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Real Hypersurfaces in Complex Projective
Space Whose Structure Jacobi Operator is
Lie D-parallel
Juan de Dios Pérez and Young Jin Suh

Abstract. We prove the non-existence of real hypersurfaces in complex projective space whose struc-
ture Jacobi operator is Lie D-parallel and satisfies a further condition.

1 Introduction

We will consider connected real hypersurfaces M in complex projective space CPm,
m ≥ 3, endowed with the metric of constant holomorphic sectional curvature equal
to 4. Let J be the Kaehlerian structure of CPm and N a unit normal vector field on M.

The problem of classifying such hypersurfaces is still open, although several par-
tial results have been obtained in works due to Takagi [13] and [14], Okumura [8],
Maeda [6], Montiel [7], Kimura [3], among others. In Berndt [1] there is a survey of
the most important results along this line.

The fact of a Riemannian manifold being a real hypersurface in CPm yields hard
restrictions to its intrinsic geometry. For example, it cannot be Einstein, thus its sec-
tional curvature is not constant. It neither can be a locally symmetric space. There-
fore some weaker intrinsic conditions have been studied (Ricci-parallelness [4], har-
monic curvature [5], and so on).

The Jacobi operator RX with respect to a unit vector field X is defined as RX =
R( · ,X)X, where R is the curvature tensor field on M. Then we see that RX is a
self-adjoint endomorphism of the tangent space. It is related to Jacobi vector fields,
which are solutions of the second order differential equation (the Jacobi equation)
∇γ̇(∇γ̇Y ) + R(Y, γ̇)γ̇ = 0 along a geodesic γ in M. We call the vector field given
by ξ = − JN the structure vector field on M. The corresponding Jacobi operator Rξ
is called the structure Jacobi operator on M. We denote the maximal holomorphic
distribution on M by D, given by all vectors orthogonal to ξ at any point of M.

Along the line of characterizing real hypersurfaces of CPm in terms of Rξ it is nat-
ural to consider the problem about the parallelism and the invariance, or Lie paral-
lelism. In [9] the non-existence of real hypersurfaces in nonflat complex space forms
with parallel structure Jacobi operator is proved. Also in [10] the first author and
Santos prove non-existence of real hypersurfaces in CPm, m ≥ 3, whose structure
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Jacobi operator is Lie-parallel, that is, its Lie derivative in any tangent direction van-
ishes.

In [12] the present authors and Santos obtain the following result.

Theorem 1.1 Let M be a real hypersurface of CPm, m ≥ 3, such that the structure
Jacobi operator Rξ is invariant under the structure vector field ξ, that is LξRξ = 0. Then
either M is locally congruent to a tube of radius π/4 over a complex submanifold in CPm

or to either a geodesic hypersphere or a tube over a totally geodesic CPk, 0 < k < m− 1,
with radius r 6= π/4.

Nevertheless the condition of Lie D-parallelism of the structure Jacobi operator
has not been studied until now.

On the other hand, we do not know the classification of real hypersurfaces in CPm

satisfying

(1.1) ARξ = RξA

where A denotes the shape operator associated to N, although we know that every
Hopf real hypersurface (a real hypersurface whose structure vector field is principal)
satisfies it.

Thus this paper is devoted to study real hypersurfaces satisfying (1.1) and at the
same time

(1.2) LXRξ = 0

for any X ∈ D. We call such a real hypersurface a real hypersurface with Lie D-parallel
structure Jacobi operator. We will prove the following theorem.

Theorem A There does not exist any real hypersurface in CPm, m ≥ 3, satisfying
(1.1) and (1.2).

Corollary There does not exist any Hopf real hypersurface in CPm, m ≥ 3, whose
structure Jacobi operator is Lie D-parallel.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class
C∞ unless otherwise stated. Let M be a connected real hypersurface in CPm, m ≥ 2,
without boundary. Let N be a locally defined unit normal vector field of M. Let∇ be
the Levi–Civita connection on M and ( J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M we write JX = φX + η(X)N, and − JN = ξ.
Then (φ, ξ, η, g) is an almost contact metric structure on M. That is, we have

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for vector fields X,Y tangent to M. From (2.1) we obtain

φξ = 0, η(X) = g(X, ξ).
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From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ

and

∇Xξ = φAX

for any vector fields X,Y tangent to M, where A denotes the shape operator of M in
CPm defined by AX = −∇̃XN for the connection ∇̃ of CPm. As the ambient space
has holomorphic sectional curvature 4, the equations of Gauss and Codazzi are given
respectively by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX,Y )φZ + g(AY,Z)AX − g(AX,Z)AY

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX,Y )ξ

for any vector fields X,Y and Z tangent to M, where R is the curvature tensor of M.
We will write, in general, Aξ = αξ +βU , where U is a unit vector field in D. Then

M is Hopf (respectively, non-Hopf) if β = 0 (respectively, β 6= 0).
We will need the following results.

