOFANG HONG ${ }^{\boxtimes}$

(Received 23 October 2011)

Abstract

Let k be any given positive integer. We define the arithmetic function g_{k} for any positive integer n by $$
g_{k}(n):=\frac{\prod_{i=0}^{k}\left((n+i)^{2}+1\right)}{\operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}} .
$$

We first show that g_{k} is periodic. Subsequently, we provide a detailed local analysis of the periodic function g_{k}, and determine its smallest period. We also obtain an asymptotic formula for $\log \operatorname{lcm} \mathrm{m}_{0 \leq i \leq k}$ $\left\{(n+i)^{2}+1\right\}$.

2010 Mathematics subject classification: primary 11B25; secondary 11N13, 11A05. Keywords and phrases: quadratic progression, least common multiple, p-adic valuation, arithmetic function, smallest period.

1. Introduction and the main result

There are many beautiful and important theorems about arithmetic progressions in number theory, the two most famous examples being Dirichlet's theorem [12] and the Green-Tao theorem [6]. See [2, 15] for some other results. However, there are few renowned theorems but more conjectures about quadratic progressions, among which the sequence $\left\{n^{2}+1\right\}_{n \in \mathbb{N}}$ is best known. A famous conjecture [8] states that there are infinitely many primes of the form $n^{2}+1$. This seems to be extremely difficult to prove in the present state of knowledge. The best result is due to Iwaniec [13], who showed that there exist infinitely many integers n such that $n^{2}+1$ has at most two prime factors.

To investigate the arithmetic properties of a given sequence, studying the least common multiple of its consecutive terms seems quite natural. The least common multiple of consecutive integers was investigated by Chebyshev in the first significant

[^0]attempt to prove the prime number theorem in [3]. Since then, the topic of least common multiple of any given sequence of positive integers has become popular. Hanson [7] and Nair [14] respectively obtained the upper bound and lower bound of $\mathrm{lcm}_{1 \leq i \leq n}\{i\}$. Bateman et al. [1] obtained an asymptotic estimate for the least common multiple of arithmetic progressions. Recently, Hong et al. [10] obtained an asymptotic estimate for the least common multiple of a sequence of products of linear polynomials.

In [4], Farhi investigated the least common multiple $\operatorname{lcm}_{0 \leq i \leq k}\{n+i\}$ of finitely many consecutive integers by introducing the arithmetic function

$$
\bar{g}_{k}(n):=\frac{\prod_{i=0}^{k}(n+i)}{\operatorname{lcm}_{0 \leq i \leq k}\{n+i\}},
$$

and also proved some arithmetic properties of $\operatorname{lcm}_{0 \leq i \leq k}\{n+i\}$. Farhi showed that \bar{g}_{k} is periodic and k ! is a period of it. Let \bar{P}_{k} be the smallest period of \bar{g}_{k}. Then $\bar{P}_{k} \mid k!$. But Farhi did not determine the exact value of \bar{P}_{k} in [4], so he posed the open problem of determining the smallest period \bar{P}_{k}. Hong and Yang [11] improved the period k ! to $\operatorname{lcm}_{1 \leq i \leq k}\{i\}$ by showing that $\bar{g}_{k}(1) \mid \bar{g}_{k}(n)$ for any positive integer n. Moreover, they conjectured that $\operatorname{lcm}_{1 \leq i \leq k+1}\{i\} /(k+1)$ divides \bar{P}_{k} for all nonnegative integers k. Farhi and Kane [5] confirmed the Hong-Yang conjecture and determined the exact value of \bar{P}_{k}. Note that Farhi [4] also obtained the following nontrivial lower bound: $\operatorname{lcm}_{1 \leq i \leq n}\left\{i^{2}+1\right\} \geq 0.32 \cdot(1.442)^{n}$ (for all $n \geq 1$).

Let \mathbb{Q} and \mathbb{N} denote the field of rational numbers and the set of nonnegative integers. Define $\mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$. Let $k, b \in \mathbb{N}$ and $a \in \mathbb{N}^{*}$. Recently, Hong and Qian [9] studied the least common multiple of finitely many consecutive terms in arithmetic progressions. Actually, they defined the arithmetic function $g_{k, a, b}: \mathbb{N}^{*} \longrightarrow \mathbb{N}^{*}$ by

$$
g_{k, a, b}(n)=\frac{\prod_{i=0}^{k}(b+(n+i) a)}{\operatorname{lcm}_{0 \leq i \leq k}\{b+(n+i) a\}}
$$

They proved that $g_{k, a, b}$ is periodic and determined the exact value of the smallest period of $g_{k, a, b}$.

In this paper, we are concerned with the least common multiple of consecutive terms in the quadratic sequence $\left\{n^{2}+1\right\}_{n \in \mathbb{N}}$. Let k be a positive integer. We define the arithmetic function g_{k} for any positive integer n by

$$
g_{k}(n):=\frac{\prod_{i=0}^{k}\left((n+i)^{2}+1\right)}{\operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}} .
$$

One may naturally ask the following question: Is g_{k} periodic and, if so, what is the smallest period of g_{k} ?

Suppose that g_{k} is periodic. Then we let P_{k} denote its smallest period. Now we can use P_{k} to give a formula for $\operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}$ as follows: for any positive integer n,

$$
\operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}=\frac{\prod_{i=0}^{k}\left((n+i)^{2}+1\right)}{g_{k}\left(\langle n\rangle_{P_{k}}\right)},
$$

where $\langle n\rangle_{P_{k}}$ means the least positive integer congruent to n modulo P_{k}. Therefore, it is important to determine the exact value of P_{k}.

As usual, for any prime number p, we let v_{p} be the normalised p-adic valuation of \mathbb{Q}, that is, $v_{p}(a)=b$ if $p^{b} \| a$. We also let $\operatorname{gcd}(a, b)$ denote the greatest common divisor of any integers a and b. For any real number x, we denote by $\lfloor x\rfloor$ the largest integer no greater than x. For any positive integer k, we define

$$
R_{k}:=\operatorname{lcm}_{1 \leq i \leq k}\left\{i\left(i^{2}+4\right)\right\}
$$

and

$$
Q_{k}:=2^{\left((-1)^{k}+1\right) / 2} \cdot \frac{R_{k}}{2^{v_{2}\left(R_{k}\right)} \prod_{p \equiv 3(\bmod 4)} p^{v_{p}\left(R_{k}\right)}} .
$$

Evidently, $v_{p}\left(Q_{k}\right)=v_{p}\left(R_{k}\right)$ for any prime $p \equiv 1(\bmod 4)$. We can now state the main result of this paper.
Theorem 1.1. Let k be a positive integer. Then the arithmetic function g_{k} is periodic, and its smallest period equals Q_{k} except that $v_{p}(k+1) \geq v_{p}\left(Q_{k}\right) \geq 1$ for at most one prime $p \equiv 1(\bmod 4)$, in which case its smallest period is equal to $Q_{k} / p^{v_{p}\left(Q_{k}\right)}$.

In Section 2, we first show that the arithmetic function g_{k} is periodic with R_{k} as a period of it by a well-known result of Hua. Then, with a little more effort, we show that Q_{k} is a period of g_{k} (see Theorem 2.5). Subsequently, in Section 3, we develop further p-adic analysis of the periodic function g_{k}, and determine the smallest period of g_{k}. In the final section, we give the proof of Theorem 1.1 and then provide an asymptotic formula for $\log \operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}$.

