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Abstract

Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by

gk(n) :=

∏k
i=0((n + i)2 + 1)

lcm0≤i≤k{(n + i)2 + 1}
.

We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic
function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k

{(n + i)2 + 1}.
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1. Introduction and the main result

There are many beautiful and important theorems about arithmetic progressions in
number theory, the two most famous examples being Dirichlet’s theorem [12] and the
Green–Tao theorem [6]. See [2, 15] for some other results. However, there are few
renowned theorems but more conjectures about quadratic progressions, among which
the sequence {n2 + 1}n∈N is best known. A famous conjecture [8] states that there are
infinitely many primes of the form n2 + 1. This seems to be extremely difficult to
prove in the present state of knowledge. The best result is due to Iwaniec [13], who
showed that there exist infinitely many integers n such that n2 + 1 has at most two
prime factors.

To investigate the arithmetic properties of a given sequence, studying the least
common multiple of its consecutive terms seems quite natural. The least common
multiple of consecutive integers was investigated by Chebyshev in the first significant
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attempt to prove the prime number theorem in [3]. Since then, the topic of least
common multiple of any given sequence of positive integers has become popular.
Hanson [7] and Nair [14] respectively obtained the upper bound and lower bound
of lcm1≤i≤n{i}. Bateman et al. [1] obtained an asymptotic estimate for the least
common multiple of arithmetic progressions. Recently, Hong et al. [10] obtained an
asymptotic estimate for the least common multiple of a sequence of products of linear
polynomials.

In [4], Farhi investigated the least common multiple lcm0≤i≤k{n + i} of finitely many
consecutive integers by introducing the arithmetic function

ḡk(n) :=

∏k
i=0(n + i)

lcm0≤i≤k{n + i}
,

and also proved some arithmetic properties of lcm0≤i≤k{n + i}. Farhi showed that ḡk is
periodic and k! is a period of it. Let P̄k be the smallest period of ḡk. Then P̄k | k!. But
Farhi did not determine the exact value of P̄k in [4], so he posed the open problem
of determining the smallest period P̄k. Hong and Yang [11] improved the period
k! to lcm1≤i≤k{i} by showing that ḡk(1) | ḡk(n) for any positive integer n. Moreover,
they conjectured that lcm1≤i≤k+1{i}/(k + 1) divides P̄k for all nonnegative integers k.
Farhi and Kane [5] confirmed the Hong–Yang conjecture and determined the exact
value of P̄k. Note that Farhi [4] also obtained the following nontrivial lower bound:
lcm1≤i≤n{i2 + 1} ≥ 0.32 · (1.442)n (for all n ≥ 1).

LetQ andN denote the field of rational numbers and the set of nonnegative integers.
Define N∗ := N \ {0}. Let k, b ∈ N and a ∈ N∗. Recently, Hong and Qian [9] studied the
least common multiple of finitely many consecutive terms in arithmetic progressions.
Actually, they defined the arithmetic function gk,a,b : N∗ −→ N∗ by

gk,a,b(n) =

∏k
i=0(b + (n + i)a)

lcm0≤i≤k{b + (n + i)a}
.

They proved that gk,a,b is periodic and determined the exact value of the smallest period
of gk,a,b.

In this paper, we are concerned with the least common multiple of consecutive
terms in the quadratic sequence {n2 + 1}n∈N. Let k be a positive integer. We define the
arithmetic function gk for any positive integer n by

gk(n) :=

∏k
i=0((n + i)2 + 1)

lcm0≤i≤k{(n + i)2 + 1}
.

One may naturally ask the following question: Is gk periodic and, if so, what is the
smallest period of gk?

Suppose that gk is periodic. Then we let Pk denote its smallest period. Now we can
use Pk to give a formula for lcm0≤i≤k{(n + i)2 + 1} as follows: for any positive integer n,

lcm0≤i≤k{(n + i)2 + 1} =

∏k
i=0((n + i)2 + 1)

gk(〈n〉Pk )
,
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where 〈n〉Pk means the least positive integer congruent to n modulo Pk. Therefore, it is
important to determine the exact value of Pk.

As usual, for any prime number p, we let vp be the normalised p-adic valuation of
Q, that is, vp(a) = b if pb ‖ a. We also let gcd(a, b) denote the greatest common divisor
of any integers a and b. For any real number x, we denote by bxc the largest integer no
greater than x. For any positive integer k, we define

Rk := lcm1≤i≤k{i(i2 + 4)}

and

Qk := 2((−1)k+1)/2 ·
Rk

2v2(Rk)
∏

p≡3(mod 4) pvp(Rk)
.

Evidently, vp(Qk) = vp(Rk) for any prime p ≡ 1 (mod 4). We can now state the main
result of this paper.

T 1.1. Let k be a positive integer. Then the arithmetic function gk is periodic,
and its smallest period equals Qk except that vp(k + 1) ≥ vp(Qk) ≥ 1 for at most one
prime p ≡ 1 (mod 4), in which case its smallest period is equal to Qk/pvp(Qk).

