(C) Canadian Mathematical Society 2011

Transcendental Solutions of a Class of Minimal Functional Equations

Michael Coons

Abstract. We prove a result concerning power series $f(z) \in \mathbb{C}[[z]]$ satisfying a functional equation of the form

$$
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k},
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$. In particular, we show that if $f(z)$ satisfies a minimal functional equation of the above form with $n \geqslant 2$, then $f(z)$ is necessarily transcendental. Towards a more complete classification, the case $n=1$ is also considered.

1 Introduction

We are concerned with the algebraic character of power series $f(z) \in \mathbb{C}[[z]]$ that satisfy a functional equation of the form

$$
\begin{equation*}
f\left(z^{d}\right)=\sum_{k=0}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k}, \tag{1.1}
\end{equation*}
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$. Functional equations of this type were studied by Mahler [8-11], and as such are sometimes called Mahler-type functional equations. Mahler proved that under certain conditions, if $f(z) \in \mathbb{C}[[z]]$ is transcendental over $\mathbb{C}(z)$, then for $\alpha \in \overline{(\mathbb{O} 2}$ within the radius of convergence of $f(z)$, we have that $f(\alpha)$ is transcendental over (\mathbb{O}).

Nishioka [12] subsequently proved the following.
Theorem 1.1 A power series $f(z) \in \mathbb{C}[[z]]$ satisfying (1.1) is either rational or transcendental over $\mathbb{C}(z)$.

Towards a classification of this rational-transcendental dichotomy, we proved the following result [3].

Theorem 1.2 If $f(z)$ is a power series in $\mathbb{C}[[z]]$ satisfying

$$
f\left(z^{d}\right)=f(z)+\frac{A(z)}{B(z)},
$$

where $d \geqslant 2, A(z), B(z) \in \mathbb{C}[z]$ with $A(z) \neq 0$ and $\operatorname{deg} A(z), \operatorname{deg} B(z)<d$, then $f(z)$ is transcendental over $\mathbb{C}(z)$.

[^0]We applied Theorem 1.2 in [3] to yield quick transcendence results regarding the values of the series

$$
\sum_{n \geqslant 0} \frac{z^{k^{n}}}{1-z^{k^{n}}} \quad \text { and } \quad \sum_{n \geqslant 0} \frac{z^{k^{n}}}{1+z^{k^{n}}}
$$

when $k \geqslant 2$. These series were studied previously by Golomb [7] and Schwarz [13].
In this paper, we focus on a different, more general, class of functions satisfying (1.1); specifically, we wish to classify power series $f(z) \in \mathbb{C}[[z]]$ satisfying a functional equation of the form

$$
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k},
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$ and $d \geqslant 2$.
Examples of such functions are readily available. If one takes $d=2, n=1$, $A_{1}(z)=1$, and $B_{1}(z)=1-z$, then the function $f(z) \in \mathbb{C}[[z]]$ satisfying

$$
f\left(z^{2}\right)=\left(\frac{1}{1-z}\right) f(z)
$$

is the generating function of a version of the Thue-Morse sequence. That is, $f(z)=$ $\sum_{n \geqslant 0} t_{n} z^{n}$ where $t_{n}=1-2 a_{n}$ and $\left(a_{n}\right)_{n \geqslant 0}=0110100110010110 \ldots$ is the ThueMorse sequence defined by

$$
a_{0}=0, \quad a_{2 n}=a_{n}, \quad a_{2 n+1}=1-a_{n} \quad(n \geqslant 1) .
$$

The transcendence of the generating function of the Thue-Morse sequence was given by Dekking [4].

