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Our understanding of homogeneous vapour bubble growth is currently restricted to
asymptotic descriptions of their limiting behaviour. While attempts have been made to
incorporate both the inertial and thermal limits into bubble growth models, the early stages
of bubble growth have not been captured. By accounting for both the changing inertial
driving force and the thermal restriction to growth, we present an inertio-thermal model
of homogeneous vapour bubble growth, capable of accurately capturing the evolution of
a bubble from the nano- to the macro-scale. We compare our model predictions with:
(a) published experimental and numerical data, and (b) our own molecular simulations,
showing significant improvement over previous models. This has potential application
in improving the performance of engineering devices, such as ultrasonic cleaning and
microprocessor cooling, as well as in understanding of natural phenomena involving
vapour bubble growth.
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1. Introduction

Vapour bubble growth has long been an area of scientific interest, as they underpin
numerous natural phenomena (Prosperetti 2017) and engineering applications, such as
ultrasonic cleaning (Yasui 2018) and two-phase thermal management systems (Robinson
& Judd 2004). Vapour bubble growth can also have deleterious effects; for example,
they have been shown to play a significant role in the explosive failure of pressurised
containers (Reinke 1997) and the dryout failure of pool boiling systems (Chu et al. 2013).
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Understanding the growth behaviour of vapour bubbles is therefore an important open
problem, and current theoretical models remain incomplete.

In one of the earliest theoretical analyses on homogeneous vapour bubble growth,
Plesset & Zwick (1954) equated the latent heat required to grow the bubble to the
heat available through conduction. Their Plesset–Zwick (PZ) model predictions showed
excellent agreement with experimental results for water (Dergarabedian 1953) and later
for other fluids (Dergarabedian 1960; Florschuetz, Henry & Khan 1969). However, the
PZ model was subsequently shown to significantly overpredict the growth of bubbles at
reduced pressures (Lien 1969), where there is an increased time scale at which thermal
effects dominate the bubble’s growth. This overprediction results from an unphysical
infinite initial velocity, instead of being limited by inertial forces until the thermal time
scale has been reached.

Mikic, Rohsenow & Griffith (1970) accounted for this inertial limit and derived a
formula that interpolates between the inertial velocity given by Rayleigh (1917) and the
thermal velocity of Plesset & Zwick (1954); their model is now commonly referred to as
the Mikic–Rohsenow–Griffith (MRG) model. The MRG model removes the infinite initial
velocity predicted by the PZ model, instead bounding it by the inertial limit, which then
better matched experimental data (Lien 1969). While the MRG model accurately captures
the transition between the inertial- and thermal-limiting velocities, it still overpredicts the
growth of an initially static bubble, as it assumes a finite initial velocity. Additionally, there
does not exist a model capable of capturing the effects of capillarity and viscosity, which
are both relevant to early-stage growth (Avdeev 2016).

This theoretical bottleneck, coupled with the difficulties in obtaining high-resolution
data for isolated bubble growth, has led to the development of numerical techniques for
the measurement of bubble growth rates (Dalle Donne & Ferranti 1975; Lee & Merte
1996). These numerical investigations have been used to show excellent agreement with
the existing theories, failing only when the assumptions made by the theories are shown to
be invalid (Robinson & Judd 2004). Most numerical models solve the coupled momentum
and energy differential equations, with varying approximations for the treatment of heat
transfer in the thermal boundary layer (Prosperetti & Plesset 1978). Recent works have
investigated the approximations typically made in the momentum equation, such as Bardia
& Trujillo (2019), who added the effects of mass transfer across the bubble interface. While
these numerical studies provide high-resolution data for the growth of vapour bubbles,
they do not provide additional clarity to the understanding of the relationship between
the inertial and thermal limitations on bubble growth rates that can be obtained from an
analytical model.

In this paper we present a new class of inertio-thermal models for the growth of vapour
bubbles that captures the competition between inertial and thermal effects on bubble
growth. We find that the entire lifetime of the bubble can be modelled by limiting the
growth by the available inertia. When compared with existing experimental and numerical
data, we show better agreement than the MRG model. We are able to incorporate viscous
and capillary effects that are required for nanoscale bubble growth, with comparisons
against our own molecular simulations.