2. Q_{k} is a period of g_{k}

In this section, we first prove that g_{k} is periodic by a theorem of Hua in [12]. We also arrive at a nontrivial period of g_{k}.

Lemma 2.1. The arithmetic function g_{k} is periodic, and R_{k} is a period of g_{k}.
Proof. For any positive integer n, using [12, Theorem 7.3] (see [12, p. 11]), we obtain that

$$
g_{k}(n)=\prod_{r=1}^{k} \prod_{0 \leq i_{0}<\cdots<i_{r} \leq k}\left(\operatorname{gcd}\left(\left(n+i_{0}\right)^{2}+1, \ldots,\left(n+i_{r}\right)^{2}+1\right)\right)^{(-1)^{r-1}}
$$

and

$$
g_{k}\left(n+R_{k}\right)=\prod_{r=1}^{k} \prod_{0 \leq i_{0}<\cdots<i_{r} \leq k}\left(\operatorname{gcd}\left(\left(n+R_{k}+i_{0}\right)^{2}+1, \ldots,\left(n+R_{k}+i_{r}\right)^{2}+1\right)\right)^{(-1)^{r-1}} .
$$

We claim that $g_{k}\left(n+R_{k}\right)=g_{k}(n)$. To show this claim, it suffices to prove that

$$
\operatorname{gcd}\left(\left(n+R_{k}+i\right)^{2}+1,\left(n+R_{k}+j\right)^{2}+1\right)=\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)
$$

for any $0 \leq i<j \leq k$. Evidently

$$
(2 n+3 j-i)\left((n+i)^{2}+1\right)+(-2 n+j-3 i)\left((n+j)^{2}+1\right)=(j-i)\left((j-i)^{2}+4\right)
$$

Hence

$$
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid(j-i)\left((j-i)^{2}+4\right)
$$

But $(j-i)\left((j-i)^{2}+4\right) \mid R_{k}$. So

$$
\begin{equation*}
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid R_{k} \tag{2.1}
\end{equation*}
$$

We then derive that

$$
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid\left(n+i \pm R_{k}\right)^{2}+1
$$

and

$$
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid\left(n+j \pm R_{k}\right)^{2}+1
$$

It follows that

$$
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid \operatorname{gcd}\left(\left(n+R_{k}+i\right)^{2}+1,\left(n+R_{k}+j\right)^{2}+1\right)
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right) \mid \operatorname{gcd}\left(\left(n-R_{k}+i\right)^{2}+1,\left(n-R_{k}+j\right)^{2}+1\right) \tag{2.2}
\end{equation*}
$$

Replacing n by $n+R_{k}$ in (2.2),

$$
\operatorname{gcd}\left(\left(n+R_{k}+i\right)^{2}+1,\left(n+R_{k}+j\right)^{2}+1\right) \mid \operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)
$$

Therefore

$$
\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)=\operatorname{gcd}\left(\left(n+i+R_{k}\right)^{2}+1,\left(n+j+R_{k}\right)^{2}+1\right)
$$

for any positive integer n and any integers i, j with $0 \leq i<j \leq k$. The claim is proved. Thus g_{k} is periodic with R_{k} as its period.

For any given prime p, define the arithmetic function $g_{p, k}$ for any positive integer n by $g_{p, k}(n):=v_{p}\left(g_{k}(n)\right)$. Since g_{k} is a periodic function, $g_{p, k}$ is periodic for each prime p and P_{k} is a period of $g_{p, k}$. Let $P_{p, k}$ be the smallest period of $g_{p, k}$. Then we have the following result.

Lemma 2.2. For any prime $p, P_{p, k}$ divides $p^{v_{p}\left(R_{k}\right)}$. Further,

$$
P_{k}=\prod_{p \mid R_{k}} P_{p, k} .
$$

Proof. First, we show that $p^{v_{p}\left(R_{k}\right)}$ is a period of $g_{p, k}$ for each prime p. For this purpose, it is sufficient to prove that

$$
\begin{align*}
& v_{p}\left(\operatorname{gcd}\left(\left(n+i+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1,\left(n+j+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)\right) \\
& \quad=v_{p}\left(\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)\right) \tag{2.3}
\end{align*}
$$

for any given positive integer n and any two integers i, j with $0 \leq i<j \leq k$.
By (2.1), we obtain $v_{p}\left(\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)\right) \leq v_{p}\left(R_{k}\right)$. Hence

$$
v_{p}\left((n+i)^{2}+1\right) \leq v_{p}\left(R_{k}\right) \quad \text { or } \quad v_{p}\left((n+j)^{2}+1\right) \leq v_{p}\left(R_{k}\right) .
$$

Therefore

$$
v_{p}\left((n+i)^{2}+1\right) \leq v_{p}\left(\left(n+i \pm p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)
$$

or

$$
v_{p}\left((n+j)^{2}+1\right) \leq v_{p}\left(\left(n+j \pm p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)
$$

So we obtain that

$$
\begin{aligned}
& v_{p}\left(\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)\right) \\
& \quad=\min \left\{v_{p}\left((n+i)^{2}+1\right), v_{p}\left((n+j)^{2}+1\right)\right\} \\
& \quad \leq \min \left\{v_{p}\left(\left(n+i+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right), v_{p}\left(\left(n+j+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)\right\} \\
& \quad=v_{p}\left(\operatorname{gcd}\left(\left(n+i+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1,\left(n+j+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)\right)
\end{aligned}
$$

and

$$
\begin{align*}
& v_{p}\left(\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)\right) \\
& \quad \leq v_{p}\left(\operatorname{gcd}\left(\left(n+i-p^{v_{p}\left(R_{k}\right)}\right)^{2}+1,\left(n+j-p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)\right) \tag{2.4}
\end{align*}
$$

Replacing n by $n+p^{v_{p}\left(R_{k}\right)}$ in (2.4) gives us that

$$
\begin{aligned}
& v_{p}\left(\operatorname{gcd}\left(\left(n+i+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1,\left(n+j+p^{v_{p}\left(R_{k}\right)}\right)^{2}+1\right)\right) \\
& \quad \leq v_{p}\left(\operatorname{gcd}\left((n+i)^{2}+1,(n+j)^{2}+1\right)\right) .
\end{aligned}
$$

Therefore (2.3) is proved. It then follows that for any given prime p, we have $g_{p, k}(n)=g_{p, k}\left(n+p^{v_{p}\left(R_{k}\right)}\right)$ for any positive integer n. That is, $p^{v_{p}\left(R_{k}\right)}$ is a period of $g_{p, k}$. Thus $P_{p, k} \mid p^{v_{p}\left(R_{k}\right)}$. This implies that $P_{p, k}$ are relatively prime for different prime numbers p and $P_{p, k}=1$ for those primes $p \nmid R_{k}$. Hence $\prod_{\text {prime } q \mid R_{k}} P_{q, k} \mid P_{k}$ since $P_{q, k} \mid P_{k}$ for each prime q. Moreover, since $v_{p}\left(g_{k}\left(n+\prod_{\text {prime } q \mid R_{k}} P_{q, k}\right)\right)=v_{p}\left(g_{k}(n)\right)$ for each prime p and any positive integer n, it follows that $\prod_{p \mid R_{k}} P_{p, k}$ is a period of g_{k}, which implies that $P_{k} \mid \prod_{p \mid R_{k}} P_{p, k}$. Hence $P_{k}=\prod_{p \mid R_{k}} P_{p, k}$ as required.