Theorem 2.1 ([2]) There exist no real hypersurfaces in CPm, m ≥ 2, such that Aφ +
φA = 0.

Theorem 2.2 ([6]) Let M be a real hypersurface in CPm, m ≥ 2 such that Aξ = αξ.
Then α is locally constant and if X is a tangent vector field on M such that AX = λX
and X is orthogonal to ξ, then AφX = αλ+2

2λ−αφX.

Theorem 2.3 ([11]) There exist no real hypersurfaces in CPm, m ≥ 3, whose shape
operator satisfies Aξ = αξ +U , AU = ξ, AφU = − 1

αφU , where U is a unit vector field
in D and α a nonnull function defined on M.

Theorem 2.4 ([11]) There exist no real hypersurfaces in CPm, m ≥ 3 whose shape
operator satisfies Aξ = ξ + βU , AU = βξ + (β2 − 1)U , AφU = −φU and there exists
Z ∈ DU = Span{ξ,U , φU}⊥ such that AZ = −Z, AφZ = −φZ, where U is a unit
vector field in D and β is a nonnull function defined on M.

As in [10] we can prove the next theorem.

Theorem 2.5 Let M be a real hypersurface in CPm, m ≥ 3, satisfying (1.2). Let E
be a subspace of D that is both φ-invariant and A-invariant. Let G = {X ∈ E |
(φA + Aφ)X = 0} and let F be its orthogonal complement in E. Then AZ = σZ for
all Z ∈ F, where 1 + ασ = 0. Furthermore, there is a principal basis for G of the form
{Xi , φXi} with corresponding principal curvatures λi and −λi . In particular, F and G
are A-invariant.
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3 Proof of Theorem A

We continue writing Aξ = αξ + βU and suppose that M is non-Hopf, that is, β 6= 0.
Condition (1.2) gives

− g(φAX,Y )ξ − η(Y )φAX + g
(
∇X(Aξ), ξ

)
AY + g(Aξ, φAX)AY

+ α∇XAY − g
(
∇X(AY ), ξ

)
Aξ − g(AY, φAX)Aξ − η(AY )∇X(Aξ)

+ η(Y )∇ξX − α∇AY X + η(AY )∇AξX − αA∇XY

+ g(∇XY,Aξ)Aξ − g(∇Y X, ξ)ξ + αA∇Y X − g(∇Y X,Aξ)Aξ = 0

(3.1)

for any X ∈ D, Y tangent to M.
Taking the scalar product of this equation and ξ we obtain

− g(φAX,Y ) + η(AY )g(φAX,Aξ)− αg(AY, φAX)

+ η(Y )g(∇ξX, ξ)− αg(∇AY X, ξ) + η(AY )g(∇AξX, ξ)− g(∇Y X, ξ) = 0

(3.2)

for any X ∈ D, Y tangent to M.

Lemma 3.1 If M satisfies (1.1), we get αAU = αβξ + (β2 − 1)U .

Proof If we apply (1.1) to ξ, we have 0 = Rξ(Aξ) = βRξ(U ). As we suppose β 6= 0,
we get Rξ(U ) = U + αAU − βAξ = 0. From this equality we obtain the result.

Thus we have two possibilities:

either α = 0 and β2 = 1, or α 6= 0 and AU = βξ + β2−1
α U .

Lemma 3.2 In the above conditions, if M satisfies (1.2), α 6= 0.

Proof Suppose that α = 0. Thus β2 = 1. So we suppose β = 1 (if not, we change ξ
by−ξ). From (3.2) we have

(3.3) − g(φAX,Y ) + η(AY )η(AφAX)− η(Y )g(X, φAξ)

− η(AY )g(X, φA2ξ) + g(X, φAY ) = 0.

for any X ∈ D, Y tangent to M.
Take X = U , Y = φU in (3.3). It yields

(3.4) g(AU ,U ) + g(AφU , φU ) = 0.