2. Model formulation

2.1. Inertial bubble growth
In the absence of thermal effects, the growth of a spherical vapour bubble with vapour
pressure Pv surrounded by a liquid at pressure P∞ is described by the generalised
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Rayleigh–Plesset (RP) equation for Newtonian fluids (Prosperetti 1982)

RU̇l + 3
2

U2
l − J

ρl

[
2Ul + J

(
1
ρv

− 1
ρl

)]
= 1

ρl

(
Pv − P∞ − 2γ

R
− 4μUl

R

)
, (2.1)

where R and Ul represent the bubble radius and the radial velocity in the liquid at the
interface, respectively, with dots used to represent their time derivatives; while ρl, γ and
μ represent the liquid’s density, surface tension and dynamic viscosity, respectively. The
term ρv represents the density of the vapour and J is the mass flux across the liquid–vapour
interface. The mass flux can be used to relate the radial velocity of the bubble Ṙ to the
velocity of the liquid at the interface J = ρl(Ul − Ṙ). For cases away from the critical
point, where ρl � ρv , the contribution of mass transfer can be neglected, giving the
classical RP equation (details in supplementary material available at https://doi.org/10.
1017/jfm.2022.734)

RR̈ + 3
2

Ṙ2 = 1
ρl

(
Pv − P∞ − 2γ

R
− 4μṘ

R

)
. (2.2)

We can see from (2.2) that the stationary case of this model, i.e. when Ṙ = R̈ = 0,
returns the critical radius from nucleation theory Rc = 2γ /�P (Kaschiev 2000, p. 49),
where �P is the difference between liquid and vapour pressure, i.e. �P = Pv − P∞. By
integrating (2.2), it has been shown that the inertial bubble velocity reaches a maximum
value of A, given as (Prosperetti 2017)

ṘRP,max = A =
√

2�P
3ρl

. (2.3)

Taking the initial acceleration of R̈ = �P/ρlR0 (Brennen 2013, p. 38), the time taken by
a stationary bubble of initial size R0 to reach this inertial velocity A, can be approximated
as

τRP = A
R̈

= R0

√
2ρl

3�P
. (2.4)

2.2. Thermal bubble growth
Inertial bubble growth continues as long as the pressure difference across the bubble
interface is maintained. However, in reality, heat must be conducted through the liquid
as the bubble grows in order to balance the latent heat of vaporisation required to grow the
bubble. This results in a drop in the bubble vapour pressure Pv as it grows, and therefore
a drop in the pressure difference �P. In this section, an overview of existing thermally
limited bubble growth models is provided.

Plesset & Zwick (1954) assumed that this heat is conducted through a thin thermal
boundary layer, and equated it to the latent heat to obtain an expression for bubble velocity
during thermally limited growth (details in the supplementary material)

ṘPZ = Ja

√
3α

πt
, (2.5)

where α = k/ρlcp is the thermal diffusivity of the liquid, k is the thermal conductivity and
cp is the specific heat capacity. The Jakob number Ja, is the ratio of sensible heat to latent
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heat, given by Ja = ρlcp�T0/ρvhlv , where �T0 is the initial liquid superheat, and hlv is
the enthalpy of vaporisation.

Mikic et al. (1970) rewrote (2.5) in the form

ṘPZ = B
2
√

t

(
1 − Tv − Tsat

�T0

)
, (2.6)

where B = Ja
√

12α/π, Tv is the instantaneous vapour temperature and Tsat is the
saturation temperature of the liquid. Assuming that the instantaneous superheat and
pressure difference vary linearly (Theofanous & Patel 1976; Lee & Merte 1996) i.e.

Tv − Tsat

�T0
= Pv − P∞

�P0
, (2.7)

where �P0 is the initial pressure difference, (2.5) can now be rewritten in terms of the
instantaneous pressure difference, Pv − P∞

Pv − P∞ = �P0

(
1 − 2

√
t

B
Ṙ
)

, (2.8)

where we have used Ṙ in place of ṘPZ to clarify that the pressure difference varies with
bubble velocity, consistent with literature on this topic (Prosperetti 1982; Lee & Merte
1996).