To determine the smallest period P_{k} of g_{k}, by Lemma 2.2 it is enough to determine the value of $P_{p, k}$ for all prime factors p of R_{k}. In the following, we treat some special cases, and show that Q_{k} is a period of g_{k}.

Lemma 2.3. We have $P_{2, k}=2^{\left((-1)^{k}+1\right) / 2}$.
Proof. Clearly, for any even integer $n, v_{2}\left(n^{2}+1\right)=0$. For any odd integer n, letting $n=2 m+1$ gives us that

$$
v_{2}\left(n^{2}+1\right)=v_{2}\left((2 m+1)^{2}+1\right)=v_{2}(4 m(m+1)+2)=1 .
$$

If $2 \nmid k$, then by direct computation, $v_{2}\left(g_{k}(n)\right)=(k-1) / 2$ for any positive integer n. Thus $P_{2, k}=1$ if $2 \nmid k$.

If $2 \mid k$, then by direct computation,

$$
v_{2}\left(g_{k}(n)\right)= \begin{cases}\frac{k}{2} & \text { if } n \text { is odd } \\ \frac{k}{2}-1 & \text { if } n \text { is even }\end{cases}
$$

That is, $v_{2}\left(g_{k}(n+2)\right)=v_{2}\left(g_{k}(n)\right)$ and $v_{2}\left(g_{k}(n+1)\right) \neq v_{2}\left(g_{k}(n)\right)$ for every positive integer n. Thus $P_{2, k}=2$ if $2 \mid k$. So Lemma 2.3 is proved.

Lemma 2.4. If $p \equiv 3(\bmod 4)$, then $P_{p, k}=1$.
Proof. It is a well-known fact that for any positive integer $n, n^{2}+1$ has no prime factor p of the form $p \equiv 3(\bmod 4)$ (see, for example, [12]). Thus for any prime $p \equiv 3(\bmod 4)$, we have $v_{p}\left(n^{2}+1\right)=0$. It then follows that $g_{p, k}(n)=v_{p}\left(g_{k}(n)\right)=0$. So $P_{p, k}=1$ as desired.

From the above three lemmas, we get the following result.
Theorem 2.5. Let k be a positive integer. Then Q_{k} is a period of g_{k}.
Proof. By Lemmas 2.2-2.4,

$$
\begin{equation*}
P_{k}=P_{2, k}\left(\prod_{\substack{p \equiv 3(\bmod 4) \\ p \mid R_{k}}} P_{p, k}\right)\left(\prod_{\substack{p \equiv 1(\bmod 4) \\ p \mid R_{k}}} P_{p, k}\right)=2^{\left((-1)^{k}+1\right) / 2} \prod_{\substack{p \equiv 1(\bmod 4) \\ p \mid R_{k}}} P_{p, k} . \tag{2.5}
\end{equation*}
$$

Since $P_{p, k}$ is a power of p for each prime p,

$$
\prod_{p \mid R_{k}, p \equiv 1(\bmod 4)} P_{p, k} \left\lvert\, \frac{R_{k}}{2^{v_{2}\left(R_{k}\right)} \prod_{p \equiv 3(\bmod 4)} p^{v_{p}\left(R_{k}\right)}} .\right.
$$

Thus $P_{k} \mid Q_{k}$ and Q_{k} is a period of g_{k}. This completes the proof of Theorem 2.5.

3. The case $p \equiv 1(\bmod 4)$

By Theorem 2.5, Q_{k} is a period of g_{k}. In order to determine its smallest period, we need to develop more detailed p-adic analysis to treat the remaining case $p \equiv$ $1(\bmod 4)$. Let

$$
S_{k}(n):=\left\{n^{2}+1,(n+1)^{2}+1, \ldots,(n+k)^{2}+1\right\}
$$

be the set of any $k+1$ consecutive terms in the quadratic progression $\left\{m^{2}+1\right\}_{m \in \mathbb{N}}$.

In what follows, we only need to treat the remaining case that $p \mid R_{k}$ and $p \equiv$ $1(\bmod 4)$ by Theorem 2.5 . First, it is known that for any prime $p \equiv 1(\bmod 4)$, $x^{2}+1 \equiv 0(\bmod p)$ has exactly two solutions in a complete residue system modulo p. It then follows immediately from Hensel's lemma that for any positive integer e, the congruence $x^{2}+1 \equiv 0\left(\bmod p^{e}\right)$ has exactly two solutions in a complete residue system modulo p^{e}. In other words, we have the following result.

Lemma 3.1. Let e and m be any given positive integers. If $p \equiv 1(\bmod 4)$, then there exist exactly two terms divisible by p^{e} in any p^{e} consecutive terms of the quadratic progression $\left\{(m+i)^{2}+1\right\}_{i \in \mathbb{N}}$.

Similarly, for all primes p with $p \equiv 1(\bmod 4)$, we have by Hensel's lemma that the congruence $x^{2}+4 \equiv 0\left(\bmod p^{e}\right)$ has exactly two solutions in the interval $\left[1, p^{e}\right]$. For any positive integer e, we define

$$
X_{p^{e}}:=\text { the smallest positive root of } x^{2}+4 \equiv 0\left(\bmod p^{e}\right) .
$$

Since $X_{p^{e}}$ is the smallest positive root of $x^{2}+4 \equiv 0\left(\bmod p^{e}\right)$ for any positive integer e, we have that $X_{p^{e}} \leq X_{p^{c+1}}$ and $X_{p^{e}}<X_{p^{c+r}}$ for some positive integer r. Moreover, we have the following result.

Lemma 3.2. For any prime $p \equiv 1(\bmod 4)$ and any positive integer n, if $X_{p^{e}} \leq k<X_{p^{c+1}}$ for some positive integer e, then there is at most one element divisible by p^{e+1} in $S_{k}(n)$.

Proof. Suppose that there exist integers $n_{0}>0$ and $0 \leq i_{1} \leq k, 0 \leq i_{2} \leq k\left(i_{1} \neq i_{2}\right)$ such that $\left(n_{0}+i_{1}\right)^{2}+1 \equiv 0\left(\bmod p^{e+1}\right)$ and $\left(n_{0}+i_{2}\right)^{2}+1 \equiv 0\left(\bmod p^{e+1}\right)$. Then $2\left(n_{0}+i_{1}\right)$ and $2\left(n_{0}+i_{2}\right)$ are both the solutions of the congruences $x^{2}+4 \equiv 0\left(\bmod p^{e+1}\right)$. Since $2\left(n_{0}+i_{1}\right) \not \equiv 2\left(n_{0}+i_{2}\right)\left(\bmod p^{e+1}\right)$ for $0 \leq i_{1} \neq i_{2} \leq k<X_{p^{e+1}}<p^{e+1}$, we can assume that

$$
2\left(n_{0}+i_{1}\right) \equiv X_{p^{e+1}}\left(\bmod p^{e+1}\right) \quad \text { and } \quad 2\left(n_{0}+i_{2}\right) \equiv-X_{p^{e+1}}\left(\bmod p^{e+1}\right) .
$$

Then

$$
2\left(n_{0}+i_{1}\right)-2\left(n_{0}+i_{2}\right) \equiv 2\left(i_{1}-i_{2}\right) \equiv 2 X_{p^{e+1}}\left(\bmod p^{e+1}\right),
$$

which implies that $i_{1}-i_{2} \equiv X_{p^{c+1}}\left(\bmod p^{e+1}\right)$. That is, $X_{p^{e+1}}+i_{2}-i_{1} \equiv 0\left(\bmod p^{e+1}\right)$.
On the other hand, from the fact that

$$
0<X_{p^{e+1}}-k \leq X_{p^{e+1}}+i_{2}-i_{1} \leq X_{p^{e+1}}+k<2 X_{p^{e+1}} \leq 2 \cdot \frac{p^{e+1}-1}{2}<p^{e+1}
$$

we deduce that $X_{p^{e+1}}+i_{2}-i_{1} \not \equiv 0\left(\bmod p^{e+1}\right)$. This is a contradiction. Thus we obtain the desired result.