Taking Y ∈ DU , X = φU in (3.3) we have −g(φAφU ,Y ) + g(U ,AY ) = 0 for any
Y ∈ DU . That is,−φAφU + AU has no component in DU . As g(−φAφU + AU ,U ) =
g(−φAφU + AU , φU ) = 0, where we have used (3.4), and g(−φAφU + AU , ξ) = 1
we get−φAφU + AU = ξ. Applying φ to this equality we get

(3.5) AφU + φAU = 0.
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From (1.1),

Rξ(AφU ) = ARξ(φU ) = AφU = −Rξ(φAU ) = −
(
φAU − g(φAU ,Aξ)Aξ

)
.

From (3.5) this yields

g(AU , φU ) = 0.

Now suppose that AU = ξ + γU + εZ, for a unit Z ∈ DU and some function ε on M.
We have φAU = γφU +εφZ. From (3.5), AφU = −γφU−εφZ. Then−φAφU =

γU +εZ. Thus−φAφU +AU = γU +εZ+ξ+γU +εZ = ξ. This yields 2γU +2εZ = 0.
Thus γ = ε = 0. Now we have AU = ξ, AφU = 0.

From the Codazzi equation (∇U A)ξ − (∇ξA)U = −φU . This gives us ∇UU +
A∇ξU = 0. Taking its scalar product with φU we get

(3.6) g(∇UU , φU ) = 0.

On the other hand, (∇U A)φU−(∇φU A)U = −2ξ. This gives−A∇UφU +A∇φUU =
−2ξ. Taking its scalar product with ξ we have

(3.7) g(∇UφU ,U ) = 2.

From (3.6) and (3.7) we have a contradiction, finishing the proof.

Thus we have α 6= 0 and AU = βξ + β2−1
α U .

Lemma 3.3 Let M be a non-Hopf real hypersurface in CPm, m ≥ 3, satisfying (1.1)

and (1.2). Then AφU = γφU , where either γ = − 1
α or γ = 1−β2

α .

Proof We suppose that AφU = γφU + εZ, where Z is a unit vector field in DU .
If we take X = φU , Y ∈ DU in (3.2), we obtain that φAφU + αAφAφU has no

component in DU . Taking its scalar product with ξ (respectively, with U and φU ) we
obtain

(3.8) φAφU + αAφAφU = −αβγξ − β2γU .

As φAφU = −γU +εφZ, AφAφU = −γβξ−γ β
2−1
α U +εAφZ. From (3.8) this yields

εφZ + αεAφZ = 0.

Suppose ε 6= 0. Then AφZ = − 1
αφZ.

Taking X = φU , Y ∈ DU in (3.2) we obtain that β2AφU + αA2φU has no com-

ponent in DU . This yields β2AφU + αA2φU = 1−β2

α φU . Taking its scalar product
with Z we get β2ε + αγε + αεg(AZ,Z) = 0. As we suppose ε 6= 0 we have

(3.9) β2 + αγ + αg(AZ,Z) = 0.
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Taking X = φZ, Y = φU in (3.2) we obtain αg(Z,A2φU ) = 0. This yields γε +
εg(AZ,Z) = 0. If ε 6= 0 we get

(3.10) γ + g(AZ,Z) = 0.

From (3.9) and (3.10) we have β = 0, which is impossible. Thus ε = 0.

Now, if we take Y = φU , X = U in (3.2), we obtain αγ2 + β2γ + β2−1
α = 0. From

this equation the result follows.

Now let Z ∈ DU be a unit vector field such that AZ = λZ. Let Y ∈ DU such
that Y is orthogonal to Span{Z, φZ}. Applying (3.2) to Z and φY we obtain that
(1+αλ)g(AφZ, φY )+αg(A2φZ, φY ) = 0. Thus (1+αλ)AφZ+αA2φZ is proportional
to φZ and we can write (1+αλ)AφZ+αA2φZ+µφZ = 0 for a certain function µ. But
if we take X = Z, Y = φZ in (3.2) we obtain (1 +αλ)g(AφZ, φZ) +αg(A2φZ, φZ) +
λ = 0. Then µ = λ and we get

(3.11) (1 + αλ)AφZ + αA2φZ + λφZ = 0

for any unit principal vector Z ∈ DU such that AZ = λZ.
Let ω be one more eigenvalue of A, ω 6= λ, and let W ∈ DU be a unit eigenvector

associated to ω. We also have

(3.12) (1 + αω)AφW + αA2φW + ωφW = 0.