Another example of such a function is the generating function of the Stern sequence (sometimes called Stern's diatomic sequence). The Stern sequence $(s(n))_{n \geqslant 0}$ is given by $s(0)=0, s(1)=1$, and when $n \geqslant 1$, by

$$
s(2 n)=s(n) \quad \text { and } \quad s(2 n+1)=s(n)+s(n+1)
$$

Properties of this sequence have been studied by many authors; for references see [5]. If $A(z)$ is the generating function of the Stern sequence, then

$$
A\left(z^{2}\right)=\left(\frac{z}{z^{2}+z+1}\right) A(z)
$$

In [2], we proved the transcendence of the function $A(z)$, as well as the transcendence of the generating functions of some special subsequences of $(s(n))_{n \geqslant 0}$ which were conjectured by Dilcher and Stolarsky [6] (similar results were given independently by Adamczewski [1]).

Using a generalization of the methods in [2-4], we prove that under the condition that a functional equation like (1.1) is minimal with respect to n, if $f(z)$ is the power series expansion of a rational function, then $n=1$.

2 Zero Constant-Term Functional Equations

Definition 2.1 Suppose that for $d \geqslant 2$ the power series $f(z) \in \mathbb{C}[[z]]$ satisfies

$$
\begin{equation*}
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k}, \tag{2.1}
\end{equation*}
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$. We call the functional equation (2.1) for $f(z)$ minimal provided n is the smallest positive integer so that $f(z)$ satisfies (2.1).

Note that the functional equation (2.1) has no $k=0$ term; this is the reason behind the title of this section. Our main result is the following.

Theorem 2.2 Let $d \geqslant 2$ and suppose that $f(z) \in \mathbb{C}[[z]]$ is the power series expansion of a rational function satisfying the minimal functional equation

$$
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k},
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$ and $\operatorname{gcd}\left(A_{k}(z), B_{k}(z)\right)=1$. Then $n=1$.
Proof Suppose that $f(z) \in \mathbb{C}[[z]]$ is a rational function satisfying the minimal functional equation

$$
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k}
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$ and $d \geqslant 2$. Since $f(z)$ is rational, there exist polynomials $q_{0}(z), q_{1}(z) \in \mathbb{C}[z]$ such that $f(z)$ satisfies $q_{1}(z) f(z)+q_{0}(z)=0$. Then for any rational functions $D(z), C(z) \in \mathbb{C}(z)$, we have that both

$$
\begin{align*}
0 & =C(z)\left(q_{1}(z) f(z)+q_{0}(z)\right)^{n}=C(z) \sum_{k=0}^{n}\binom{n}{k} q_{0}(z)^{n-k} q_{1}(z)^{k} f(z)^{k} \tag{2.2}\\
0 & =(D(z)-1)\left(q_{1}\left(z^{d}\right) f\left(z^{d}\right)+q_{0}\left(z^{d}\right)\right) \tag{2.3}\\
& =D(z) q_{1}\left(z^{d}\right) \sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k}+D(z) q_{0}(z)-\left(q_{1}\left(z^{d}\right) f\left(z^{d}\right)+q_{0}\left(z^{d}\right)\right) .
\end{align*}
$$

Subtracting (2.2) from (2.3) and rearranging slightly we have

$$
\begin{aligned}
f\left(z^{d}\right)= & \frac{1}{q_{1}\left(z^{d}\right)}\left[D(z) q_{1}\left(z^{d}\right) \frac{A_{n}(z)}{B_{n}(z)}-C(z) q_{1}(z)^{n}\right] f(z)^{n} \\
& +\frac{1}{q_{1}\left(z^{d}\right)} \sum_{k=1}^{n-1}\left[D(z) q_{1}\left(z^{d}\right) \frac{A_{k}(z)}{B_{k}(z)}-C(z)\binom{n}{k} q_{0}(z)^{n-k} q_{1}(z)^{k}\right] f(z)^{k} \\
& +\frac{1}{q_{1}\left(z^{d}\right)}\left[D(z) q_{0}\left(z^{d}\right)-C(z) q_{0}(z)^{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Set } D(z)=q_{1}(z)^{n} \text { and } C(z)=q_{1}\left(z^{d}\right) \frac{A_{n}(z)}{B_{n}(z)} \text {. Then } \\
& D(z) q_{1}\left(z^{d}\right) \frac{A_{n}(z)}{B_{n}(z)}-C(z) q_{1}(z)^{n}=q_{1}(z)^{n} q_{1}\left(z^{d}\right) \frac{A_{n}(z)}{B_{n}(z)}-q_{1}\left(z^{d}\right) \frac{A_{n}(z)}{B_{n}(z)} q_{1}(z)^{n}=0,
\end{aligned}
$$

