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A Note on 3-choosability of Planar Graphs
Related to Montanssier’s Conjecture

Haihui Zhang

Abstract. For a given list assignment L = {L(v) : v ∈ V (G)}, a graph G = (V, E) is L-colorable if

there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V . If G is L-colorable for every

list assignment L having |L(v)| ≥ k for all v ∈ V , then G is said to be k-choosable. Montassier (Inform.

Process. Lett. 99 (2006) 68-71) conjectured that every planar graph without cycles of length 4, 5, 6, is

3-choosable. In this paper, we prove that every planar graph without 5-, 6- and 10-cycles, and without

two triangles at distance less than 3 is 3-choosable.

1 Introduction

All graphs considered in this paper are finite, simple planar graphs. A graph G is

planar if G can be drawn on the plane so that its edges meet only at the vertices of the

graph. A plane graph is such a particular drawing of a planar graph.

For a given list assignment L = {L(v) : v ∈ V (G)}, a graph G = (V, E) is L-

colorable if there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈
V . This coloring is also called an L-coloring of G. If G is L-colorable for every list

assignment L having |L(v)| ≥ k for all v ∈ V , then G is said to be k-choosable or k-list

colorable. The choice number of G, denoted by χl(G) or ch(G), is the minimum k such

that G is k-choosable.

All 2-choosable graphs were characterized completely in [5]. Thomassen proved

that every planar graph is 5-choosable [16]. Examples of planar graphs that are not 4-

choosable were given by Voigt [18] and by Mirzakhani [13], independently. Voigt and

Writh [19], and Gutner [8] independently, presented some planar graphs of girth 4

that are not 3-choosable. Thus, it remains to determine whether a given planar graph

is 3- or 4-choosable. In [8], Gutner proved that these problems are NP-complete.

Therefore, many authors tried to find sufficient conditions for a planar graph to be

3- or 4-choosable. Alon and Tarsi [1] proved that every planar bipartite graph is 3-

choosable. Thomassen [17] proved that every planar graph of girth 5 is 3-choosable.

Lam et al. [9, 10] proved that plane graphs without i-cycles are 4-choosable, for i =

3, 4, 5, or 6. Independently, Wang and Lih [21] proved that planar graphs without 5-

cycles are 4-choosable. Fijavž et al. [7] proved that planar graphs without 6-cycles are

4-choosable. Farzad [6] showed that a planar graph without 7-cycles is 4-choosable.
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Xu [24], and Wang and Lih [22] independently, proved that plane graphs without

two triangles sharing a common vertex are 4-choosable.

For more new sufficient conditions for a planar graph to be 3-choosable, see [2–4,

11,20,23,25]. The distance between two vertices x and y, denoted by dist(x, y), is the

length of a shortest path connecting them in G. The distance between two triangles

T and T′ is defined to be the value min{dist(x, y) | x ∈ V (T) and y ∈ V (T′)}. In

[14], Montassier et al. proved that every planar graph either without 4- and 5-cycles

and without triangles at distance less than 4, or without 4-, 5-, and 6-cycles and

without triangles at distance less than 3 is 3-choosable. In [15] Montassier proposed

a conjecture that every planar graph without cycles of length 4, 5, 6, is 3-choosable.

Let G denote the set of planar graphs without triangles at distance less than 3 and

without 5-, 6-, and 10-cycles. In this article, we focus on the 3-choosability of graphs

in G. More precisely, we prove the following result.

Theorem 1.1 Every planar graph without 5-, 6-, and 10-cycles, and without two

triangles at distance less than 3 is 3-choosable

A result of Lovász [12] will be used in the proof of Lemma 3.2.

Theorem 1.2 (L. Lovász [12]) Suppose that a list L(x) of colours is associated with

each vertex x of a graph G with |L(x)| = d(x) for each x and L(v) 6= L(w) for some v,

w. Further assume G to be 2-connected. Then G admits a proper colouring that uses an

element of L(x) to colour x for each vertex x.

Theorem 1.2 also shows that the only 2-connected graphs that are not L-list col-

orable with |L(v)| = ∆(G) for all v ∈ V (G) are the complete graphs and the odd

cycle with identical lists for all vertices.