If we take the scalar product of (3.11) and W , we obtain(
(1 + αλ)ω + ω2α + λ

)
g(φZ,W ) = 0

and taking the scalar product of (3.12) and Z we have(
(1 + αω)λ + λ2α + ω

)
g(φZ,W ) = 0.

From both equations we get

(ω2 − λ2)g(φZ,W ) = 0.

So we arrive at two possibilities:

(1) For any unit eigenvector W with eigenvalue distinct to λ, g(φZ,W ) = 0. This
means AφZ = λφZ.

(2) There exists a unit W as above such that g(φZ,W ) 6= 0. In this case ω = −λ.

In the first case, from (3.11) we have (1+αλ)λ+αλ2+λ = 0. This yields 2λ(αλ+1) =
0. So either λ = 0 or λ = − 1

α .
Suppose λ = 0. The Codazzi equation gives (∇ZA)φZ − (∇φZA)Z = −2ξ. This

yields A[φZ,Z] = −2ξ. Taking its scalar product with ξ, we get

(3.13) g([φZ,Z],U ) = − 2

β
.
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And the scalar product with U yields

(3.14)
β2 − 1

α
g([φZ,Z],U ) = 0.

From (3.13) g([φZ,Z],U ) 6= 0. Thus from (3.14), β2 = 1. We can take β = 1,
replacing ξ by −ξ if necessary. Therefore AU = ξ. From Theorem 2.3 this case
does not occur if γ = − 1

α . Therefore AφU = 0. The Codazzi equation yields
(∇φU A)ξ − (∇ξA)φU = U . This gives (φU )(α)ξ + ∇φUU + A∇ξφU = U . If we
take its scalar product with U we obtain−1 = 1, which is impossible. Thus we must
suppose λ = − 1

α .
Again (∇ZA)φZ − (∇φZA)Z = −2ξ. Taking its scalar products with ξ and U ,

we obtain 2
α2β = 2

β . Thus α2 = 1 and, probably after a change of ξ by −ξ, we can
suppose that α = 1. From Theorem 2.4 this is not possible if AφU = −φU . Thus we
have to suppose AφU = (1− β2)φU . Let us denote δ = β2 − 1.

From the Codazzi equation (∇φU A)ξ − (∇ξA)φU = U . Taking its scalar product
with U , we obtain

(3.15) (φU )(β) + 2δg(∇ξφU ,U ) + δ − δ2 − β2 = 1.

And the scalar product with ξ gives

(3.16) g(∇ξφU ,U ) = 3δ + 1.

From (3.15) and (3.16), bearing in mind δ = β2 − 1 we get

(3.17) (φU )(β) = 2− 2δ − 5δ2.

Now (∇U A)ξ − (∇ξA)U = −φU . This yields

(3.18) U (β)U + β∇UU + δ2φU − ξ(β)ξ − ξ(δ)U − δ∇ξU + A∇ξU = 0.

The scalar product of (3.18) and ξ gives ξ(β) = ξ(δ) = 0, and its scalar product with
U yields U (β) = 0. Thus (3.18) becomes

β∇UU + δ2φU − δ∇ξU + A∇ξU = 0.

Taking its scalar product with φU , we get

(3.19) g(∇UU , φU ) = −7δ2 + 2δ

β
.

On the other hand, (∇U A)φU − (∇φU A)U = −2ξ. Its scalar product with U gives
(φU )(δ) = −2δg(∇UφU ,U )− δβ. From (3.19) we get

(3.20) 2(φU )(β) = −2δ

β2
(7δ2 + 2δ)− δ.

From (3.17) and (3.20) we have 4δ3 − 9δ2 + δ + 4 = 0. Thus δ is constant and β is
also constant. From (3.17), 2− 2δ− 5δ2 = 0. This means δ 6= 0. From (3.20) we get
2(7δ2 + 2δ) + β2 = 0. This gives 14δ2 + 5δ + 1 = 0. As this equation does not have
real solutions we have proved the following.
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Proposition 3.4 Case (1) does not occur.