so that we can write

$$
\begin{equation*}
f\left(z^{d}\right)=\sum_{k=0}^{n-1} H_{k}(z) f(z)^{k} \tag{2.4}
\end{equation*}
$$

where for $1 \leqslant k \leqslant n-1$ we have

$$
\begin{aligned}
& H_{k}(z)=q_{1}(z)^{n} \frac{A_{k}(z)}{B_{k}(z)}-\frac{A_{n}(z)}{B_{n}(z)}\binom{n}{k} q_{0}(z)^{n-k} q_{1}(z)^{k}, \\
& H_{0}(z)=\frac{q_{1}(z)^{n} q_{0}\left(z^{d}\right)}{q_{1}\left(z^{d}\right)}-\frac{A_{n}(z)}{B_{n}(z)} q_{0}(z)^{n} .
\end{aligned}
$$

Since n was minimal and $f(z)$ satisfies (2.4), we have that $H_{k}(z)=0$ for all $k=$ $0,1, \ldots, n-1$. Thus for $1 \leqslant k \leqslant n-1$, we have

$$
q_{1}(z)^{n-k} A_{k}(z) B_{n}(z)=A_{n}(z) B_{k}(z)\binom{n}{k} q_{0}(z)^{n-k}
$$

and for $k=0$, we have $q_{1}(z)^{n} q_{0}\left(z^{d}\right) B_{n}(z)=A_{n}(z) q_{1}\left(z^{d}\right) q_{0}(z)^{n}$. These two equations give both

$$
\begin{align*}
& \frac{A_{k}(z)}{B_{k}(z)}=\binom{n}{k} \frac{A_{n}(z)}{B_{n}(z)}\left(\frac{q_{0}(z)}{q_{1}(z)}\right)^{n-k} \tag{2.5}\\
& \frac{A_{n}(z)}{B_{n}(z)}=\left(\frac{q_{1}(z)}{q_{0}(z)}\right)^{n} \frac{q_{0}\left(z^{d}\right)}{q_{1}\left(z^{d}\right)} \tag{2.6}
\end{align*}
$$

Substituting (2.6) into (2.5) gives for each k that

$$
\begin{equation*}
\frac{A_{k}(z)}{B_{k}(z)}=\binom{n}{k}\left(\frac{q_{1}(z)}{q_{0}(z)}\right)^{k} \frac{q_{0}\left(z^{d}\right)}{q_{1}\left(z^{d}\right)} \tag{2.7}
\end{equation*}
$$

But $q_{1}(z) f(z)+q_{0}(z)=0$, so that

$$
\frac{q_{1}(z)}{q_{0}(z)}=\frac{-1}{f(z)} \quad \text { and } \quad \frac{q_{1}\left(z^{d}\right)}{q_{0}\left(z^{d}\right)}=\frac{-1}{f\left(z^{d}\right)}
$$

Thus (2.7) becomes

$$
f\left(z^{d}\right)=\frac{(-1)^{k}}{\binom{n}{k}} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k}
$$

for each k satisfying $1 \leqslant k \leqslant n$. Since n is minimal, we have that $n=1$.

In view of Nishioka's theorem (see the Introduction), we have the following immediate corollary of Theorem 2.2.

Corollary 2.3 Let $d \geqslant 2$ and suppose that $n \geqslant 2$ and $f(z) \in \mathbb{C}[[z]]$ satisfies the minimal functional equation

$$
f\left(z^{d}\right)=\sum_{k=1}^{n} \frac{A_{k}(z)}{B_{k}(z)} f(z)^{k},
$$

where $A_{k}(z), B_{k}(z) \in \mathbb{C}[z]$ and $\operatorname{gcd}\left(A_{k}(z), B_{k}(z)\right)=1$. Then $f(z)$ is transcendental over $(\mathbb{C}(z)$.