Mikic et al. (1970) then modified the inertial-limiting velocity (2.3) presented in
the previous section by using the instantaneous (time-varying) pressure difference to
recalculate the velocity rather than the initial (constant) pressure difference typically used,
resulting in the MRG model. Thus, the MRG model accounts for the change in vapour
pressure as the bubble grows and cools, producing a quadratic equation for Ṙ. This is
expressed in terms of the initial limiting velocity A0, calculated using the initial pressure
difference �P0. The negative root of this equation was rejected, giving

ṘMRG = A0

⎡
⎣
√

A2
0

B2 t + 1 −
√

A2
0

B2 t

⎤
⎦ . (2.9)

Equation (2.9) represents an improvement over the PZ model (2.5) as it extends the
applicability of the model to earlier stages of bubble growth, removing the non-physical
infinite initial velocity that would be obtained if the PZ model were extrapolated (as t → 0,
ṘPZ → ∞ while ṘMRG → A). The MRG model has been shown to accurately predict the
transition from inertially limited to thermally limited bubble growth (Lee & Merte 1996;
Robinson & Judd 2004). Importantly, it sets the time scale

τMRG = B2

A2 , (2.10)

when thermal effects cause the bubble growth to diverge from the inertial limit. Several
papers have since made modifications to this model to better capture vapour bubble growth
(Board & Duffey 1971; Theofanous & Patel 1976; Prosperetti & Plesset 1978). These
modifications generally involve using a different relationship between the vapour pressure
and temperature difference, typically a direct linear relationship (Lee & Merte 1996;
Robinson & Judd 2004), instead of the Clausius–Clapeyron approximation originally used
by Mikic et al. (1970).
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While the MRG model is an improvement over the PZ model, it still assumes that the
bubble begins growing at the inertial-limiting velocity A, ignoring the finite time required
for the bubble to reach this velocity from rest. This assumption implies an infinite radial
acceleration in the case of an initially static bubble, which is clearly non-physical. In this
work, we account for the finite acceleration of initially static vapour bubbles rather than
assuming the limiting value from (2.3), as elaborated in the next section.

2.3. Inertio-thermal bubble growth
While (2.2) is challenging to solve analytically in its full form, an analytical solution can
be obtained for the inviscid case (μ = 0) (Dergarabedian 1953). However, this solution
only provides the time taken for bubble growth for a given radius, and cannot be inverted
to obtain an equation for the temporal variation in bubble radius. This prevents us from
using a fully analytical solution to the RP equation with a time-varying vapour pressure,
even in the case of zero viscosity.

Instead, we develop a simplified model for the radial velocity in the absence of capillary
and viscous effects (μ = γ = 0) following the methodology of Avdeev (2016, pp. 55–58).
The RP equation (2.2) can be written in the simplified form (Brennen 2013, p. 37)

ṘRP = A

√
1 −

(
R0

R

)3

. (2.11)

Avdeev then integrates this expression in the limits of R → R0 and R → ∞ and provides
a simpler approximation for the radius

R = R0

3
+ 2R0

3

√
1 + t2

τ 2
RP,0

, (2.12)

by assuming a constant pressure difference �P0, with τRP,0 representing the
corresponding inertial time scale from (2.4), computed using �P0 instead of �P. Taking
the time derivative of (2.12) returns the following approximation for the original expression
given in (2.11):

ṘRP,0 = A0√
1 + τ 2

RP,0

t2

. (2.13)

This model interpolates between the linearly increasing velocity expected in the initial
stages of the bubble growth (Ṙ ≈ R̈t) and the constant velocity in the late stages, when
the velocity has reached the inertial limit (Ṙ ≈ A0). This model has been shown to give
excellent agreement with the exact solution (Avdeev 2016, p. 58).

2.3.1. Full inertio-thermal model
Using this simple model for the evolution of the bubble’s radius, we can now develop a
new model for the instantaneous velocity of the bubble ṘRP,i, accounting for the change
in pressure as the bubble grows. As Avdeev (2016, pp. 55–58) did for constant pressure,
we interpolate between the early and late stages of growth. In the early stages of growth,
for t � τRP, the radial velocity is given as Ṙ = R̈t = At/τRP. Similarly, in the late stages
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of growth, for t � τRP, the radial velocity is given by Ṙ = A. Interpolating between these
values gives us

ṘRP,i = A√
1 + τ 2

RP
t2

, (2.14)

which describes the acceleration of the bubble from rest to its limiting value A, with a time
scale of τRP (as opposed to A0 and τRP,0, respectively, in (2.13)). Note it is the term in the
denominator that ensures the bubble velocity starts from zero, which is missing from (2.3)
and therefore the MRG model (2.9). Equation (2.14) is equivalent to allowing the pressure
to change over time in the velocity expression calculated from (2.13).