For simplicity, we write $l:=v_{p}\left(R_{k}\right)$. For all primes $p \equiv 1(\bmod 4)$, since $v_{p}\left(\operatorname{gcd}\left(i, i^{2}+4\right)\right)=v_{p}(\operatorname{gcd}(i, 4))=0$,

$$
l=\max _{1 \leq i \leq k}\left\{v_{p}\left(i\left(i^{2}+4\right)\right)\right\}=\max _{1 \leq i \leq k}\left\{v_{p}\left(i^{2}+4\right), v_{p}(i)\right\}=\max \left\{\max _{1 \leq i \leq k}\left\{v_{p}\left(i^{2}+4\right)\right\}, \max _{1 \leq i \leq k}\left\{v_{p}(i)\right\}\right\} .
$$

Note that the congruence $x^{2}+4 \equiv 0\left(\bmod p^{\max _{1 \leq i \leq k}\left\langle v_{p}(i)\right\}}\right)$ has exactly two solutions in the interval $\left[1, p^{\left.\max _{1 \leq i \leq k} k v_{p}(i)\right\}}\right]$. It follows that there is an integer $i_{0} \in[1, k]$ such that $v_{p}\left(i_{0}^{2}+4\right) \geq \max _{1 \leq i \leq k}\left\{v_{p}(i)\right\}$, which implies that $\max _{1 \leq i \leq k}\left\{v_{p}\left(i^{2}+4\right)\right\} \geq \max _{1 \leq i \leq k}\left\{v_{p}(i)\right\}$. Hence

$$
\begin{equation*}
l=\max _{1 \leq i \leq k}\left\{v_{p}\left(i^{2}+4\right)\right\} \tag{3.1}
\end{equation*}
$$

Then $j^{2}+4 \equiv 0\left(\bmod p^{l}\right)$ for some $1 \leq j \leq k$ and $i^{2}+4 \not \equiv 0\left(\bmod p^{l+1}\right)$ for all $1 \leq i \leq k$. By the definition of $X_{p^{\prime}}$, we have $k \geq j \geq X_{p^{\prime}}$ and $v_{p}\left(X_{p^{l}}^{2}+4\right) \geq l$. Since $k \geq X_{p^{\prime}}$, by (3.1) we have $v_{p}\left(X_{p^{+}}^{2}+4\right) \leq l$. So

$$
l=v_{p}\left(X_{p^{l}}^{2}+4\right)
$$

We claim that $k<X_{p^{t+1}}$. Otherwise, $v_{p}\left(X_{p^{l+1}}^{2}+4\right) \leq l$ by (3.1), which is impossible since $v_{p}\left(X_{p^{+1+}}^{2}+4\right) \geq l+1$. The claim is proved. Therefore

$$
\begin{equation*}
X_{p^{\prime}} \leq k<X_{p^{l+1}} \tag{3.2}
\end{equation*}
$$

Now, by (3.2) and Lemma 3.2, there is at most one element divisible by p^{l+1} in $S_{k}(n)$ for any positive integer n. It is easy to see that

$$
\begin{align*}
g_{p, k}(n) & =\sum_{m \in S_{k}(n)} v_{p}(m)-\max _{m \in S_{k}(n)}\left\{v_{p}(m)\right\} \\
& =\sum_{e \geq 1}\left|S_{k}^{(e)}(n)\right|-\sum_{e \geq 1}\left(1 \text { if } p^{e} \mid m \text { for some } m \in S_{k}(n)\right) \tag{3.3}\\
& =\sum_{e \geq 1} \max \left\{0,\left|S_{k}^{(e)}(n)\right|-1\right\},
\end{align*}
$$

where

$$
\begin{equation*}
S_{k}^{(e)}(n):=\left\{m \in S_{k}(n): p^{e} \mid m\right\} . \tag{3.4}
\end{equation*}
$$

Based on the above discussion, all the terms on the right-hand side of (3.3) are 0 if $e \geq l+1$. Therefore by (3.3),

$$
\begin{equation*}
g_{p, k}(n)=\sum_{e=1}^{l} f_{e}(n)=\sum_{e=1}^{l-1} f_{e}(n)+f_{l}(n) \tag{3.5}
\end{equation*}
$$

where $f_{e}(n):=\max \left\{0,\left|S_{k}^{(e)}(n)\right|-1\right\}$. Evidently,

$$
f_{e}(n)=\left|S_{k}^{(e)}(n)\right|-1 \quad \text { if }\left|S_{k}^{(e)}(n)\right|>1
$$

and 0 if $\left|S_{k}^{(e)}(n)\right| \leq 1$.
Lemma 3.3. There is at most one prime $p \equiv 1(\bmod 4)$ such that $p \mid R_{k}$ and $v_{p}(k+1) \geq$ $v_{p}\left(R_{k}\right)$.

Proof. Suppose that there are two distinct primes p and q congruent to 1 modulo 4 such that $v_{p}(k+1) \geq v_{p}\left(R_{k}\right) \geq 1$ and $v_{q}(k+1) \geq v_{q}\left(R_{k}\right) \geq 1$. Then

$$
k+1 \geq p^{v_{p}\left(R_{k}\right)} q^{v_{q}\left(R_{k}\right)} \geq \max \left\{p q, p^{v_{p}\left(L_{k}\right)} q^{v_{q}\left(L_{k}\right)}\right\},
$$

where $L_{k}:=\operatorname{lcm}_{1 \leq i \leq k}\{i\}$.
If $v_{p}\left(L_{k}\right)=0$ or $v_{q}\left(L_{k}\right)=0$, then $k+1=p$ or q, which is impossible since $k+1 \geq p q$. If $v_{p}\left(L_{k}\right) \geq 1$ and $v_{q}\left(L_{k}\right) \geq 1$, then

$$
k+1 \geq p^{v_{p}\left(L_{k}\right)} q^{v_{q}\left(L_{k}\right)}>\min \left\{p^{v_{p}\left(L_{k}\right)+1}, q^{v_{q}\left(L_{k}\right)+1}\right\},
$$

which implies that $k \geq \min \left\{p^{v_{p}\left(L_{k}\right)+1}, q^{v_{q}\left(L_{k}\right)+1}\right\}$. This is in contradiction to

$$
p^{v_{p}\left(L_{k}\right)+1}=p^{\left\lfloor\log _{p} k\right\rfloor+1} \geq k+1 \quad \text { and } \quad q^{v_{q}\left(L_{k}\right)+1} \geq k+1 .
$$

Thus there is at most one prime $p \equiv 1(\bmod 4)$ such that $v_{p}(k+1) \geq v_{p}\left(R_{k}\right) \geq 1$. Lemma 3.3 is proved.