3 The Linear ($n=1$) Case

Towards a further classification of the rational-transcendental dichotomy of power series satisfying (2.1), we note that the results of Section 2 allow us to focus on the case $n=1$ of (2.1). Recall that this is the case into which the generating functions of both the Thue-Morse sequence and the Stern sequence fall. To formalize, in this section we consider power series $f(z) \in \mathbb{C}[[z]]$ that satisfy

$$
\begin{equation*}
f\left(z^{d}\right)=\frac{A(z)}{B(z)} f(z) \tag{3.1}
\end{equation*}
$$

where $d \geqslant 2$ and $A(z), B(z) \in \mathbb{C}[[z]]$. We do not assume Nishioka's theorem for the proofs in this section.
Theorem 3.1 If $f(z)$ is a power series in $\mathbb{C}[[z]]$ satisfying

$$
f\left(z^{d}\right)=\frac{A(z)}{B(z)} f(z)
$$

where $d \geqslant 2, A(z), B(z) \in \mathbb{C}[z]$, and $\operatorname{gcd}(A(z), B(z))=1$. If $\operatorname{deg} B(z)-\operatorname{deg} A(z)$ is not a multiple of $d-1$, then $f(z)$ is transcendental over $\mathbb{C}(z)$.

Proof Towards a contradiction, suppose that $f(z)$ is algebraic and satisfies, say,

$$
q_{n}(z) f(z)^{n}+q_{n-1}(z) f(z)^{n-1}+\cdots+q_{0}(z)=0
$$

where $q_{i}(z) \in \mathbb{C}[z], \operatorname{gcd}\left(q_{n}(z), q_{n-1}(z), \ldots, q_{0}(z)\right)=1$, and n is chosen minimally. Using this algebraic property, we have

$$
0=\sum_{k=0}^{n} q_{k}\left(z^{d}\right) f\left(z^{d}\right)^{k}=\sum_{k=0}^{n} q_{k}\left(z^{d}\right) f(z)^{k}\left(\frac{A(z)}{B(z)}\right)^{k}
$$

and upon multiplying by $B(z)^{n}$, we obtain

$$
0=\sum_{k=0}^{n} q_{k}\left(z^{d}\right) B(z)^{n-k} A(z)^{k} f(z)^{k}
$$

Thus

$$
\begin{align*}
0 & =A(z)^{n} q_{n}\left(z^{d}\right) \sum_{k=0}^{n} q_{k}(z) f(z)^{k}-q_{n}(z) \sum_{k=0}^{n} q_{k}\left(z^{d}\right) B(z)^{n-k} A(z)^{k} f(z)^{k} \tag{3.2}\\
& =\sum_{k=0}^{n}\left[q_{n}\left(z^{d}\right) q_{k}(z) A(z)^{n}-q_{n}(z) q_{k}\left(z^{d}\right) B(z)^{n-k} A(z)^{k}\right] f(z)^{k}
\end{align*}
$$

The coefficient of $f(z)^{n}$ in (3.2) is $q_{n}\left(z^{d}\right) q_{n}(z) A(z)^{n}-q_{n}(z) q_{n}\left(z^{d}\right) A(z)^{n}=0$, so that

$$
0=\sum_{k=0}^{n-1}\left[q_{n}\left(z^{d}\right) q_{k}(z) A(z)^{n}-q_{n}(z) q_{k}\left(z^{d}\right) B(z)^{n-k} A(z)^{k}\right] f(z)^{k}
$$