We begin with Case (2). In this case we can write φZ = ω1Z1 + ω2Z2 for unit
vector fields Z1,Z2 such that AZ1 = λZ1, AZ2 = −λZ2, ω1 and ω2 as functions on M
such that ω2

1 + ω2
2 = 1. Then A2φZ = λ2(ω1Z1 + ω2Z2) = λ2φZ. From (3.11) we get

(1 + αλ)AφZ = −λ(1 + αλ)φZ. So we can conclude that either AφZ = −λφZ or
λ = − 1

α .
As DU is holomorphic and A-invariant we can consider G = {Z ∈ DU | (φA +

Aφ)Z = 0} and F its orthogonal complement in DU . By Theorem 2.5, AX = − 1
αX

for any X ∈ F and there exists a principal basis of G, {Zi , φZi} such that AZi = λiZi ,
AφZi = −λiφZi . Moreover F and G are A-invariant.

Thus we have three possible cases:
Case A: A = − 1

α Id on DU , that means G = {0}.
Case B: G = DU .
Case C: 0 < dim(G) < 2m− 4. This case only occurs if m ≥ 4.
For Cases A and C we have the following.

Lemma 3.5 With the conditions of either Case A or Case C, we have α2 = 1.

Proof Take Z ∈ DU such that AZ = − 1
αZ, AφZ = − 1

αφZ. From the Codazzi
equation we have (∇ZA)φZ − (∇φZA)Z = −2ξ. Its scalar product with ξ gives

(3.21) g([φZ,Z],U ) =
2

α2β
.

And the scalar product with U yields

(3.22) g([φZ,Z],U ) =
2

β
.

From (3.21) and (3.22) the result follows.

Then, perhaps after changing ξ to−ξ, we can suppose α = 1. Thus Aξ = ξ +βU ,
AU = βξ + (β2 − 1)U and AφU = γφU , where either γ = −1 or γ = 1− β2.

From Theorem 2.4, Cases A and C do not occur if γ = −1. Suppose now γ =
1− β2.

In Case A, for any X ∈ DU , AX = −X. From the Codazzi equation (∇XA)U −
(∇U A)X = 0. Its scalar product with U yields g(∇UU ,X) = 2

βX(β), and its scalar
product with ξ gives X(β) = βg(∇UU ,X). Thus

(3.23) X(β) = 0.

We also have (∇U A)ξ− (∇ξA)U = −φU . Its scalar product with ξ implies ξ(β) = 0
and its scalar product with U gives U (β) = ξ(β2). So we get

(3.24) ξ(β) = U (β) = 0.
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The Codazzi equation also gives (∇φU A)ξ − (∇ξA)φU = U . Its scalar product
with ξ yields g(∇ξφU ,U ) = 1− 3(1−β2) and from its scalar product with U we get
(φU (β)− 2− (β2 − 1)2 + 2(β2 − 1)g(∇ξφU ,U ) = 0. Both equations imply

(3.25) (φU )(β) = 2− 2δ − 5δ2

where we denote δ = β2 − 1. From (3.23), (3.24), and (3.25) we have

grad(β) = (2− 2δ − 5δ2)φU = τφU .

As for any X,Y tangent to M we have g
(
∇X grad(β),Y

)
= g

(
∇Y grad(β),X

)
, we

obtain

X(τ )g(φU ,Y ) + τg(∇XφU ,Y ) = Y (τ )g(φU ,X) + τg(∇YφU ,X).

If we take Y = ξ, this yields τg(∇XφU , ξ) = τg(∇ξφU ,X), for any X tangent to M.
Taking X = U and bearing in mind that g(∇ξφU ,U ) = 1 − 3(1 − β2), we have
τ
(

1− 4(1− β2)
)
= 0. If τ 6= 0, we obtain β2 = 3

4 , thus β is constant and we have a
contradiction. Thus τ = 0 and grad(β) = 0. This means

(3.26) 5δ2 + 2δ − 2 = 0.

From the Codazzi equation (∇U A)φU − (∇φU A)U = −2ξ. If we take its scalar
product with U we get

2(β2 − 1)g(∇UU , φU ) = β(β2 − 1).

If β2 = 1, then δ = 0 and (3.26) is not possible. Thus β2 6= 1 and g(∇UU , φU ) =
β
2 . As g

(
(∇U A)ξ − (∇ξA)U , φU

)
= −1 we get

βg(∇UU , φU ) + (β2 − 1)2 − 2(β2 − 1)g(∇ξU , φU ) = 0.

Thus

βg(∇UU , φU ) = −(β2−1)2−2(β2−1)
(
−1+3(β2−1)

)
= −2(β2−1)+5(β2−1)2.

As g(∇UU , φU ) = β
2 we conclude that

(3.27) 10δ2 − 5δ − 1 = 0.