Now by providing p-adic analysis of (3.5) in detail, we get the following result.
Lemma 3.4. Let p be a prime satisfying $p \mid R_{k}$ and $p \equiv 1(\bmod 4)$. Then $P_{p, k}=p^{v_{p}\left(R_{k}\right)}$ except that $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)$, in which case $P_{p, k}=1$.

Proof. We begin with the proof for the case $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)=l$. For any given positive integer n, the set $\left\{(n+1)^{2}+1, \ldots,(n+k)^{2}+1\right\}$ is the intersection of $S_{k}(n)$ and $S_{k}(n+1)$. The distinct terms of $S_{k}(n)$ and $S_{k}(n+1)$ are $n^{2}+1$ and $(n+k+1)^{2}+1$, respectively. Therefore, to compare the number of terms divisible by p^{e} in the two sets $S_{k}(n)$ and $S_{k}(n+1)$ for each $e \in\{1, \ldots, l\}$, it suffices to compare the two terms $n^{2}+1$ and $(n+k+1)^{2}+1$. Since $v_{p}(k+1) \geq l$,

$$
n^{2}+1 \equiv(n+k+1)^{2}+1\left(\bmod p^{e}\right)
$$

for each $1 \leq e \leq l$. Thus, for any positive integer n and each $e \in\{1, \ldots, l\}$, we have $\left|S_{k}^{(e)}(n)\right|=\left|S_{k}^{(e)}(n+1)\right|$, where $S_{k}^{(e)}(n)$ is defined in (3.4). Hence we deduce by (3.5) that $f_{e}(n)=f_{e}(n+1)$ for each $e \in\{1, \ldots, l\}$. Thus $g_{p, k}(n)=g_{p, k}(n+1)$ for any positive integer n. That is, $P_{p, k}=1$ if $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)$. So Lemma 3.4 is true if $v_{p}(k+1) \geq$ $v_{p}\left(R_{k}\right)=l$.

In what follows, we let $v_{p}(k+1)<v_{p}\left(R_{k}\right)=l$. Since $v_{p}(k+1)<l$, we can suppose that $k+1 \equiv r\left(\bmod p^{l}\right)$ for some $1 \leq r \leq p^{l}-1$. By the definition of $X_{p^{l}}$, we have $X_{p^{l}} \leq$ $\left(p^{l}-1\right) / 2$, so there exists a positive integer $v_{0} \in[1,(p+1) / 2]$ such that $\left(v_{0}-1\right) p^{l-1} \leq$ $X_{p^{l}}<v_{0} p^{l-1}$. For any positive integer $n,\left(n+i+v_{0} p^{l-1}\right)^{2}+1 \equiv(n+i)^{2}+1\left(\bmod p^{e}\right)$ for all integers $i \in\{0,1, \ldots, k\}$ and $1 \leq e \leq l-1$. So $\left|S_{k}^{(e)}(n)\right|=\left|S_{k}^{(e)}\left(n+v_{0} p^{l-1}\right)\right|$ for all integers $1 \leq e \leq l-1$. It then follows that

$$
\sum_{e=1}^{l-1} f_{e}\left(n+v_{0} p^{l-1}\right)=\sum_{e=1}^{l-1} f_{e}(n) .
$$

By Lemma 2.2, p^{l} is a period of $g_{p, k}$. We claim that there is a positive integer n_{0} such that $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$. It then follows from (3.5) and the claim that p^{l-1} is not a period of $g_{p, k}$ and this concludes the proof of Lemma 3.4 for the case $v_{p}(k+1)<v_{p}\left(R_{k}\right)=l$. Our final task is to prove the claim.

First, we note the fact that we can always find a positive integer x_{0} with $x_{0}^{2}+1 \equiv$ $0\left(\bmod p^{l}\right)$ such that either $\left(x_{0}+X_{p^{l}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)$ or $\left(x_{0}-X_{p^{\prime}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)$. Actually, for any root $y_{p^{l}}$ of the congruence $x^{2}+1 \equiv 0\left(\bmod p^{l}\right)$, it is obvious that $X_{p^{l}} \equiv 2 y_{p^{l}}$ or $-2 y_{p^{l}}\left(\bmod p^{l}\right)$. So if we choose a positive integer x_{0} such that $2 x_{0} \equiv-X_{p^{l}}\left(\bmod p^{l}\right)$, then $x_{0}^{2}+1 \equiv 0\left(\bmod p^{l}\right)$ and $\left(x_{0}+X_{p^{l}}\right)^{2}+1 \equiv x_{0}^{2}+1+X_{p^{l}}^{2}-$ $X_{p^{l}} \cdot X_{p^{l}} \equiv 0\left(\bmod p^{l}\right)$. On the other hand, if we choose x_{0} such that $2 x_{0} \equiv X_{p^{l}}\left(\bmod p^{l}\right)$, then $x_{0}^{2}+1 \equiv 0\left(\bmod p^{l}\right)$ and $\left(x_{0}-X_{p^{l}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)$. We now divide the proof of the claim into the following two cases.

Case 1. $k \leq v_{0} p^{l-1}$. By the above discussion, we can choose an integer n_{0} satisfying $n_{0}^{2}+1 \equiv 0\left(\bmod p^{l}\right)$ and $\left(n_{0}+X_{p^{\prime}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)$. In order to prove the claim in this case, it is sufficient to compare the number of terms divisible by p^{l} in the following two sets:

$$
S_{k}\left(n_{0}\right)=\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+X_{p^{\prime}}\right)^{2}+1, \ldots,\left(n_{0}+k\right)^{2}+1\right\}
$$

and

$$
S_{k}\left(n_{0}+v_{0} p^{l-1}\right)=\left\{\left(n_{0}+v_{0} p^{l-1}\right)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}
$$

Since $S_{k}\left(n_{0}\right)$ consists of $k+1$ terms and $k+1<p^{l}$, there are by Lemma 3.1 exactly two terms divisible by p^{l} in the set $S_{k}\left(n_{0}\right): n_{0}^{2}+1$ and $\left(n_{0}+X_{p^{\prime}}\right)^{2}+1$. Therefore $f_{l}\left(n_{0}\right)=1$.

We now consider the set $S_{k}\left(n_{0}+v_{0} p^{l-1}\right)$. By Lemma 3.1, we know that the terms divisible by p^{l} in the quadratic progression $\left\{\left(n_{0}+i\right)^{2}+1\right\}_{i \in \mathbb{N}}$ must be of the form $\left(n_{0}+t_{1} p^{l}\right)^{2}+1$ or $\left(n_{0}+X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$, where $t_{1}, t_{2} \in \mathbb{N}$. If $v_{0} \leq(p-1) / 2$, then

$$
X_{p^{l}}<v_{0} p^{l-1} \leq v_{0} p^{l-1}+j \leq v_{0} p^{l-1}+k \leq 2 v_{0} p^{l-1} \leq(p-1) p^{l-1}<p^{l} \quad \text { for all } 0 \leq j \leq k
$$