The minimality of n gives

$$
\begin{equation*}
q_{n}\left(z^{d}\right) q_{k}(z) A(z)^{n}=q_{n}(z) q_{k}\left(z^{d}\right) B(z)^{n-k} A(z)^{k} \tag{3.3}
\end{equation*}
$$

for $k=0,1, \ldots, n-1$.
The equality in (3.3) gives the degree relationship

$$
\begin{equation*}
(d-1)\left(\operatorname{deg} q_{n}(z)-\operatorname{deg} q_{k}(z)\right)=(n-k)(\operatorname{deg} B(z)-\operatorname{deg} A(z)) \tag{3.4}
\end{equation*}
$$

for $k=0,1, \ldots, n-1$. In particular, setting $k=n-1$ gives

$$
(d-1)\left(\operatorname{deg} q_{n}(z)-\operatorname{deg} q_{n-1}(z)\right)=\operatorname{deg} B(z)-\operatorname{deg} A(z)
$$

Thus $d-1$ divides $\operatorname{deg} B(z)-\operatorname{deg} A(z)$.
Continuing this line of reasoning, for algebraic $f(z)$ satisfying the functional equation (3.1), set

$$
w:=\frac{\operatorname{deg} B(z)-\operatorname{deg} A(z)}{d-1}
$$

Then again using (3.4), we have $\operatorname{deg} q_{k}(z)=\operatorname{deg} q_{n}(z)-w(n-k)$, which gives the following result.

Proposition 3.2 Let $f(z) \in \mathbb{C}[[z]]$ be a power series satisfying

$$
f\left(z^{d}\right)=f(z) \frac{A(z)}{B(z)}
$$

where $d \geqslant 2$, and $A(z), B(z) \in \mathbb{C}[z]$ with $\operatorname{gcd}(A(z), B(z))=1$. If $f(z)$ is rational, satisfying $q_{1}(z) f(z)+q_{0}(z)=0$, where $q_{1}(z), q_{0}(z) \in \mathbb{C}[z]$ and $\operatorname{gcd}\left(q_{1}(z), q_{0}(z)\right)=1$, then

$$
\operatorname{deg} q_{0}(z)=\operatorname{deg} q_{1}(z)-\frac{\operatorname{deg} B(z)-\operatorname{deg} A(z)}{d-1}
$$

for $k=0,1, \ldots, n$.

For the following theorem, it is convenient to define the following notation. For $p(z) \in \mathbb{C}[z]$ denote by $\operatorname{ord}_{a} p(z)$ the multiplicity of the root $z=a$ of $p(z)$. Also write $\zeta_{m}:=e^{2 \pi i / m}$.

Theorem 3.3 Let $f(z) \in \mathbb{C}[[z]]$ be a power series satisfying

$$
f\left(z^{d}\right)=f(z) \frac{A(z)}{B(z)}
$$

where $d \geqslant 2$, and $A(z), B(z) \in \mathbb{C}[z]$ with $\operatorname{gcd}(A(z), B(z))=1$. If $f(z)$ is algebraic, then for any $j \in \mathbb{Z}$ we have $\operatorname{ord}_{\zeta_{d+1}^{j}} B(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)$.

Proof We start with the terminology and statement of (3.3), that is,

$$
\begin{equation*}
q_{n}\left(z^{d}\right) q_{k}(z) A(z)^{n-k}=q_{n}(z) q_{k}\left(z^{d}\right) B(z)^{n-k} \tag{3.5}
\end{equation*}
$$

for $k=0,1, \ldots, n-1$.
Now for any $k=0,1, \ldots, n-1$ if $z-\zeta_{d+1}^{j} \mid q_{k}(z)$, then $z^{d}-\zeta_{d+1}^{j} \mid q_{k}\left(z^{d}\right)$. Since

$$
\left(\zeta_{d+1}^{-j}\right)^{d}-\zeta_{d+1}^{j}=\zeta_{d+1}^{-j(d+1-1)}-\zeta_{d+1}^{j}=\zeta_{d+1}^{j}-\zeta_{d+1}^{j}=0
$$

we have $z-\zeta_{d+1}^{-j} \mid q_{k}\left(z^{d}\right)$. Conversely, if $z-\zeta_{d+1}^{-j} \mid q_{k}\left(z^{d}\right)$, then since

$$
q_{k}\left(z^{d}\right)=\alpha \prod_{i=0}^{\operatorname{deg} q_{k}(z)}\left(z^{d}-y_{i}\right)
$$

we have that there is a y_{i} such that $z-\zeta_{d+1}^{-j} \mid z^{d}-y_{i}$. Thus

$$
y_{i}=\left(\zeta_{d+1}^{-j}\right)^{d}=\zeta_{d+1}^{-j(d+1-1)}=\zeta_{d+1}^{j}
$$