In Section 2, we first show that the arithmetic function gk is periodic with Rk as a
period of it by a well-known result of Hua. Then, with a little more effort, we show that
Qk is a period of gk (see Theorem 2.5). Subsequently, in Section 3, we develop further
p-adic analysis of the periodic function gk, and determine the smallest period of gk.
In the final section, we give the proof of Theorem 1.1 and then provide an asymptotic
formula for log lcm0≤i≤k{(n + i)2 + 1}.

2. Qk is a period of gk

In this section, we first prove that gk is periodic by a theorem of Hua in [12]. We
also arrive at a nontrivial period of gk.

L 2.1. The arithmetic function gk is periodic, and Rk is a period of gk.

P. For any positive integer n, using [12, Theorem 7.3] (see [12, p. 11]), we obtain
that

gk(n) =

k∏
r=1

∏
0≤i0<···<ir≤k

(gcd((n + i0)2 + 1, . . . , (n + ir)2 + 1))(−1)r−1

and

gk(n + Rk) =

k∏
r=1

∏
0≤i0<···<ir≤k

(gcd((n + Rk + i0)2 + 1, . . . , (n + Rk + ir)2 + 1))(−1)r−1
.

We claim that gk(n + Rk) = gk(n). To show this claim, it suffices to prove that

gcd((n + Rk + i)2 + 1, (n + Rk + j)2 + 1) = gcd((n + i)2 + 1, (n + j)2 + 1)
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for any 0 ≤ i < j ≤ k. Evidently

(2n + 3 j − i)((n + i)2 + 1) + (−2n + j − 3i)((n + j)2 + 1) = ( j − i)(( j − i)2 + 4).

Hence
gcd((n + i)2 + 1, (n + j)2 + 1) | ( j − i)(( j − i)2 + 4).

But ( j − i)(( j − i)2 + 4) | Rk. So

gcd((n + i)2 + 1, (n + j)2 + 1) | Rk. (2.1)

We then derive that

gcd((n + i)2 + 1, (n + j)2 + 1) | (n + i ± Rk)2 + 1

and
gcd((n + i)2 + 1, (n + j)2 + 1) | (n + j ± Rk)2 + 1.

It follows that

gcd((n + i)2 + 1, (n + j)2 + 1) | gcd((n + Rk + i)2 + 1, (n + Rk + j)2 + 1)

and

gcd((n + i)2 + 1, (n + j)2 + 1) | gcd((n − Rk + i)2 + 1, (n − Rk + j)2 + 1). (2.2)

Replacing n by n + Rk in (2.2),

gcd((n + Rk + i)2 + 1, (n + Rk + j)2 + 1) | gcd((n + i)2 + 1, (n + j)2 + 1).

Therefore

gcd((n + i)2 + 1, (n + j)2 + 1) = gcd((n + i + Rk)2 + 1, (n + j + Rk)2 + 1)

for any positive integer n and any integers i, j with 0 ≤ i < j ≤ k. The claim is proved.
Thus gk is periodic with Rk as its period. �

For any given prime p, define the arithmetic function gp,k for any positive integer n
by gp,k(n) := vp(gk(n)). Since gk is a periodic function, gp,k is periodic for each prime
p and Pk is a period of gp,k. Let Pp,k be the smallest period of gp,k. Then we have the
following result.

L 2.2. For any prime p, Pp,k divides pvp(Rk). Further,

Pk =
∏
p|Rk

Pp,k.
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P. First, we show that pvp(Rk) is a period of gp,k for each prime p. For this purpose,
it is sufficient to prove that

vp(gcd((n + i + pvp(Rk))2 + 1, (n + j + pvp(Rk))2 + 1))

= vp(gcd((n + i)2 + 1, (n + j)2 + 1))
(2.3)

for any given positive integer n and any two integers i, j with 0 ≤ i < j ≤ k.
By (2.1), we obtain vp(gcd((n + i)2 + 1, (n + j)2 + 1)) ≤ vp(Rk). Hence

vp((n + i)2 + 1) ≤ vp(Rk) or vp((n + j)2 + 1) ≤ vp(Rk).

Therefore
vp((n + i)2 + 1) ≤ vp((n + i ± pvp(Rk))2 + 1)

or
vp((n + j)2 + 1) ≤ vp((n + j ± pvp(Rk))2 + 1).

So we obtain that

vp(gcd((n + i)2 + 1, (n + j)2 + 1))

= min{vp((n + i)2 + 1), vp((n + j)2 + 1)}

≤min{vp((n + i + pvp(Rk))2 + 1), vp((n + j + pvp(Rk))2 + 1)}

= vp(gcd((n + i + pvp(Rk))2 + 1, (n + j + pvp(Rk))2 + 1))

and
vp(gcd((n + i)2 + 1, (n + j)2 + 1))

≤ vp(gcd((n + i − pvp(Rk))2 + 1, (n + j − pvp(Rk))2 + 1)).
(2.4)

Replacing n by n + pvp(Rk) in (2.4) gives us that

vp(gcd((n + i + pvp(Rk))2 + 1, (n + j + pvp(Rk))2 + 1))

≤ vp(gcd((n + i)2 + 1, (n + j)2 + 1)).