Hence there is no term of the form $\left(n_{0}+t_{1} p^{l}\right)^{2}+1$ or $\left(n_{0}+X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$ in the set $S_{k}\left(n_{0}+v_{0} p^{l-1}\right)$, where $t_{1}, t_{2} \in \mathbb{N}$. That is, $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right|=0$. Thus $f_{l}\left(n_{0}+v_{0} p^{l-1}\right)=$ 0 if $v_{0} \leq(p-1) / 2$. If $v_{0}=(p+1) / 2$, then for all $0 \leq j \leq k$,

$$
X_{p^{l}}<v_{0} p^{l-1} \leq v_{0} p^{l-1}+j \leq v_{0} p^{l-1}+k \leq 2 v_{0} p^{l-1} \leq p^{l}+p^{l-1}<p^{l}+X_{p^{l}}
$$

and

$$
k+v_{0} p^{l-1} \geq X_{p^{l}}+v_{0} p^{l-1} \geq\left(2 v_{0}+1\right) p^{l-1}=p^{l}
$$

Hence there is no term of the form $\left(n_{0}+X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$ in the set $S_{k}\left(n_{0}+v_{0} p^{l-1}\right)$ while the term $\left(n_{0}+p^{l}\right)^{2}+1$ is the only term divisible by p^{l} in the set $S_{k}\left(n_{0}+\right.$ $\left.v_{0} p^{l-1}\right)$. So $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right|=1$ and $f_{l}\left(n_{0}+v_{0} p^{l-1}\right)=0$ if $v_{0}=(p+1) / 2$. Thus $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$ as desired. The proof of the claim in this case is concluded.

Case 2. $k>v_{0} p^{l-1}$. As in the proof of case 1, to prove the claim in this case, we need to choose a suitable n_{0} and compare the number of terms divisible by p^{l} in the following two sets:

$$
S_{k}\left(n_{0}\right)=\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1,\left(n_{0}+v_{0} p^{l-1}\right)^{2}+1, \ldots,\left(n_{0}+k\right)^{2}+1\right\}
$$

and

$$
\begin{aligned}
& S_{k}\left(n_{0}+v_{0} p^{l-1}\right)=\left\{\left(n_{0}+v_{0} p^{l-1}\right)^{2}+1, \ldots,\left(n_{0}+k\right)^{2}+1\right. \\
&\left.\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}
\end{aligned}
$$

Evidently, $\left\{\left(n_{0}+v_{0} p^{l-1}\right)^{2}+1, \ldots,\left(n_{0}+k\right)^{2}+1\right\}$ is the intersection of $S_{k}\left(n_{0}\right)$ and $S_{k}\left(n_{0}+v_{0} p^{l-1}\right)$. So to compare $\left|S_{k}^{(l)}\left(n_{0}\right)\right|$ with $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right|$, it is enough to compare the number of terms divisible by p^{l} in the set

$$
\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1\right\}
$$

with the number of terms divisible by p^{l} in the set

$$
\left\{\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}
$$

Consider the following three subcases.
Subcase 2.1. $1 \leq r \leq p^{l}-v_{0} p^{l-1}$. In this case, we choose the same n_{0} as in case 1 . Since $k+1 \equiv r\left(\bmod p^{l}\right)$ and $1 \leq r \leq p^{l}-v_{0} p^{l-1}$, we have $k+j \equiv r+j-1\left(\bmod p^{l}\right)$ and $1 \leq r+j-1 \leq p^{l}-1$ for all $1 \leq j \leq v_{0} p^{l-1}$. Hence there is no term of the form $\left(n_{0}+t_{1} p^{l}\right)^{2}+1$ and at most one term of the form $\left(n_{0}+\left(X_{p^{l}}+t_{2} p^{l}\right)\right)^{2}+1$ in the set $\left\{\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+\left(k+v_{0} p^{l-1}\right)\right)^{2}+1\right\}$, where $t_{1}, t_{2} \in \mathbb{N}$. On the other hand, by Lemma 3.1 the terms $n_{0}^{2}+1$ and $\left(n_{0}+X_{p^{\prime}}\right)^{2}+1$ are the only two terms divisible by p^{l} in the set $\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1\right\}$. Consequently,

$$
\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right| \leq\left|S_{k}^{(l)}\left(n_{0}\right)\right|-1
$$

Thus $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$ as required.
Subcase 2.2. $p^{l}-v_{0} p^{l-1}<r \leq p^{l}-1$ and $1 \leq v_{0} \leq(p-1) / 2$. We can choose a suitable n_{0} such that

$$
\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)
$$

and

$$
\left(n_{0}+v_{0} p^{l-1}-1-X_{p^{l}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right) .
$$

By Lemma 3.1, the terms divisible by p^{l} in the quadratic progression $\left\{\left(n_{0}+i\right)^{2}+1\right\}_{i \in \mathbb{N}}$ must be of the form $\left(n_{0}+v_{0} p^{l-1}-1+t_{1} p^{l}\right)^{2}+1$ or $\left(n_{0}+v_{0} p^{l-1}-1-X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$, where $t_{1}, t_{2} \in \mathbb{N}$. Since $k+1 \equiv r\left(\bmod p^{l}\right)$ and $p^{l}-v_{0} p^{l-1} \leq r \leq p^{l}-1$ with $1 \leq v_{0} \leq$ $(p-1) / 2$, we have $k+j \equiv r+j-1\left(\bmod p^{l}\right)$ and

$$
v_{0} p^{l-1}+1<\frac{p+1}{2} p^{l-1}+1 \leq p^{l}-v_{0} p^{l-1}+1 \leq r+j-1 \leq p^{l}+v_{0} p^{l-1}-2
$$

for all $1 \leq j \leq v_{0} p^{l-1}$. Hence there is no term of the form $\left(n_{0}+v_{0} p^{l-1}-1+t_{1} p^{l}\right)^{2}+1$ and at most one term of the form $\left(n_{0}+v_{0} p^{l-1}-1-X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$ in the set $\left\{\left(n_{0}+\right.\right.$ $\left.k+1)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}$, where $t_{1}, t_{2} \in \mathbb{N}$. Furthermore, the two terms $\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1$ and $\left(n_{0}+v_{0} p^{l-1}-1-X_{p^{\prime}}\right)^{2}+1$ are the only two terms divisible by p^{l} in the set $\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1\right\}$. Therefore, $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right| \leq$ $\left|S_{k}^{(l)}\left(n_{0}\right)\right|-1$. That is, $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$ as desired.
Subcase 2.3. $p^{l}-v_{0} p^{l-1}<r \leq p^{l}-1$ and $v_{0}=(p+1) / 2$. Then $((p-1) / 2) p^{l-1}<r \leq$ $p^{l}-1$. We partition the proof of this case into the following three subcases.
Subcase 2.3.1. $((p-1) / 2) p^{l-1}<r \leq X_{p^{\prime}}$. In this case, we pick a suitable n_{0} such that

$$
\left(n_{0}+\frac{p^{l-1}-1}{2}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)
$$

and

$$
\left(n_{0}+\frac{p^{l-1}-1}{2}+X_{p^{\prime}}\right)^{2}+1 \equiv 0\left(\bmod p^{l}\right)
$$