Hence $z-\zeta_{d+1}^{j} \mid q_{k}(z)$. This gives $\operatorname{ord}_{\zeta_{d+1}^{j}} q_{k}(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{k}\left(z^{d}\right)$. The relationship (3.5) gives for $k=0,1, \ldots, n-1$, the two identities

$$
\begin{aligned}
\operatorname{ord}_{\zeta_{d+1}^{j}} q_{n}\left(z^{d}\right)+\operatorname{ord}_{\zeta_{d+1}^{j}} q_{k}(z) & +(n-k) \operatorname{ord}_{\zeta_{d+1}^{j}} A(z) \\
& =\operatorname{ord}_{\zeta_{d+1}^{j}} q_{n}(z)+\operatorname{ord}_{\zeta_{d+1}^{j}} q_{k}\left(z^{d}\right)+(n-k) \operatorname{ord}_{\zeta_{d+1}^{j}} B(z)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{n}\left(z^{d}\right)+\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{k}(z) & +(n-k) \operatorname{ord}_{\zeta_{d+1}^{-j}} A(z) \\
& =\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{n}(z)+\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{k}\left(z^{d}\right)+(n-k) \operatorname{ord}_{\zeta_{d+1}^{-j}} B(z)
\end{aligned}
$$

Since $\operatorname{ord}_{\zeta_{d+1}^{j}} q_{k}(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{k}\left(z^{d}\right)$, the substitution of the second identity into the first gives

$$
\begin{aligned}
& \operatorname{ord}_{\zeta_{d+1}^{j}} q_{n}\left(z^{d}\right)+\operatorname{ord}_{\zeta_{d+1}^{j}} q_{k}(z)+(n-k)\left(\operatorname{ord}_{\zeta_{d+1}^{j}} A(z)+\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)\right) \\
&=\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{n}(z)+\operatorname{ord}_{\zeta_{d+1}^{-j}} q_{k}\left(z^{d}\right)+(n-k)\left(\operatorname{ord}_{\zeta_{d+1}^{-j}} B(z)+\operatorname{ord}_{\zeta_{d+1}^{j}} B(z)\right)
\end{aligned}
$$

which reduces to $\operatorname{ord}_{\zeta_{d+1}^{j}} A(z)+\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} B(z)+\operatorname{ord}_{\zeta_{d+1}^{j}} B(z)$.
Since $\operatorname{gcd}(A(z), B(z))=1$, if $\operatorname{ord}_{\zeta_{d+1}^{j}} B(z) \neq 0$, we have that $\operatorname{ord}_{\zeta_{d+1}^{j}} A(z)=0$. Thus we have $\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} B(z)+\operatorname{ord}_{\zeta_{d+1}^{j}} B(z)$. Taking into account that $\operatorname{gcd}(A(z), B(z))=1$, since $\operatorname{ord}_{a} p(z)$ is a non-negative integer, it must be the case that $\operatorname{ord}_{\zeta_{d+1}^{-j}} B(z)=0$, and so $\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)=\operatorname{ord}_{\zeta_{d+1}^{j}} B(z)$. The case $\operatorname{ord}_{\zeta_{d+1}^{j}} A(z) \neq 0$ follows similarly.