Therefore (2.3) is proved. It then follows that for any given prime p, we have
gp,k(n) = gp,k(n + pvp(Rk)) for any positive integer n. That is, pvp(Rk) is a period of
gp,k. Thus Pp,k | pvp(Rk). This implies that Pp,k are relatively prime for different
prime numbers p and Pp,k = 1 for those primes p - Rk. Hence

∏
prime q|Rk

Pq,k | Pk since
Pq,k | Pk for each prime q. Moreover, since vp(gk(n +

∏
prime q|Rk

Pq,k)) = vp(gk(n)) for
each prime p and any positive integer n, it follows that

∏
p|Rk

Pp,k is a period of gk,
which implies that Pk |

∏
p|Rk

Pp,k. Hence Pk =
∏

p|Rk
Pp,k as required. �

To determine the smallest period Pk of gk, by Lemma 2.2 it is enough to determine
the value of Pp,k for all prime factors p of Rk. In the following, we treat some special
cases, and show that Qk is a period of gk.
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L 2.3. We have P2,k = 2((−1)k+1)/2.

P. Clearly, for any even integer n, v2(n2 + 1) = 0. For any odd integer n, letting
n = 2m + 1 gives us that

v2(n2 + 1) = v2((2m + 1)2 + 1) = v2(4m(m + 1) + 2) = 1.

If 2 - k, then by direct computation, v2(gk(n)) = (k − 1)/2 for any positive integer n.
Thus P2,k = 1 if 2 - k.

If 2 | k, then by direct computation,

v2(gk(n)) =


k
2

if n is odd,

k
2
− 1 if n is even.

That is, v2(gk(n + 2)) = v2(gk(n)) and v2(gk(n + 1)) , v2(gk(n)) for every positive
integer n. Thus P2,k = 2 if 2 | k. So Lemma 2.3 is proved. �

L 2.4. If p ≡ 3 (mod 4), then Pp,k = 1.

P. It is a well-known fact that for any positive integer n, n2 + 1 has no prime
factor p of the form p ≡ 3 (mod 4) (see, for example, [12]). Thus for any prime
p ≡ 3 (mod 4), we have vp(n2 + 1) = 0. It then follows that gp,k(n) = vp(gk(n)) = 0.
So Pp,k = 1 as desired. �

From the above three lemmas, we get the following result.

T 2.5. Let k be a positive integer. Then Qk is a period of gk.

P. By Lemmas 2.2–2.4,

Pk = P2,k

( ∏
p≡3 (mod 4)

p|Rk

Pp,k

)( ∏
p≡1 (mod 4)

p|Rk

Pp,k

)
= 2((−1)k+1)/2

∏
p≡1 (mod 4)

p|Rk

Pp,k. (2.5)

Since Pp,k is a power of p for each prime p,∏
p|Rk ,p≡1 (mod 4)

Pp,k

∣∣∣∣∣ Rk

2v2(Rk)
∏

p≡3 (mod 4) pvp(Rk)
.

Thus Pk | Qk and Qk is a period of gk. This completes the proof of Theorem 2.5. �

3. The case p ≡ 1 (mod 4)

By Theorem 2.5, Qk is a period of gk. In order to determine its smallest period,
we need to develop more detailed p-adic analysis to treat the remaining case p ≡
1 (mod 4). Let

S k(n) := {n2 + 1, (n + 1)2 + 1, . . . , (n + k)2 + 1}

be the set of any k + 1 consecutive terms in the quadratic progression {m2 + 1}m∈N.
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In what follows, we only need to treat the remaining case that p | Rk and p ≡
1 (mod 4) by Theorem 2.5. First, it is known that for any prime p ≡ 1 (mod 4),
x2 + 1 ≡ 0 (mod p) has exactly two solutions in a complete residue system modulo p.
It then follows immediately from Hensel’s lemma that for any positive integer e, the
congruence x2 + 1 ≡ 0 (mod pe) has exactly two solutions in a complete residue system
modulo pe. In other words, we have the following result.

L 3.1. Let e and m be any given positive integers. If p ≡ 1 (mod 4), then there
exist exactly two terms divisible by pe in any pe consecutive terms of the quadratic
progression {(m + i)2 + 1}i∈N.

Similarly, for all primes p with p ≡ 1 (mod 4), we have by Hensel’s lemma that the
congruence x2 + 4 ≡ 0 (mod pe) has exactly two solutions in the interval [1, pe]. For
any positive integer e, we define

Xpe := the smallest positive root of x2 + 4 ≡ 0 (mod pe).

Since Xpe is the smallest positive root of x2 + 4 ≡ 0 (mod pe) for any positive integer e,
we have that Xpe ≤ Xpe+1 and Xpe < Xpe+r for some positive integer r. Moreover, we
have the following result.

L 3.2. For any prime p ≡ 1 (mod 4) and any positive integer n, if Xpe ≤ k < Xpe+1

for some positive integer e, then there is at most one element divisible by pe+1 in S k(n).