Following Mikic et al. (1970), we substitute the instantaneous pressure difference from
(2.8) into our new inertial growth equation (2.14), and treat the radial velocity terms as
equivalent. We then obtain the following expression:

Ṙ =
√√√√√√√√

A2
0

1 + τ 2
RP,0

t2

⎛
⎝1 − 2

√
t

B
Ṙ

⎞
⎠

(
1 − 2

√
t

B
Ṙ
)

, (2.15)

where A2
0(1 − (2

√
t/B)Ṙ) = A2 and τ 2

RP,0/(1 − (2
√

t/B)Ṙ) = τ 2
RP, from (2.3) and (2.4),

respectively. Here, we switch from ṘRP to Ṙ to equate the radial velocity terms, as was
done with the MRG model. This expression accounts for the thermal effects on both the
inertial-limiting velocity A and on the inertial time scale τRP. Rearranging (2.15) gives a
cubic expression in Ṙ

2
√

t
B

Ṙ3 +
(

4A2
0t

B2 − 1 − τ 2
RP,0

t2

)
Ṙ2 − 4A2

0
√

t
B

Ṙ + A2
0 = 0, (2.16)

which can be solved analytically using Cardano’s formula. The solution to equation (2.16)
is what we refer to as the full inertio-thermal (FIT) model. While it can be shown that
the three roots to equation (2.16) are real through discriminant analysis, the roots can only
be expressed in a complex form (details in the supplementary material). For the case of
τRP,0 = 0, corresponding to the velocity initially having a value equal to the inertial limit,
the roots of the equation are exactly the PZ model (2.5), the rejected negative result from
the MRG derivation and the MRG model (2.9), respectively. As the FIT model presents
as a complex equation, we can alternatively find approximations to the solutions of (2.16),
which are less accurate than the FIT, but potentially more useful. These approximations
further allow us to include the effects of capillarity and viscosity, which are not accounted
for in (2.14).

2.3.2. Approximate inertio-thermal model
If we return to the derivation of (2.13), the assumption of constant pressure difference
manifests in the integral (Avdeev 2016, p. 55)∫ t

0

A
R0

dt ≈ 3t
2τRP,0

. (2.17)
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If we substitute the integral from (2.17) into (2.12) rather than the approximated value,
we retrieve an expression for the radius of the bubble with a time-varying pressure

R = R0

3
+ 2R0

3

√√√√√√√1 +

⎛
⎜⎜⎝

3
∫ t

0

A
R0

dt

2

⎞
⎟⎟⎠

2

. (2.18)

Taking the time derivative of (2.18) gives us an approximation for the radial velocity with
varying pressure

ṘRP,i = A√√√√√√√1 +

⎛
⎜⎜⎝ 2

3
∫ t

0

A
R0

dt

⎞
⎟⎟⎠

2
. (2.19)

Taking A = A0
√

1 − (2
√

t/B)Ṙ as before, the integral term in (2.19) can be
approximated by taking a Taylor series expansion around t = 0 giving

∫ t

0

A
R0

dt = A0

R0

∫ t

0

√
1 − 2

√
t

B
Ṙ dt = A0

R0

(
t − 2t3/2Ṙ(0)

3B
− t2Ṙ(0)2

4B2 + O(t5/2)

)
.

(2.20)

Evaluating this approximation for the initially static case Ṙ(0) = 0 and ignoring the
higher-order terms lets us approximate equation (2.19) as

Ṙ =
A0

√
1 − 2

√
t

B
Ṙ√

1 + τ 2
RP,0

t2

. (2.21)

Solving this expression for Ṙ gives

ṘAIT = A0√
1 + τ 2

RP,0

t2

⎡
⎢⎢⎢⎢⎣
√√√√√√

A2
0

B2

(
1 + τ 2

RP,0

t2

) t + 1 −
√√√√√√

A2
0

B2

(
1 + τ 2

RP,0

t2

) t

⎤
⎥⎥⎥⎥⎦ , (2.22)

which we will refer to as the approximate inertio-thermal (AIT) model. Alternatively,
rather than the above process, we can directly replace the inertial-limiting velocity A0
in the MRG model (2.9) with the instantaneous velocity from (2.14), which again gives
(2.22).