2 Terminology and Notation

Let G = (V, E, F) denote a planar graph, with V , E, and F being the set of vertices,

edges, and faces of G, respectively. We use b( f ) to denote the boundary walk of a

face f and write b( f ) = [v1v2v3 · · · vn] if v1, v2, v3, . . . , vn are the vertices of b( f ) in

a cyclic order. A face f is incident with all vertices and edges on b( f ). The degree of

a face f of G, denoted by dG( f ), is the number of edges incident with it, where cut

edges are counted twice. A vertex (face) of degree k is called a k-vertex (k-face). If

r ≤ k or 1 ≤ k ≤ r, then a k-vertex (k-face) is called an r+- or r−-vertex (r+- or

r−-face), respectively. If S ⊂ V (G), then G − S is the subgraph obtained from G by

deleting the vertices in S and all the edges incident with some vertices in S. As usual,

G[S] is the subgraph of G induced by S. A k-cycle is a cycle with k edges. A chord of

a k-cycle (k ≥ 4) is an edge joining two nonconsecutive vertices on C .

Two adjacent faces are normally adjacent if they have only two vertices in common

(clearly, the two common vertices are adjacent), or are abnormally adjacent (that is,

they have at least three vertices in common). A triangle is synonymous with a 3-cycle.

For x ∈ V (G)∪F(G), we use Fk(x) to denote the set of all k-faces that are incident

with or adjacent to x, and Vk(x) to denote the set of all k-vertices that are incident
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with or adjacent to x. Let v be a k-vertex. If |F3(v)| = 1 and each other face incident

with v is of degree at least 7, then v is light. If |F4(v)| = 1 and each other face incident

with v is of degree at least 7, then v is sublight. If v is only incident with 7+-faces, then

v is good. For convenience, we use N( f ) and V ( f ) to denote the set of faces adjacent

to the face f and vertices incident with f , respectively.

A face f of G is called a simple face if b( f ) forms a cycle. Obviously, when

δ(G) ≥ 2 for k ≤ 5, or G is 2-connected, each k-face is a simple face. A face f is

frugal if some vertex t is incident to it at least twice. Obviously, any 5-face, 6-face, or

10-face in G must be a frugal face for its properties. Moreover, G contains no frugal

6-face because any frugal 6-face must be constructed by two intersecting 3-cycles, it

is a contradiction to the triangles-distance condition. A list of faces of a vertex v is

consecutive if it is a sublist of the list of faces incident to v in cyclic order.

3 Structures of a Minimum Counterexample

In this section, we always assume that G is a counterexample of Theorem 1.1 with

|V (G)| minimum. Then G is connected, having neither a 5-, 6-, or 10-cycle nor two

triangles at distance less than 3. Clearly |V (G)| ≥ 3, and |F3( f )| ≤ ⌊ d( f )
4
⌋ for G

contains no triangles at distance less than 3.

Lemma 3.1 G does not contain any vertices of degree less than 3.

Proof Suppose that G contains a vertex u of degree less than 3. We choose a vertex

v from V (G)\{u} as the precolored one. By the minimality of G, G − u admits an

L-coloring c. In G, we can color u with a color in L(u) different from the colors of its

neighbors to extend c to an L-coloring of G. This is a contradiction.

Lemma 3.2 Any even circuit C in G contains at least one 4+-vertex.

Proof Let V (C) = {v1, v2, . . . , v2n}. Suppose dG(v) = 3 for all v ∈ C by Lemma 3.1,

and L is a color-list of G with |L(v)| = 3 for all v ∈ V (G). By assumption, there exists

an L0-coloring φ0 of G0 = G − C , where L0 is the restriction of L to V (G0). Let

L′
= {L′(vi) : 1 ≤ i ≤ 2n}, where L′(vi) = L(vi) \ {φ0(u) : u ∈ NG(vi) \C}.

If C has no chord, it is clear that |L′(vi)| ≥ 2. Since every even cycle is 2-choosable,

there exists an L′-coloring φ′ on C . An L-coloring of G immediately follows by com-

bining φ0 and φ′. If C contains chords. It is easy to see that in this case |L′(v)| is

equal to the degree of v in the subgraph of G induced by V (C), and this subgraph

is 2-connected and distinct from K4. If there exists a vertex with degree 2 in G[C],

then we get the proof by Theorem 1.2. Otherwise, all the vertices in V (G[C]) are of

degree 3. We also get an L′-coloring of C , because C is an even circuit.

Lemma 3.3 Neither a 3-face nor a 4-face is adjacent to a 4-face.