P. Suppose that there exist integers n0 > 0 and 0 ≤ i1 ≤ k, 0 ≤ i2 ≤ k (i1 , i2) such
that (n0 + i1)2 + 1 ≡ 0 (mod pe+1) and (n0 + i2)2 + 1 ≡ 0 (mod pe+1). Then 2(n0 + i1)
and 2(n0 + i2) are both the solutions of the congruences x2 + 4 ≡ 0 (mod pe+1). Since
2(n0 + i1) . 2(n0 + i2) (mod pe+1) for 0 ≤ i1 , i2 ≤ k < Xpe+1 < pe+1, we can assume that

2(n0 + i1) ≡ Xpe+1 (mod pe+1) and 2(n0 + i2) ≡ −Xpe+1 (mod pe+1).

Then
2(n0 + i1) − 2(n0 + i2) ≡ 2(i1 − i2) ≡ 2Xpe+1 (mod pe+1),

which implies that i1 − i2 ≡ Xpe+1 (mod pe+1). That is, Xpe+1 + i2 − i1 ≡ 0 (mod pe+1).
On the other hand, from the fact that

0 < Xpe+1 − k ≤ Xpe+1 + i2 − i1 ≤ Xpe+1 + k < 2Xpe+1 ≤ 2 ·
pe+1 − 1

2
< pe+1,

we deduce that Xpe+1 + i2 − i1 . 0 (mod pe+1). This is a contradiction. Thus we obtain
the desired result. �

For simplicity, we write l := vp(Rk). For all primes p ≡ 1 (mod 4), since
vp(gcd(i, i2 + 4)) = vp(gcd(i, 4)) = 0,

l = max
1≤i≤k
{vp(i(i2 + 4))} = max

1≤i≤k
{vp(i2 + 4), vp(i)} = max

{
max
1≤i≤k
{vp(i2 + 4)}, max

1≤i≤k
{vp(i)}

}
.
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Note that the congruence x2 + 4 ≡ 0 (mod pmax1≤i≤k{vp(i)}) has exactly two solutions in
the interval [1, pmax1≤i≤k{vp(i)}]. It follows that there is an integer i0 ∈ [1, k] such that
vp(i20 + 4) ≥max1≤i≤k{vp(i)}, which implies that max1≤i≤k{vp(i2 + 4)} ≥max1≤i≤k{vp(i)}.
Hence

l = max
1≤i≤k
{vp(i2 + 4)}. (3.1)

Then j2 + 4 ≡ 0 (mod pl) for some 1 ≤ j ≤ k and i2 + 4 . 0 (mod pl+1) for all 1 ≤ i ≤ k.
By the definition of Xpl , we have k ≥ j ≥ Xpl and vp(X2

pl + 4) ≥ l. Since k ≥ Xpl , by (3.1)

we have vp(X2
pl + 4) ≤ l. So

l = vp(X2
pl + 4).

We claim that k < Xpl+1 . Otherwise, vp(X2
pl+1 + 4) ≤ l by (3.1), which is impossible

since vp(X2
pl+1 + 4) ≥ l + 1. The claim is proved. Therefore

Xpl ≤ k < Xpl+1 . (3.2)

Now, by (3.2) and Lemma 3.2, there is at most one element divisible by pl+1 in
S k(n) for any positive integer n. It is easy to see that

gp,k(n) =
∑

m∈S k(n)

vp(m) − max
m∈S k(n)

{vp(m)}

=
∑
e≥1

|S (e)
k (n)| −

∑
e≥1

(1 if pe | m for some m ∈ S k(n))

=
∑
e≥1

max{0, |S (e)
k (n)| − 1},

(3.3)

where
S (e)

k (n) := {m ∈ S k(n) : pe | m}. (3.4)

Based on the above discussion, all the terms on the right-hand side of (3.3) are 0 if
e ≥ l + 1. Therefore by (3.3),

gp,k(n) =

l∑
e=1

fe(n) =

l−1∑
e=1

fe(n) + fl(n), (3.5)

where fe(n) := max{0, |S (e)
k (n)| − 1}. Evidently,

fe(n) = |S (e)
k (n)| − 1 if |S (e)

k (n)| > 1,

and 0 if |S (e)
k (n)| ≤ 1.

L 3.3. There is at most one prime p ≡ 1 (mod 4) such that p | Rk and vp(k + 1) ≥
vp(Rk).
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P. Suppose that there are two distinct primes p and q congruent to 1 modulo 4
such that vp(k + 1) ≥ vp(Rk) ≥ 1 and vq(k + 1) ≥ vq(Rk) ≥ 1. Then

k + 1 ≥ pvp(Rk)qvq(Rk) ≥max{pq, pvp(Lk)qvq(Lk)},

where Lk := lcm1≤i≤k{i}.
If vp(Lk) = 0 or vq(Lk) = 0, then k + 1 = p or q, which is impossible since k + 1 ≥ pq.
If vp(Lk) ≥ 1 and vq(Lk) ≥ 1, then

k + 1 ≥ pvp(Lk)qvq(Lk) >min{pvp(Lk)+1, qvq(Lk)+1},

which implies that k ≥min{pvp(Lk)+1, qvq(Lk)+1}. This is in contradiction to

pvp(Lk)+1 = pblogp kc+1 ≥ k + 1 and qvq(Lk)+1 ≥ k + 1.