From (3.26) and (3.27), δ = 1
3 . Now (3.26) and (3.27) are not true and we have

proved the following.

Proposition 3.6 Case A does not occur.
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We continue with Case C. Recall that Aξ = ξ + βU , AU = βξ + (β2 − 1)U ,
AφU = (1− β2)φU , F 6= {0}, G 6= {0}.

Take Z ∈ G such that AZ = λZ. If we take X = φZ, Y = Z in (3.1) and its scalar
product with U we obtain

(λ + 1)
(

g(∇φZZ,U )− g(∇ZφZ,U )
)
= 0.

Suppose first that g(∇φZZ,U ) = g(∇ZφZ,U ). From the Codazzi equation, we have
(∇ZA)ξ − (∇ξA)Z = −φZ. If we take the scalar product with φZ we get

(3.28) βg(∇ZU , φZ)− 2λg(∇ξZ, φZ) = −1− λ− λ2.

As AφZ = −λφZ, if in the above procedure we change Z to φZ, we have

(3.29) βg(∇φZU ,Z) + 2λg(∇ξφZ,Z) = 1− λ + λ2.

From (3.28) and (3.29) we get 2λ2 + 2 = 0, which is impossible. Thus g(∇φZZ,U )−
g(∇ZφZ,U ) 6= 0 and λ = −1.

Taking X = Z, Y = φZ in (3.1) and its scalar product with U , we get

(−λ + 1)
(

g(∇ZφZ,U )− g(∇φZZ,U )
)
= 0.

As g(∇ZφZ,U )− g(∇φZZ,U ) 6= 0, λ = 1 and we arrive at a contradiction. Thus the
following proposition is proved.

Proposition 3.7 Case C does not occur.

So, we study Case B. Now Aξ = αξ+βU , AU = βξ+ β2−1
α U , AφU = γφU , where

either γ = − 1
α or γ = 1−β2

α , and for any Z ∈ DU such that AZ = λZ, AφZ = −λφZ.
A similar proof as in Lemma 4.3 in [10] gives us the following lemma.

Lemma 3.8 For any Z ∈ DU with AZ = λZ we get:

(1) αλg(∇ZφZ,Z) = 0,
(2) αλg(∇φZZ, φZ) = 0,
(3) λZ(α) + αZ(λ) = 0,
(4) (αλ + 1)

(
g(∇φZZ,U )− g(∇ZφZ,U )

)
= 0.

First suppose that λ = 0. Then the fourth equation in Lemma 3.5 yields
g(∇φZZ,U ) − g(∇ZφZ,U ) = 0. As g

(
(∇φZA)Z − (∇ZA)φZ, ξ

)
= 2 we obtain

β
(

g(∇ZφZ,U ) − g(∇φZZ,U )
)
= 2. This is impossible. Thus λ 6= 0, and from the

two first items in Lemma 3.5, g(∇φZZ, φZ) = g(∇ZφZ,Z) = 0. From Lemma 3.5
we have either αλ + 1 = 0 or g(∇φZZ,U ) = g(∇ZφZ,U ). If αλ + 1 = 0, λ = − 1

α .
Then AφZ = 1

αφZ, and by the same argument−αλ+ 1 = 0. This is impossible, thus
g(∇φZZ,U ) = g(∇ZφZ,U ). As in Case C, this gives a contradiction. Therefore we
have proved the following proposition.

Proposition 3.9 Case B does not occur.
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Summing up Propositions 3.2, 3.3 and 3.4, we conclude the following.

Proposition 3.10 Case (2) does not appear.

So, we have proved that there do not exist non-Hopf real hypersurfaces in CPm,
m ≥ 3, satisfying (1.1) and (1.2).

Now we suppose that M is Hopf with Aξ = αξ. Take X ∈ D such that AX = λX.
As above we obtain αA2φX + (αλ + 1)AφX + λφX = 0. If α = 0, λ = 0, then by
Theorem 2.2 this is impossible. Thenα 6= 0. As above, bearing in mind Theorem 2.2,
the unique possibility is to have AX = λX, AφX = −λφX for any X ∈ D. This means
that Aφ + φA = 0 and Theorem A follows from Theorem 2.1.
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[9] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure
Jacobi operator in nonflat space forms. Rocky Mountain J. Math. 36(2006), 1603–1613.
http://dx.doi.org/10.1216/rmjm/1181069385
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