Proof Because δ(G) ≥ 3, any 3-faces and 4-faces are simple faces. If the 3-face or

4-face is normally adjacent to a 4-face, a 5-cycle or 6-cycle will appear, contradicting
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the fact G contains no 5-cycles and 6-cycles. But if a 3-face or a 4-face is abnormally

adjacent to a 4-face, we will get two triangles with distance less than 3.

Lemma 3.4 Neither a 3-face nor a 4-face is abnormally adjacent to a 7-face.

Proof Let the 7-face b( f1) = [v1v2u1u2u3u4u5]. First, we consider f1 is a frugal

7-face, as depicted in Figure 1. In this case, we see that f1 cannot be adjacent to

any 3-face, because of the triangles-distance condition, and f1 cannot be adjacent

to any 4-face by Lemma 3.3. So we assume that f1 is a simple face in the following

discussion.

7- f1 7- f1

Figure 1: Two kinds of frugal 7-faces

Let f be a 3-face with b( f ) = [v1v2v3], and let f1 be a 7-face with b( f1) =

[v1v2u1u2u3u4u5]. We now prove that v3 ∩ {u1, u2, u3, . . . , u5} = φ. Clearly we

have v3 6= u1, or we will get that d(v2) = 2, a contradiction to δ(G) ≥ 3. Next we

can get v3 6= u2; otherwise, we have two adjacent triangles v1v2u2 and v2u1u2. Then

v3 6= u3, or G contains a 5-cycle v1v2u1u2u3v1. By similar argument, we can also get

that v3 /∈ {u4, u5}.

Let f1 be an arbitrary 4-face with b( f1) = [v1v2v3v4] that is abnormally adjacent to

a 7-face f2 with b( f2) = [v1v2u1u2u3u4u5]. Then {v3, v4} ∩ {u1, u2, u3, u4, u5} 6= φ.

But this is impossible. First we can show that v3 6= u1, or there will be a vertex v2

of degree 2. By similar analysis, we have v3 6= u2, v3 6= u3, v3 6= u4, and v3 6=
u5, since G has no 5- and 6-cycles. So v3 /∈ {u1, u2, u3, u4, u5}. Similarly, v4 /∈
{u1, u2, u3, u4, u5}.

Lemma 3.5 Let f1 be a 7-face in F(G). Then |F4( f1)| = 0 if |F3( f1)| = 1.

v4

v5

u1

u2 u3

u4

v5 v4

f1
v2

v1

v3

v4

v5

f

f ′
u5

Figure 2. Case in Lemma 3.5
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Proof A frugal 7-face cannot be adjacent to a 3-face by the proof of Lemma 3.2. So

we can consider f1 to be a simple 7-face. Let f be a 3-face with b( f ) = [v1v2v3], and

let f1 be a 7-face with b( f1) = [v1v2u1u2u3u4u5]. By Lemma 3.4, any 3-face cannot

be abnormally adjacent to f1. Then the 3-face f is normally adjacent to the 7-face f1.

Suppose there also is a 4-face f ′ with b( f ′) = [xix jv4v5] that is normally adjacent

to f1 (xix j ∈ {v2u1, u1u2, u2u3, u3u4, u4u5, u5v1}), as shown in Figure 2. Obviously,

we have v3 ∈ {v4, v5}, otherwise we will get a 10-cycle, a contradiction to the choice

of G. By symmetry, we consider the following three cases. While b( f ′) ∩ b( f1) =

v2u1, if v3 = v5, there will be a 3-face f adjacent to a 4-face f ′, a contradiction by

Lemma 3.3 If v3 = v4, two adjacent 3-cycles v2v5v4v2 and v1v2v4v1 contradict the

choice of G. While b( f ′) ∩ b( f1) = u4u5, if v3 = v4, v1v2(v3 = v4)v5u4u5v1 is a

6-cycle, while v3 = v5, v1v2(v3 = v5)u4u5v1 is a 5-cycle. While b( f ′) ∩ b( f1) = u2u3,

if v3 = v4, v1(v3 = v4)u3u4u5v1 is a 5-cycle, while v3 = v5, v1v2u1u2(v3 = v5)v1 is a

5-cycle. This contradiction completes the proof.

Lemma 3.6 No 3-face is abnormally adjacent to an 8-face. Moreover, if d( f ) = 8,

then |F3( f ) ≤ 1.