Thus there is at most one prime p ≡ 1 (mod 4) such that vp(k + 1) ≥ vp(Rk) ≥ 1.
Lemma 3.3 is proved. �

Now by providing p-adic analysis of (3.5) in detail, we get the following result.

L 3.4. Let p be a prime satisfying p | Rk and p ≡ 1 (mod 4). Then Pp,k = pvp(Rk)

except that vp(k + 1) ≥ vp(Rk), in which case Pp,k = 1.

P. We begin with the proof for the case vp(k + 1) ≥ vp(Rk) = l. For any given
positive integer n, the set {(n + 1)2 + 1, . . . , (n + k)2 + 1} is the intersection of S k(n)
and S k(n + 1). The distinct terms of S k(n) and S k(n + 1) are n2 + 1 and (n + k + 1)2 + 1,
respectively. Therefore, to compare the number of terms divisible by pe in the two sets
S k(n) and S k(n + 1) for each e ∈ {1, . . . , l}, it suffices to compare the two terms n2 + 1
and (n + k + 1)2 + 1. Since vp(k + 1) ≥ l,

n2 + 1 ≡ (n + k + 1)2 + 1 (mod pe)

for each 1 ≤ e ≤ l. Thus, for any positive integer n and each e ∈ {1, . . . , l}, we have
|S (e)

k (n)| = |S (e)
k (n + 1)|, where S (e)

k (n) is defined in (3.4). Hence we deduce by (3.5)
that fe(n) = fe(n + 1) for each e ∈ {1, . . . , l}. Thus gp,k(n) = gp,k(n + 1) for any positive
integer n. That is, Pp,k = 1 if vp(k + 1) ≥ vp(Rk). So Lemma 3.4 is true if vp(k + 1) ≥
vp(Rk) = l.

In what follows, we let vp(k + 1) < vp(Rk) = l. Since vp(k + 1) < l, we can suppose
that k + 1 ≡ r (mod pl) for some 1 ≤ r ≤ pl − 1. By the definition of Xpl , we have Xpl ≤

(pl − 1)/2, so there exists a positive integer v0 ∈ [1, (p + 1)/2] such that (v0 − 1)pl−1 ≤

Xpl < v0 pl−1. For any positive integer n, (n + i + v0 pl−1)2 + 1 ≡ (n + i)2 + 1 (mod pe)
for all integers i ∈ {0, 1, . . . , k} and 1 ≤ e ≤ l − 1. So |S (e)

k (n)| = |S (e)
k (n + v0 pl−1)| for all

integers 1 ≤ e ≤ l − 1. It then follows that

l−1∑
e=1

fe(n + v0 pl−1) =

l−1∑
e=1

fe(n).
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By Lemma 2.2, pl is a period of gp,k. We claim that there is a positive integer n0

such that fl(n0 + v0 pl−1) ≤ fl(n0) − 1. It then follows from (3.5) and the claim that
pl−1 is not a period of gp,k and this concludes the proof of Lemma 3.4 for the case
vp(k + 1) < vp(Rk) = l. Our final task is to prove the claim.

First, we note the fact that we can always find a positive integer x0 with x2
0 + 1 ≡

0 (mod pl) such that either (x0 + Xpl )2 + 1 ≡ 0 (mod pl) or (x0 − Xpl )2 + 1 ≡ 0 (mod pl).
Actually, for any root ypl of the congruence x2 + 1 ≡ 0 (mod pl), it is obvious that
Xpl ≡ 2ypl or −2ypl (mod pl). So if we choose a positive integer x0 such that
2x0 ≡ −Xpl (mod pl), then x2

0 + 1 ≡ 0 (mod pl) and (x0 + Xpl )2 + 1 ≡ x2
0 + 1 + X2

pl −

Xpl · Xpl ≡ 0 (mod pl). On the other hand, if we choose x0 such that 2x0 ≡ Xpl (mod pl),
then x2

0 + 1 ≡ 0 (mod pl) and (x0 − Xpl )2 + 1 ≡ 0 (mod pl). We now divide the proof of
the claim into the following two cases.

Case 1. k ≤ v0 pl−1. By the above discussion, we can choose an integer n0 satisfying
n2

0 + 1 ≡ 0 (mod pl) and (n0 + Xpl )2 + 1 ≡ 0 (mod pl). In order to prove the claim in
this case, it is sufficient to compare the number of terms divisible by pl in the following
two sets:

S k(n0) = {n2
0 + 1, . . . , (n0 + Xpl )2 + 1, . . . , (n0 + k)2 + 1}

and

S k(n0 + v0 pl−1) = {(n0 + v0 pl−1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1}.

Since S k(n0) consists of k + 1 terms and k + 1 < pl, there are by Lemma 3.1 exactly two
terms divisible by pl in the set S k(n0): n2

0 + 1 and (n0 + Xpl )2 + 1. Therefore fl(n0) = 1.
We now consider the set S k(n0 + v0 pl−1). By Lemma 3.1, we know that the terms

divisible by pl in the quadratic progression {(n0 + i)2 + 1}i∈N must be of the form
(n0 + t1 pl)2 + 1 or (n0 + Xpl + t2 pl)2 + 1, where t1, t2 ∈ N. If v0 ≤ (p − 1)/2, then

Xpl < v0 pl−1 ≤ v0 pl−1 + j ≤ v0 pl−1 + k ≤ 2v0 pl−1 ≤ (p − 1)pl−1 < pl for all 0 ≤ j ≤ k.