By Lemma 3.1, terms divisible by p^{l} in the quadratic progression $\left\{\left(n_{0}+i\right)^{2}+1\right\}_{i \in \mathbb{N}}$ must be of the form $\left(n_{0}+\left(p^{l-1}-1\right) / 2+t_{1} p^{l}\right)^{2}+1$ or $\left(n_{0}+\left(p^{l-1}-1\right) / 2+X_{p^{l}}+\right.$ $\left.t_{2} p^{l}\right)^{2}+1$, where $t_{1}, t_{2} \in \mathbb{N}$. Since $k+1 \equiv r\left(\bmod p^{l}\right)$ and $((p-1) / 2) p^{l-1}<r \leq X_{p^{\prime}}$, we have for all $1 \leq j \leq v_{0} p^{l-1}$ that $k+j \equiv r+j-1\left(\bmod p^{l}\right)$ and

$$
\begin{aligned}
\frac{p^{l-1}-1}{2}<\frac{p-1}{2} p^{l-1}<r+j-1 & \leq X_{p^{l}}+v_{0} p^{l-1}-1 \leq \frac{p^{l}-1}{2}+v_{0} p^{l-1}-1 \\
& =p^{l}+\frac{p^{l-1}-1}{2}-1
\end{aligned}
$$

Hence there is no term of the form $\left(n_{0}+\left(p^{l-1}-1\right) / 2+t_{1} p^{l}\right)^{2}+1$ and at most one term of the form $\left(n_{0}+\left(p^{l-1}-1\right) / 2+X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$ in the set

$$
\left\{\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}
$$

where $t_{1}, t_{2} \in \mathbb{N}$. On the other hand, since

$$
\frac{p^{l-1}-1}{2}+X_{p^{l}} \leq \frac{p^{l-1}-1}{2}+\frac{p^{l}-1}{2} \leq \frac{p+1}{2} p^{l-1}-1=v_{0} p^{l-1}-1,
$$

the terms $\left(n_{0}+\left(p^{l-1}-1\right) / 2\right)^{2}+1$ and $\left(n_{0}+\left(p^{l-1}-1\right) / 2+X_{p^{l}}\right)^{2}+1$ are just the only two terms divisible by p^{l} in the set $\left\{n_{0}^{2}+1, \ldots,\left(n_{0}+v_{0} p^{l-1}-1\right)^{2}+1\right\}$. Therefore,

$$
\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right| \leq\left|S_{k}^{(l)}\left(n_{0}\right)\right|-1
$$

Thus $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$ as required.

Subcase 2.3.2. $X_{p^{l}}<r \leq v_{0} p^{l-1}$. We choose the same n_{0} as in case 1. Since

$$
k+1 \equiv r\left(\bmod p^{l}\right) \quad \text { and } \quad\left(v_{0}-1\right) p^{l-1} \leq X_{p^{l}}<r \leq v_{0} p^{l-1}
$$

we have $k+j \equiv r+j-1\left(\bmod p^{l}\right)$ and

$$
X_{p^{l}}<r+j-1 \leq p^{l}+p^{l-1}-1<p^{l}+X_{p^{l}} \quad \text { for all } 1 \leq j \leq v_{0} p^{l-1}
$$

Thus there is no term of the form $\left(n_{0}+X_{p^{l}}+t_{1} p^{l}\right)^{2}+1$ and at most one term of the form $\left(n_{0}+t_{2} p^{l}\right)^{2}+1$ in the set $\left\{\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+k+v_{0} p^{l-1}\right)^{2}+1\right\}$, where $t_{1}, t_{2} \in \mathbb{N}$. Therefore $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right| \leq\left|S_{k}^{(l)}\left(n_{0}\right)\right|-1$. That is, $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq$ $f_{l}\left(n_{0}\right)-1$ as desired.
Subcase 2.3.3. $v_{0} p^{l-1}<r \leq p^{l}-1$. Then we select the same integer n_{0} as in subcase 2.2. Since

$$
k+1 \equiv r\left(\bmod p^{l}\right) \quad \text { and } \quad v_{0} p^{l-1} \leq r \leq p^{l}-1,
$$

we have $k+j \equiv r+j-1\left(\bmod p^{l}\right)$ and

$$
v_{0} p^{l-1}<r+j-1 \leq p^{l}+v_{0} p^{l-1}-2 \text { for all } 1 \leq j \leq v_{0} p^{l-1}
$$

Hence there is no term of the form $\left(n_{0}+v_{0} p^{l-1}-1+t_{1} p^{l}\right)^{2}+1$ and at most one term of the form $\left(n_{0}+v_{0} p^{l-1}-1-X_{p^{l}}+t_{2} p^{l}\right)^{2}+1$ in the set $\left\{\left(n_{0}+k+1\right)^{2}+1, \ldots,\left(n_{0}+\right.\right.$ $\left.\left.k+v_{0} p^{l-1}\right)^{2}+1\right\}$, where $t_{1}, t_{2} \in \mathbb{Z}$. This implies that $\left|S_{k}^{(l)}\left(n_{0}+v_{0} p^{l-1}\right)\right| \leq\left|S_{k}^{(l)}\left(n_{0}\right)\right|-1$. Thus $f_{l}\left(n_{0}+v_{0} p^{l-1}\right) \leq f_{l}\left(n_{0}\right)-1$ as required.

The claim is proved and so the proof of Lemma 3.4 is complete.

4. Proof of Theorem 1.1 and application

Using the lemmas presented in previous sections, we are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. First, g_{k} is periodic by Lemma 2.1. By (2.5),

$$
\begin{aligned}
P_{k} & =2^{\left((-1)^{k}+1\right) / 2} \cdot \prod_{\substack{p \equiv 1(\bmod 4) \\
p \mid R_{k}}} P_{p, k} \\
& =2^{\left((-1)^{k}+1\right) / 2} \cdot \frac{R_{k}}{2^{v_{2}\left(R_{k}\right)} \prod_{p \equiv 3(\bmod 4)} p^{v_{p}\left(R_{k}\right)}} \prod_{\substack{p \equiv 1(\bmod 4) \\
p \mid R_{k}}} \frac{P_{p, k}}{p^{v_{p},\left(R_{k}\right)}} \\
& =\frac{Q_{k}}{\left.\prod_{p \equiv 1(\bmod 4)}^{p \mid R_{k}}\right) \frac{p^{p_{p}\left(R_{k}\right)}}{P_{p, k}}}:=\frac{Q_{k}}{\Delta_{k}} .
\end{aligned}
$$

By Lemma 3.3, we know that there is at most one prime $p \equiv 1(\bmod 4)$ such that $p \mid R_{k}$ and $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)$.

If there is exactly one prime $p \equiv 1(\bmod 4)$ such that $p \mid R_{k}$ and $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)$, then for such prime p, Lemma 3.4 tells us that $P_{p, k}=1$. For all other primes $q \equiv 1(\bmod 4)$ with $q \mid R_{k}$, we obtain by Lemma 3.4 that $P_{q, k}=q^{v_{q}\left(R_{k}\right)}$. In this case, $\Delta_{k}=p^{v_{p}\left(R_{k}\right)}$. Then $P_{k}=Q_{k} / p^{v_{p}\left(R_{k}\right)}$. Notice that $v_{p}\left(R_{k}\right)=v_{p}\left(Q_{k}\right)$ for such prime p. Hence $P_{k}=Q_{k} / p^{v_{p}\left(Q_{k}\right)}$ in this case.

If there is no prime $p \equiv 1(\bmod 4)$ satisfying $p \mid R_{k}$ and $v_{p}(k+1) \geq v_{p}\left(R_{k}\right)$, then for all primes $q \equiv 1(\bmod 4)$ with $q \mid R_{k}$, we have $P_{q, k}=q^{v_{q}\left(R_{k}\right)}$ and so $\Delta_{k}=1$. Therefore $P_{k}=Q_{k}$ in this case. This completes the proof of Theorem 1.1.