The AIT accounts for the need for the bubble to have grown (and phase change to have
occurred), in order for the temperature gradient to form in the liquid. We can rewrite the
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AIT model more generally in terms of the instantaneous velocity predicted by the constant
pressure RP model equation (2.13), ṘRP,0, as

ṘAIT = ṘRP,0

⎡
⎣
√

Ṙ2
RP,0

B2 t + 1 −
√

Ṙ2
RP,0

B2 t

⎤
⎦ . (2.23)

This allows us to include the effects of capillarity and viscosity in our model through the
calculation of the inertial velocity ṘRP,0 directly from (2.2). This is achieved in our case
by numerically calculating the value using a Runge–Kutta ordinary differential equation
(ODE) solver.

The AIT model offers us a clearer insight into the coupling of inertial and thermal
effects in the growth of vapour bubbles. We can now see how the inertial growth of
the bubble causes the heat transfer behaviour to change. As the bubble accelerates, a
greater heat transfer rate is required to maintain the growth, slowing down the bubble’s
velocity. Similarly, the model captures how, in the absence of significant inertial effects,
the time scale for thermal diffusion controlled growth can be significantly increased. Most
importantly, the effects of surface tension and viscosity can be included in the AIT model
by explicitly calculating the value of ṘRP,0 from (2.2) (note that this is not possible in
the FIT model). Using this model we can now better understand the coupled inertia and
thermal diffusion effects on the growth of vapour bubbles when capillarity and viscosity
are relevant.

2.3.3. Simple inertio-thermal model
In cases when the ratio of the inertial time scale τRP (2.4) to the thermal time scale
τMRG (2.10) is low i.e. for τRP/τMRG < 1, inertial effects occur on a faster time scale than
thermal effects, allowing them to be treated as independently changing parameters. This
allows further simplification of the AIT model as the bubble will have approached its
inertial-limiting velocity before thermal effects on growth are significant, giving

ṘSIT = ṘRP,0ṘMRG

A0
. (2.24)

We call (2.24) the simple inertio-thermal (SIT) model. As with the AIT model, when
t � τRP,0 the effect of changing inertia can be disregarded in the SIT model as well. In
addition, when t � τMRG, the τRP,0/t terms in (2.22) can be disregarded, justifying the
simplification in (2.24). Again, capillary and viscous effects can be included by explicitly
calculating the instantaneous inertial velocity term ṘRP,0 from (2.2). In general, we can
perform this simplification and use the SIT model whenever τRP < τMRG.

The FIT, AIT and SIT models, from (2.16), (2.22) and (2.24), respectively, represent
a new class of inertio-thermal models for vapour bubble growth. For the cases with
τRP < τMRG, the SIT model can be used, as inertial and thermal effects occur on different
time scales. For τRP > τMRG, the AIT model should be used, as it captures the interaction
between inertial and thermal effects. The FIT can be used for all time scale ratios, but only
in the absence of viscous and capillary effects. An analysis of the agreement of the three
models has been presented in the SI, highlighting the poor agreement of the SIT model for
τRP > τMRG, but an improved agreement for τRP < τMRG.
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Figure 1. Comparisons of the predictions of the MRG and our IT models with the experimental work of (a)
Florschuetz et al. (1969), and (b) Dergarabedian (1953). Note the symbol γ in (b) represents the inclusion of
surface tension in the calculation of the AIT and SIT models.

3. Model validation

3.1. In the absence of viscous and capillary effects
We can quantify the effect of capillarity through the ratio of the bubble’s initial radius to
the critical radius R = R0/Rc. The effect of viscosity can be quantified by the Reynolds
number, Re = A0R0ρl/μ. We would expect the capillary and viscous effects to be greater
for lower values of R and Re, respectively. In the absence of viscous and capillary
effects, we would expect our inertio-thermal model to deviate most from the MRG model
predictions when the thermal time scale is smaller than the inertial, i.e. τRP/τMRG > 1. The
experiments of Florschuetz et al. (1969) meet this criterion as τRP/τMRG ≈ 42.5 > 1. The
effects of capillarity and viscosity can be neglected for this case as R ≈ 60 and Re ≈ 1700.