Hence there is no term of the form (n0 + t1 pl)2 + 1 or (n0 + Xpl + t2 pl)2 + 1 in the set
S k(n0 + v0 pl−1), where t1, t2 ∈ N. That is, |S (l)

k (n0 + v0 pl−1)| = 0. Thus fl(n0 + v0 pl−1) =

0 if v0 ≤ (p − 1)/2. If v0 = (p + 1)/2, then for all 0 ≤ j ≤ k,

Xpl < v0 pl−1 ≤ v0 pl−1 + j ≤ v0 pl−1 + k ≤ 2v0 pl−1 ≤ pl + pl−1 < pl + Xpl

and

k + v0 pl−1 ≥ Xpl + v0 pl−1 ≥ (2v0 + 1)pl−1 = pl.

Hence there is no term of the form (n0 + Xpl + t2 pl)2 + 1 in the set S k(n0 + v0 pl−1)
while the term (n0 + pl)2 + 1 is the only term divisible by pl in the set S k(n0 +

v0 pl−1). So |S (l)
k (n0 + v0 pl−1)| = 1 and fl(n0 + v0 pl−1) = 0 if v0 = (p + 1)/2. Thus

fl(n0 + v0 pl−1) ≤ fl(n0) − 1 as desired. The proof of the claim in this case is concluded.
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Case 2. k > v0 pl−1. As in the proof of case 1, to prove the claim in this case, we need to
choose a suitable n0 and compare the number of terms divisible by pl in the following
two sets:

S k(n0) = {n2
0 + 1, . . . , (n0 + v0 pl−1 − 1)2 + 1, (n0 + v0 pl−1)2 + 1, . . . , (n0 + k)2 + 1}

and

S k(n0 + v0 pl−1) = {(n0 + v0 pl−1)2 + 1, . . . , (n0 + k)2 + 1,

(n0 + k + 1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1}.

Evidently, {(n0 + v0 pl−1)2 + 1, . . . , (n0 + k)2 + 1} is the intersection of S k(n0) and
S k(n0 + v0 pl−1). So to compare |S (l)

k (n0)| with |S (l)
k (n0 + v0 pl−1)|, it is enough to

compare the number of terms divisible by pl in the set

{n2
0 + 1, . . . , (n0 + v0 pl−1 − 1)2 + 1}

with the number of terms divisible by pl in the set

{(n0 + k + 1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1}.

Consider the following three subcases.

Subcase 2.1. 1 ≤ r ≤ pl − v0 pl−1. In this case, we choose the same n0 as in case 1.
Since k + 1 ≡ r (mod pl) and 1 ≤ r ≤ pl − v0 pl−1, we have k + j ≡ r + j − 1 (mod pl)
and 1 ≤ r + j − 1 ≤ pl − 1 for all 1 ≤ j ≤ v0 pl−1. Hence there is no term of the form
(n0 + t1 pl)2 + 1 and at most one term of the form (n0 + (Xpl + t2 pl))2 + 1 in the set
{(n0 + k + 1)2 + 1, . . . , (n0 + (k + v0 pl−1))2 + 1}, where t1, t2 ∈ N. On the other hand,
by Lemma 3.1 the terms n2

0 + 1 and (n0 + Xpl )2 + 1 are the only two terms divisible by
pl in the set {n2

0 + 1, . . . , (n0 + v0 pl−1 − 1)2 + 1}. Consequently,

|S (l)
k (n0 + v0 pl−1)| ≤ |S (l)

k (n0)| − 1.

Thus fl(n0 + v0 pl−1) ≤ fl(n0) − 1 as required.

Subcase 2.2. pl − v0 pl−1 < r ≤ pl − 1 and 1 ≤ v0 ≤ (p − 1)/2. We can choose a
suitable n0 such that

(n0 + v0 pl−1 − 1)2 + 1 ≡ 0 (mod pl)

and
(n0 + v0 pl−1 − 1 − Xpl )2 + 1 ≡ 0 (mod pl).

By Lemma 3.1, the terms divisible by pl in the quadratic progression {(n0 + i)2 + 1}i∈N
must be of the form (n0 + v0 pl−1 − 1 + t1 pl)2 + 1 or (n0 + v0 pl−1 − 1 − Xpl + t2 pl)2 + 1,
where t1, t2 ∈ N. Since k + 1 ≡ r (mod pl) and pl − v0 pl−1 ≤ r ≤ pl − 1 with 1 ≤ v0 ≤

(p − 1)/2, we have k + j ≡ r + j − 1 (mod pl) and

v0 pl−1 + 1 <
p + 1

2
pl−1 + 1 ≤ pl − v0 pl−1 + 1 ≤ r + j − 1 ≤ pl + v0 pl−1 − 2
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for all 1 ≤ j ≤ v0 pl−1. Hence there is no term of the form (n0 + v0 pl−1 − 1 + t1 pl)2 + 1
and at most one term of the form (n0 + v0 pl−1 − 1 − Xpl + t2 pl)2 + 1 in the set {(n0 +

k + 1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1}, where t1, t2 ∈ N. Furthermore, the two terms
(n0 + v0 pl−1 − 1)2 + 1 and (n0 + v0 pl−1 − 1 − Xpl )2 + 1 are the only two terms divisible
by pl in the set {n2

0 + 1, . . . , (n0 + v0 pl−1 − 1)2 + 1}. Therefore, |S (l)
k (n0 + v0 pl−1)| ≤

|S (l)
k (n0)| − 1. That is, fl(n0 + v0 pl−1) ≤ fl(n0) − 1 as desired.