By Theorem 1.1, we can easily find infinitely many positive integers k such that $P_{k}=Q_{k}$ as the following two examples show.

Example 4.1. If $k+1$ has no prime factors congruent to 1 modulo 4 , then $P_{k}=Q_{k}$ by Theorem 1.1. For instance, if $k+1$ equals 6^{r} with r a positive integer, or is a prime number congruent to 3 modulo 4 , then $P_{k}=Q_{k}$.

Example 4.2. Let a and b be any two positive integers. If k is an integer having the form $k=3^{a} 5^{b}-1$, then $P_{k}=Q_{k}$. In fact, since $k=3^{a} 5^{b}-1>\left(5^{b+1}-1\right) / 2$, the congruence $x^{2}+4 \equiv 0\left(\bmod 5^{b+1}\right)$ has at least one root modulo 5^{b+1} in the interval $[1, k]$. So

$$
v_{5}\left(R_{k}\right)=v_{5}\left(\operatorname{lcm}_{1 \leq i \leq k}\left\{i\left(i^{2}+4\right)\right\}\right) \geq b+1>v_{5}(k+1)=b .
$$

Then $P_{k}=Q_{k}$ by Theorem 1.1.
On the other hand, there are also infinitely many positive integers k such that P_{k} equals Q_{k} divided by a power of one prime $p \equiv 1(\bmod 4)$. The following proposition gives us such example.

Proposition 4.3. If $k+1$ is a prime congruent to 1 modulo 4 , then $P_{k}=Q_{k} /(k+1)$.
Proof. For any integer $1 \leq i \leq k$, since $k+1$ is a prime congruent to 1 modulo 4 , implying that $k \geq 4$, we obtain $i^{2}+4 \leq k^{2}+4<(k+1)^{2}$. Note that $k+1$ is a prime. Hence $v_{k+1}\left(i^{2}+4\right)<2$. Then, by (3.1),

$$
v_{k+1}\left(R_{k}\right)=\max _{1 \leq i \leq k}\left\{v_{k+1}\left(i^{2}+4\right)\right\}<2 .
$$

In addition, there is an integer $x \in[1, k]$ satisfying $x^{2}+4 \equiv 0(\bmod k+1)$. In other words, $\max _{1 \leq i \leq k}\left\{v_{k+1}\left(i^{2}+4\right)\right\} \geq 1$. Thus

$$
v_{k+1}\left(R_{k}\right)=\max _{1 \leq i \leq k}\left\{v_{k+1}\left(i^{2}+4\right)\right\}=1=v_{k+1}(k+1)
$$

Then Proposition 4.3 follows immediately from Theorem 1.1.
In concluding this paper, we give an interesting asymptotic formula as an application of Theorem 1.1.

Proposition 4.4. Let k be any given positive integer. Then the following asymptotic formula holds:

$$
\log 1 \mathrm{c} \mathrm{~m}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\} \sim 2(k+1) \log n \quad \text { as } n \rightarrow \infty .
$$

Proof. By Theorem 1.1, g_{k} is periodic. So for all positive integers $n, g_{k}(n) \leq M:=$ $\max _{1 \leq m \leq P_{k}}\left\{g_{k}(m)\right\}$. Hence

$$
\log \left(\prod_{i=0}^{k}\left((n+i)^{2}+1\right)\right)-\log M \leq \log \operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\} \leq \log \left(\prod_{i=0}^{k}\left((n+i)^{2}+1\right)\right) .
$$

Since

$$
\log \left(\prod_{i=0}^{k}\left((n+i)^{2}+1\right)\right)-\log M=2(k+1) \log n+\sum_{i=0}^{k} \log \left(1+\frac{2 i}{n}+\frac{i^{2}+1}{n^{2}}\right)-\log M,
$$

it follows that

$$
\lim _{n \rightarrow \infty} \frac{\log \left(\prod_{i=0}^{k}\left((n+i)^{2}+1\right)\right)-\log M}{2(k+1) \log n}=1
$$

Note that

$$
\lim _{n \rightarrow \infty} \frac{\log \left(\prod_{i=0}^{k}\left((n+i)^{2}+1\right)\right)}{2(k+1) \log n}=1
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{\log \operatorname{lcm}_{0 \leq i \leq k}\left\{(n+i)^{2}+1\right\}}{2(k+1) \log n}=1
$$

as desired. The proof of Proposition 4.4 is complete.

References

[1] P. Bateman, J. Kalb and A. Stenger, 'A limit involving least common multiples', Amer. Math. Monthly 109 (2002), 393-394.
[2] M. A. Bennett, N. Bruin, K. Györy and L. Hajdu, 'Powers from products of consecutive terms in arithmetic progression', Proc. Lond. Math. Soc. 92 (2006), 273-306.
[3] P. L. Chebyshev, 'Memoire sur les nombres premiers', J. Math. Pures Appl. 17 (1852), 366-390.
[4] B. Farhi, 'Nontrivial lower bounds for the least common multiple of some finite sequences of integers', J. Number Theory 125 (2007), 393-411.
[5] B. Farhi and D. Kane, 'New results on the least common multiple of consecutive integers', Proc. Amer. Math. Soc. 137 (2009), 1933-1939.
[6] B. Green and T. Tao, 'The primes contain arbitrarily long arithmetic progressions', Ann. of Math. (2) 167 (2008), 481-547.
[7] D. Hanson, 'On the product of the primes', Canad. Math. Bull. 15 (1972), 33-37.
[8] G. H. Hardy and J. E. Littlewood, 'Some problems of partitio numerorum III: On the expression of a number as a sum of primes', Acta Math. 44 (1923), 1-70.
[9] S. Hong and G. Qian, 'The least common multiple of consecutive arithmetic progression terms', Proc. Edinb. Math. Soc. 54 (2011), 431-441.
[10] S. Hong, G. Qian and Q. Tan, 'The least common multiple of a sequence of products of linear polynomials', Acta Math. Hungar., 135 (2012), 160-167.
[11] S. Hong and Y. Yang, 'On the periodicity of an arithmetical function', C.R. Acad. Sci. Paris Ser. I 346 (2008), 717-721.
[12] L.-K. Hua, Introduction to Number Theory (Springer, Berlin, 1982).
[13] H. Iwaniec, 'Almost-primes represented by quadratic polynomials’, Invent. Math. 47 (1978), 171-188.
[14] M. Nair, 'On Chebyshev-type inequalities for primes', Amer. Math. Monthly 89 (1982), 126-129.
[15] N. Saradha and T. N. Shorey, 'Almost squares in arithmetic progression', Compositio Math. 138 (2003), 73-111.

GUOYOU QIAN, Mathematical College, Sichuan University, Chengdu 610064, PR China
e-mail: qiangy1230@gmail.com, qiangy1230@163.com
QIANRONG TAN, School of Computer Science and Technology, Panzhihua University, Panzhihua 617000, PR China
e-mail: tqrmei6@126.com
SHAOFANG HONG, Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, PR China
e-mail: sfhong@scu.edu.cn, s-f.hong @tom.com, hongsf02@yahoo.com

[^0]: S. Hong was supported partially by National Science Foundation of China Grant \#10971145 and by the PhD Programs Foundation of Ministry of Education of China Grant \#20100181110073.
 (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