The predictions of the MRG (2.9) and inertio-thermal (IT) models are compared with
the data in Florschuetz et al. (1969) in figure 1(a). We can see from the figure that the IT
models better describe the early stages of the bubble’s growth. The initial inertial velocity
predicted by the MRG model overpredicts the actual growth rate. In the latter stages of the
bubble’s growth, the velocities predicted by both models converge to the limiting value of
the PZ model. Therefore, in the absence of viscous and capillary effects, the MRG model
overpredicts the experimental data overall, while the IT model predictions (which lie on
top of each other) are more accurate. In this case, we see good agreement between all three
IT models, as there are no effects of capillarity or viscosity.

It is worth noting that the results reported by Florschuetz et al. (1969) were for
reasonably isolated bubbles that nucleated in the bulk liquid. This ensured that the thermal
boundary layer of the bubble was not disrupted by the presence of other bubbles or the
walls of the test vessel during the measurement period. In contrast to Lien (1969), where
the maximum disruption to the thermal boundary layer was expected in the early stages of
growth due to the electrodes used caused the bubble nucleation, Florschuetz et al. (1969)
nucleated bubbles on natural nucleation sites in the bulk liquid. In this case, the greatest
deviation from theory is expected in the later stages of growth, when the bubble has
grown sufficiently large for its thermal boundary layer to interact with the surroundings.
For this reason, we can attribute the disagreement of the early stage experimental results
and the MRG model to the limiting inertia and not the presence of other bubbles or
walls.
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3.2. The effect of capillarity
Capillary effects become important in determining the growth of bubbles when they
are close to the critical size. In these cases, the available hydrodynamic pressure in the
bubble is reduced by the Laplace pressure across the interface. Both numerical (Lee &
Merte 1996; Robinson & Judd 2004) and experimental (Dergarabedian 1960) studies have
focused on the growth of critically sized bubbles. One of the earliest such studies was that
of Dergarabedian (1953), who experimentally measured the growth of vapour bubbles at
low superheats. The case shown in figure 1(b) is of the growth of a water vapour bubble
at a superheat of �T = 3.1 K. The bubble is grown from close to the critical radius,
with R ≈ 1.05. The effect of viscosity can be neglected as Re ≈ 100. The SIT model
(with capillary effects included, shown as SIT + γ in figure 1b) can be used to predict the
bubble growth here, as τRP < τMRG (τRP ≈ 2.3 μs and τMRG ≈ 5.3 μs). The SIT model
allows us to use the exact inertial velocity, calculated from numerically integrating the
RP equation (2.2), which includes the effects of capillarity, using a Runge–Kutta ODE
solver. We can see from figure 1(b) that the SIT curve provides better agreement with the
experimental data than the MRG model, most notably during the earlier stages of growth.
The AIT model (with capillary effects included, shown as AIT + γ in figure 1b) also
provides good agreement for the growth of the bubble, predicting a slightly higher radius
than the SIT model. The FIT model, which does not include capillary effects, does not
show the same level of agreement. In this case, when capillarity dominates the early stage
growth behaviour, the FIT model predicts bubble radii noticeably closer to those of the
MRG model than the AIT and SIT models.

Again, as with the case in figure 1(a), the effects of surrounding bubbles and the walls of
the experimental container are deemed negligible in their effect on the experimental results
as their distances are significantly greater than the thermal boundary layer thickness δT ,
which we can approximate as δT = √

αt ≈ R/2Ja (Dergarabedian 1953). This allows us
to attribute the decreased growth rate in the early stages of growth to the limiting inertia,
rather than limited thermal diffusion due to the disruption of the boundary layer (Enríquez
et al. 2014).

Numerical modelling of the growth of sodium bubbles was performed by Dalle Donne
& Ferranti (1975) who coupled the energy and RP equations directly, and solved them with
a Runge–Kutta solver. Prosperetti & Plesset (1978) additionally included the thin thermal
boundary layer assumption of Plesset & Zwick (1954) to simplify the energy equation.
These bubbles are initiated at close to their critical size, and capillary effects therefore
play a significant role in the dynamics of the bubbles.