Subcase 2.3. pl − v0 pl−1 < r ≤ pl − 1 and v0 = (p + 1)/2. Then ((p − 1)/2)pl−1 < r ≤
pl − 1. We partition the proof of this case into the following three subcases.

Subcase 2.3.1. ((p − 1)/2)pl−1 < r ≤ Xpl . In this case, we pick a suitable n0 such that(
n0 +

pl−1 − 1
2

)2

+ 1 ≡ 0 (mod pl)

and (
n0 +

pl−1 − 1
2

+ Xpl

)2

+ 1 ≡ 0 (mod pl).

By Lemma 3.1, terms divisible by pl in the quadratic progression {(n0 + i)2 + 1}i∈N
must be of the form (n0 + (pl−1 − 1)/2 + t1 pl)2 + 1 or (n0 + (pl−1 − 1)/2 + Xpl +

t2 pl)2 + 1, where t1, t2 ∈ N. Since k + 1 ≡ r (mod pl) and ((p − 1)/2)pl−1 < r ≤ Xpl ,
we have for all 1 ≤ j ≤ v0 pl−1 that k + j ≡ r + j − 1 (mod pl) and

pl−1 − 1
2

<
p − 1

2
pl−1 < r + j − 1 ≤ Xpl + v0 pl−1 − 1 ≤

pl − 1
2

+ v0 pl−1 − 1

= pl +
pl−1 − 1

2
− 1.

Hence there is no term of the form (n0 + (pl−1 − 1)/2 + t1 pl)2 + 1 and at most one term
of the form (n0 + (pl−1 − 1)/2 + Xpl + t2 pl)2 + 1 in the set

{(n0 + k + 1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1},

where t1, t2 ∈ N. On the other hand, since

pl−1 − 1
2

+ Xpl ≤
pl−1 − 1

2
+

pl − 1
2
≤

p + 1
2

pl−1 − 1 = v0 pl−1 − 1,

the terms (n0 + (pl−1 − 1)/2)2 + 1 and (n0 + (pl−1 − 1)/2 + Xpl )2 + 1 are just the only
two terms divisible by pl in the set {n2

0 + 1, . . . , (n0 + v0 pl−1 − 1)2 + 1}. Therefore,

|S (l)
k (n0 + v0 pl−1)| ≤ |S (l)

k (n0)| − 1.

Thus fl(n0 + v0 pl−1) ≤ fl(n0) − 1 as required.
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Subcase 2.3.2. Xpl < r ≤ v0 pl−1. We choose the same n0 as in case 1. Since

k + 1 ≡ r (mod pl) and (v0 − 1)pl−1 ≤ Xpl < r ≤ v0 pl−1,

we have k + j ≡ r + j − 1 (mod pl) and

Xpl < r + j − 1 ≤ pl + pl−1 − 1 < pl + Xpl for all 1 ≤ j ≤ v0 pl−1.

Thus there is no term of the form (n0 + Xpl + t1 pl)2 + 1 and at most one term
of the form (n0 + t2 pl)2 + 1 in the set {(n0 + k + 1)2 + 1, . . . , (n0 + k + v0 pl−1)2 + 1},
where t1, t2 ∈ N. Therefore |S (l)

k (n0 + v0 pl−1)| ≤ |S (l)
k (n0)| − 1. That is, fl(n0 + v0 pl−1) ≤

fl(n0) − 1 as desired.

Subcase 2.3.3. v0 pl−1 < r ≤ pl − 1. Then we select the same integer n0 as in subcase
2.2. Since

k + 1 ≡ r (mod pl) and v0 pl−1 ≤ r ≤ pl − 1,

we have k + j ≡ r + j − 1 (mod pl) and

v0 pl−1 < r + j − 1 ≤ pl + v0 pl−1 − 2 for all 1 ≤ j ≤ v0 pl−1.

Hence there is no term of the form (n0 + v0 pl−1 − 1 + t1 pl)2 + 1 and at most one term
of the form (n0 + v0 pl−1 − 1 − Xpl + t2 pl)2 + 1 in the set {(n0 + k + 1)2 + 1, . . . , (n0 +

k + v0 pl−1)2 + 1}, where t1, t2 ∈ Z. This implies that |S (l)
k (n0 + v0 pl−1)| ≤ |S (l)

k (n0)| − 1.
Thus fl(n0 + v0 pl−1) ≤ fl(n0) − 1 as required.