Corollary 3.4 Let $f(z) \in \mathbb{C}[[z]]$ be a power series satisfying

$$
f\left(z^{d}\right)=\frac{A(z)}{B(z)} f(z)
$$

where $d \geqslant 2$, and $A(z), B(z) \in \mathbb{R}[z]$ with $\operatorname{gcd}(A(z), B(z))=1$. If there is a $j \in \mathbb{Z}$ such that $A\left(\zeta_{d+1}^{j}\right)=0$ or $B\left(\zeta_{d+1}^{j}\right)=0$, then $f(z)$ is transcendental over $\mathbb{C}(z)$.

Proof Note that if $p(z) \in \mathbb{R}[z]$, then $\operatorname{ord}_{a} p(z)=\operatorname{ord}_{\bar{a}} p(z)$, where \bar{a} is the complex conjugate of a (for real a we have $a=\bar{a}$). Suppose that $f(z)$ is algebraic over $\mathbb{C}(z)$ and satisfies the above assumptions. Applying the previous theorem, we have

$$
\begin{equation*}
\operatorname{ord}_{\zeta_{d+1}^{j}} A(z)=\operatorname{ord}_{\zeta_{d+1}^{-j}} A(z)=\operatorname{ord}_{\zeta_{d+1}^{j}} B(z) \tag{3.6}
\end{equation*}
$$

If one of $A\left(\zeta_{d+1}^{j}\right)=0$ or $B\left(\zeta_{d+1}^{j}\right)=0$, then (3.6) gives that $\operatorname{gcd}(A(z), B(z)) \neq 1$, which is a contradiction. Thus $f(z)$ is transcendental over $\mathbb{C}(z)$.

We note that Corollary 3.4 implies that the generating functions of both the ThueMorse sequence and the Stern sequence are transcendental.

References

[1] B. Adamczewski, Non-converging continued fractions related to the Stern diatomic sequence. Acta Arith. 142(2010), no. 1, 67-78. http://dx.doi.org/10.4064/aa142-1-6
[2] M. Coons, The transcendence of series related to Stern's diatomic sequence. Int. J. Number Theory 6(2010), no.1, 211-217. http://dx.doi.org/10.1142/S1793042110002958
[3] , Extension of some theorems of W. Schwarz. Canad. Math. Bull. Published online March 10, 2011 http://dx.doi.org/10.4153/CMB-2011-037-9
[4] M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris Sér. A-B 285(1977), no. 4, A157-A160.
[5] K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence. Int. J. Number Theory 3(2007), no. 1, 85-103. http://dx.doi.org/10.1142/S179304210700081X
[6] , Stern polynomials and double-limit continued fractions. Acta Arith. 140(2009), no. 2, 119-134. http://dx.doi.org/10.4064/aa140-2-2
[7] S. W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities. Canad. J. Math. 15(1963), 475-478. http://dx.doi.org/10.4153/CJM-1963-051-0
[8] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101(1929), no. 1, 342-366. http://dx.doi.org/10.1007/BF01454845
9] , Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Zeit. 32(1930), no. 1, 545-585. http://dx.doi.org/10.1007/BF01194652
[10] \longrightarrow Über das Verschwinden von Potenzreihen mehrerer Veränderlicher in speziellen Punktfolgen. Math. Ann. 103(1930), no. 1, 573-587. http://dx.doi.org/10.1007/BF01455711
[11] , Remarks on a paper by W. Schwarz, J. Number Theory 1(1969), 512-521. http://dx.doi.org/10.1016/0022-314X(69)90013-4
[12] K. Nishioka, Algebraic function solutions of a certain class of functional equations. Arch. Math. 44(1985), no. 4, 330-335.
[13] W. Schwarz, Remarks on the irrationality and transcendence of certain series. Math. Scand 20(1967), 269-274.

University of Waterloo, Dept. of Pure Mathematics, Waterloo, ON, N2L 3G1
e-mail: mcoons@math.uwaterloo.ca

[^0]: Received by the editors June 28, 2010.
 Published electronically August 3, 2011.
 The author's research was supported by a Fields-Ontario Fellowship and NSERC.
 AMS subject classification: 11B37, 11B83, 11J91.
 Keywords: transcendence, generating functions, Mahler-type functional equation.