Figure 2 tracks the bubble radius R for cases representing (a) high, (b) moderate and (c)
low superheats, respectively, compared with the MRG and IT model predictions. We can
see from these plots that the AIT and SIT models, with capillary effects included, provide
better agreement with the numerical data across the range of superheats. During the early
stages of the bubble growth, the MRG model fails to capture the acceleration of the initially
static bubble. This leads to the overprediction of the velocity and, subsequently, the radius
of the bubble as seen for each of the three cases in figure 2(a–c). This overprediction
does not occur for the AIT and SIT models, which capture these dynamic inertial effects.
Little disagreement between the FIT and MRG models is seen due to the strong effects
of capillarity in these near critically sized bubbles, which is not included in either model.
During the late stages of the bubble growth, the agreement between all our IT models and
the MRG model improves, as with previous cases. When the bubble has grown to the point
where the dynamic inertial effects have stabilised, the growth is determined entirely by
thermal effects. In the case of the low superheat, shown in figure 2(c), some disagreement
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Figure 2. A comparison of the predictions of the MRG and IT models with the numerical studies of (a) high,
(b) moderate and (c) low superheats from the work of Prosperetti & Plesset (1978), and (d) Robinson & Judd
(2004).

between the results of Prosperetti & Plesset (1978) and the MRG model, and by extension
the SIT model, is observed at larger time scales. This is attributed to the invalidity of the
thin thermal boundary layer approximation at low Ja where additional terms ignored in
the PZ model become important (Plesset & Zwick 1954; Avdeev 2016).

Robinson & Judd (2004) perform similar numerical calculations, investigating the
transition from surface tension- to thermally controlled growth of water vapour bubbles
across a range of operating conditions. Their analysis shows that the assumptions in the
MRG model are invalid at low Ja, showing disagreement with their results for Ja < 10.
This is attributed to the theoretical limits of the PZ model, which is not accurate for Ja < 4
(Avdeev 2016). We account for this disparity by considering the changing inertial driving
force in our IT models. Figure 2(d) shows vastly improved agreement between the results
of Robinson & Judd (2004) and the AIT and SIT models when compared with the MRG
model for Ja = 9. When the IT models are compared with each other, there is slightly
better agreement visible with the SIT model than the AIT model, which will be elaborated
on in the next section. Note that the bubble radius data from Robinson & Judd (2004) are
offset by the initial radius, and the time data are offset by a thermal time constant, which is
the time taken for the system to react to a change in the thermal environment and is given
as tc = 4γ 2/(9α�P2).

3.3. The effect of viscosity
So far, we have only analysed bubble growth in the absence of viscous effects. Viscosity
has been shown to be largely insignificant in many of the cases analysed in literature
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Figure 3. Comparison of the predictions of the RP, MRG and IT models with the MD simulations for four
different conditions; (a) R0 = 7 nm, T = 135 K and P = 1 MPa; (b) R0 = 5 nm, T = 135 K and P = 1 MPa;
(c) R0 = 7 nm, T = 130 K and P = 0.1 MPa; and (d) R0 = 5 nm, T = 130 K and P = 0.1 MPa. Inset in (a)
is a series of simulation snapshot segments (left) alongside the measured bubble profile and model predictions
at times of 0, 0.5 and 1 ns. Note the symbols γ and μ represent the inclusion of surface tension and viscosity,
respectively, in the calculation of the AIT and SIT models.

(Robinson & Judd 2004), and so is typically not included in numerical investigations
(Dalle Donne & Ferranti 1975; Lee & Merte 1996). However, for critically sized bubbles
at near-spinodal conditions, viscosity becomes one of the determining factors in the
growth rate of the bubble (Avdeev 2016, p. 63). These conditions are difficult to produce
experimentally. The small critical radii near the spinodal mean that it is very likely that a
nucleation event will occur in an unplanned location, making it harder to study. Combined
with the difficulties of measurement on the length and time scales necessary to capture
the bubble growth in sufficient detail, this means that experimental data are not readily
available to make comparisons. Thus, to validate our model predictions for bubble growth
within this regime, we performed molecular dynamics (MD) simulations (details in the
supplementary material).

Our MD simulations allow us to measure the growth of argon vapour bubbles with high
spatial and temporal resolution. Simulations were performed with bubbles of initial radius
5 nm and 7 nm, each at two operating conditions; temperatures of 130 K and 135 K, and
pressures of 0.1 MPa and 1 MPa, respectively. These cases have Reynolds numbers in
the range Re = 2.6–4.7, meaning that viscous effects are of greater importance here than
previous cases. The value of τRP/τMRG ranges from 0.01–0.4, permitting the SIT model to
be used for these cases. The plots in figure 3 compare the MD results with the predictions
of the RP, MRG and IT models. Inset in figure 3(a) is a series of simulation snapshots
showing a section of the MD simulation alongside the measured bubble profile and the
model predictions. We consistently see that the MRG model overpredicts the initial growth
rate. The RP prediction matches the early stage growth rate, but overpredicts at later stages.
We can see excellent agreement with the SIT model predictions for the entire timespan for
each of the cases, along with reasonable agreement of the AIT model.