The claim is proved and so the proof of Lemma 3.4 is complete. �

4. Proof of Theorem 1.1 and application

Using the lemmas presented in previous sections, we are now in a position to prove
Theorem 1.1.

P  T 1.1. First, gk is periodic by Lemma 2.1. By (2.5),

Pk = 2((−1)k+1)/2 ·
∏

p≡1 (mod 4)
p|Rk

Pp,k

= 2((−1)k+1)/2 ·
Rk

2v2(Rk)
∏

p≡3 (mod 4) pvp(Rk)

∏
p≡1 (mod 4)

p|Rk

Pp,k

pvp(Rk)

=
Qk∏

p≡1 (mod 4)
p|Rk

pvp(Rk )

Pp,k

:=
Qk

∆k
.

By Lemma 3.3, we know that there is at most one prime p ≡ 1 (mod 4) such that p | Rk

and vp(k + 1) ≥ vp(Rk).
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If there is exactly one prime p ≡ 1 (mod 4) such that p | Rk and vp(k + 1) ≥ vp(Rk),
then for such prime p, Lemma 3.4 tells us that Pp,k = 1. For all other primes
q ≡ 1 (mod 4) with q | Rk, we obtain by Lemma 3.4 that Pq,k = qvq(Rk). In this case,
∆k = pvp(Rk). Then Pk = Qk/pvp(Rk). Notice that vp(Rk) = vp(Qk) for such prime p.
Hence Pk = Qk/pvp(Qk) in this case.

If there is no prime p ≡ 1 (mod 4) satisfying p | Rk and vp(k + 1) ≥ vp(Rk), then for
all primes q ≡ 1 (mod 4) with q | Rk, we have Pq,k = qvq(Rk) and so ∆k = 1. Therefore
Pk = Qk in this case. This completes the proof of Theorem 1.1. �

By Theorem 1.1, we can easily find infinitely many positive integers k such that
Pk = Qk as the following two examples show.

E 4.1. If k + 1 has no prime factors congruent to 1 modulo 4, then Pk = Qk by
Theorem 1.1. For instance, if k + 1 equals 6r with r a positive integer, or is a prime
number congruent to 3 modulo 4, then Pk = Qk.

E 4.2. Let a and b be any two positive integers. If k is an integer having
the form k = 3a5b − 1, then Pk = Qk. In fact, since k = 3a5b − 1 > (5b+1 − 1)/2, the
congruence x2 + 4 ≡ 0 (mod 5b+1) has at least one root modulo 5b+1 in the interval
[1, k]. So

v5(Rk) = v5(lcm1≤i≤k{i(i2 + 4)}) ≥ b + 1 > v5(k + 1) = b.

Then Pk = Qk by Theorem 1.1.

On the other hand, there are also infinitely many positive integers k such that Pk

equals Qk divided by a power of one prime p ≡ 1 (mod 4). The following proposition
gives us such example.

P 4.3. If k + 1 is a prime congruent to 1 modulo 4, then Pk = Qk/(k + 1).

P. For any integer 1 ≤ i ≤ k, since k + 1 is a prime congruent to 1 modulo 4,
implying that k ≥ 4, we obtain i2 + 4 ≤ k2 + 4 < (k + 1)2. Note that k + 1 is a prime.
Hence vk+1(i2 + 4) < 2. Then, by (3.1),

vk+1(Rk) = max
1≤i≤k
{vk+1(i2 + 4)} < 2.

In addition, there is an integer x ∈ [1, k] satisfying x2 + 4 ≡ 0 (mod k + 1). In other
words, max1≤i≤k{vk+1(i2 + 4)} ≥ 1. Thus

vk+1(Rk) = max
1≤i≤k
{vk+1(i2 + 4)} = 1 = vk+1(k + 1).

Then Proposition 4.3 follows immediately from Theorem 1.1. �

In concluding this paper, we give an interesting asymptotic formula as an
application of Theorem 1.1.
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P 4.4. Let k be any given positive integer. Then the following asymptotic
formula holds:

log lcm0≤i≤k{(n + i)2 + 1} ∼ 2(k + 1) log n as n→∞.

P. By Theorem 1.1, gk is periodic. So for all positive integers n, gk(n) ≤ M :=
max1≤m≤Pk {gk(m)}. Hence

log
( k∏

i=0

((n + i)2 + 1)
)
− log M ≤ log lcm0≤i≤k{(n + i)2 + 1} ≤ log

( k∏
i=0

((n + i)2 + 1)
)
.

Since

log
( k∏

i=0

((n + i)2 + 1)
)
− log M = 2(k + 1) log n +

k∑
i=0

log
(
1 +

2i
n

+
i2 + 1

n2

)
− log M,

it follows that

lim
n→∞

log(
∏k

i=0((n + i)2 + 1)) − log M

2(k + 1) log n
= 1.

Note that

lim
n→∞

log(
∏k

i=0((n + i)2 + 1))

2(k + 1) log n
= 1.

Therefore

lim
n→∞

log lcm0≤i≤k{(n + i)2 + 1}
2(k + 1) log n

= 1

as desired. The proof of Proposition 4.4 is complete. �
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