These results imply consistently improved agreement of the SIT model over the AIT
model, despite the additional simplifications made in the derivation of the SIT model.
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Figure 4. Comparison of the predictions of the SIT model with and without viscosity and capillarity with the
MD simulations.

From the derivation, we would expect the SIT model to underpredict the radius of the
bubble as it predicts a greater cooling of the bubble than the available inertia would
allow as the bubble accelerates from rest. However, the linear temperature–pressure
relationship used in the derivation of the MRG model, and through it the IT models
(i.e. (2.7)) overpredicts the vapour pressure during the growth process (Prosperetti &
Plesset 1978) and has been shown to overpredict bubble radii by up to 40 % (Lee & Merte
1996). Therefore, the apparent advantage of the SIT over the AIT only results from the
cancellation of these errors, and not due to greater accuracy in modelling capacity (more
details on this are given in § S5 of the supplementary material). Both the SIT and AIT
models are well within this range of error for the MD cases presented in figure 3, at 15 %
and 20 % respectively. Meanwhile the error in the MRG model predictions is considerably
higher during the early stages of growth, only reducing to an acceptable level as the bubble
grows far from its initial size.

The effect of viscosity in isolation can be studied by comparing the predictions of the
SIT model with and without viscosity. Plotted in figure 4 is the case from figure 3(a)
comparing the SIT model, the SIT model without viscosity (SIT μ = 0), the SIT model
without viscosity and capillarity (SIT μ = γ = 0) and the FIT model with the MD data.
We can see from this plot that, in the absence of viscosity and capillarity, the SIT model
is quite close to the FIT model. Figure 4 shows how viscosity can be readily included into
the AIT and SIT models when needed.

4. Conclusions

Accounting for the changing inertial effects during the growth of an isolated vapour bubble
has allowed us to extend the applicability of the existing bubble growth models. We present
a new class of IT models that capture the bubble’s inertially limited growth from rest,
removing the singularity in the acceleration of the bubble that is present in other models.
We show excellent agreement with experimental and numerical data from the literature as
well as our own molecular simulations.

The FIT model describes the growth of an isolated bubble in the absence of viscous
and capillary effects, and will be most applicable for describing the growth of large
vapour bubbles, where the effect of viscosity and capillarity is reduced. The AIT
model provides an approximate solution to the FIT model, in a manner resembling the
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MRG model. Despite introducing some predictive errors, it captures the interplay between
the thermal and inertial effects, with the effect of thermal diffusion becoming more
relevant as the bubble grows from rest. When the time scale ratio between inertial and
thermal growth is low, the SIT model can be used. This provides a simple scaling of
the velocity but does not account for the interplay between the thermal and inertial
effects, treating them as independently changing parameters. We have shown that in
certain cases when inertial effects occur on a quicker time scale than the thermal effects,
i.e. τRP < τMRG, the SIT model can give more accurate results than the AIT model despite
its simpler form. This improved agreement is likely due to the cancellation of errors
introduced in the model derivations (Theofanous & Patel 1976) rather than a more accurate
modelling of the problem. The exact criterion for when the intrinsic error in the SIT model
outweighs the systematic error in the temperature–pressure relationship remains uncertain.
However, we hope that this work will motivate further research into this topic and better
complete our understanding of the interplay of inertial and thermal effects. The AIT and
SIT models have the added advantage that they can include effects such as viscosity and
capillarity, which are needed to accurately reproduce bubble growth rates.

It is hoped that this improved understanding of homogeneous vapour bubble growth will
lead to improvements in control of bubble systems. As technologies become more precise
and more compact, understanding the growth behaviour of the full lifetime of vapour
bubbles will become more significant. While there are additional modelling considerations
that must be made to better represent these applications, such as the presence of a wall
during heterogeneous bubble growth, the IT models presented here represent the most
accurate theoretical approach to predict homogeneous vapour bubble growth across all
length and time scales.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.734.
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