Proof If the 8-face is a frugal face, then it must be isomorphic to the case in Figure 3,

so a f rugal 8-face cannot be adjacent to any 3-face by Lemma 3.3. Next we consider

a simple 8-face. Suppose to the contrary that G has a 3-face f with b( f ) = [v1v2v3]

that is abnormally adjacent to an 8-face f1 with b( f1) = [v1v2u1u2u3u4u5u6]. Then

v3 ∩ {u1, u2, u3, · · · , u6} 6= φ. We now prove that v3 ∩ {u1, u2, u3, · · · , u6} = φ.

Clearly, we can get v3 6= u1, or we will get that d(v2) = 2, a contradiction to δ(G) ≥ 3.

Next we show that v3 6= u2, otherwise we have two adjacent triangles v1v2u2 and

v2u1u2. Then v3 6= u3, or G contains a 5-cycle v1v2u1u2u3v1. By a similar argument,

we also can get that v3 /∈ {u4, u5, u6}. It is easy to see that any 8-face is normally

adjacent to at most 1 triangles; otherwise, G will contain a 10-cycle.

v1

v2

b

b

b

b

b

b

b

b

u1

u2

u3

u4

u5

u6

b

b

v3

v4

f1

f2

Figure 4.

b

b

b

b

Figure 3. A frugal 8-face f1

8- f1

Lemma 3.7 No 4-face is normally adjacent to an 8-face. And any 8-face is abnor-

mally adjacent to at most one 4-face.

Proof Obviously, we can assume that the 8-face here is a simple face. Or it cannot

be adjacent to any 4-faces. Let f1 be an arbitrary 4-face with b( f1) = [v1v2v3v4] that

is adjacent to an 8-face f2 with b( f2) = [v1v2u1u2u3u4u5u6]. If f1 is normally adjacent
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to f2, then G has a 10-cycle. So two faces must be abnormally adjacent. It is easy

to see that v3 6= u1, or there will be a vertex v2 of degree 2. We can also show that

v3 6= u2, v3 6= u3, v3 6= u4 and v3 6= u5 since G has no 5- and 6-cycles. The only

case is v3 = u6 as shown in Figure 4, at this case, f2 is an exterior face that is adjacent

to f1 on v1v2 and v3 = u6, v4 ∈ int(C1), here C1 = [v1v2(v3 = u6)v1]. Assume that

f2 is abnormally adjacent to another 4-face f3; then we can conclude that f3 cannot

be abnormally adjacent with f2 on v1v2 or v1u6; otherwise, it is a contradiction to

planarity of G. Note that any chord of the cycle C2 = v2u1u2u3u4u5u6v2 or possible

path of length 2 with its endvertices on b(C2) will induce a 5- or 6-cycle of G.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 Proceeding by contradiction, if the conclusion is not valid,

then we choose a counterexample as defined in the last section. We define a weight ω
on V ∪ F by letting ω(x) = dG(x) − 6 if x ∈ V and ω(x) = 2dG(x) − 6 if x ∈ F. By

Euler’s formula for planar graphs, we have
∑

x∈V∪F ω(x) = −12. If we obtain a new

nonnegative weight ω∗(x) for all x ∈ V ∪F by transferring weights from one element

to another, then we have

−12 =
∑

x∈V∪F

ω(x) =
∑

x∈V∪F

ω∗(x) ≥ 0.

This contradiction will complete the proof of Theorem 1.1.

Our transferring rules are as follows, in which, f is a l-face (l ≥ 4) and v is a

k-vertex on b( f ).

(R1) Charge to a 3-vertex v.

(R1.1) Every 7+-face f transfers 1 and 7
6

to each incident good and sublight v,

respectively.

(R1.2) Every 7+-face f transfers 3
2

to each incident light v.

(R1.3) Every 4-face f transfers 2
3

to each incident sublight v.

(R2) Charge to a 4-vertex v.

Every 7+- f transfers 1
2

to each incident v in the following cases, 1 to v oth-

erwise.

(R2.1) v is good.

(R2.2) v is light and f is adjacent to the 3-face in F(v).

(R2.3) v is sublight and f is adjacent to the 4-face in F(v).

(R3) Every 7+-face f transfers 1
3

to a 5-vertex v.

The rules are illustrated in Figure 5. First we consider v to be a vertex with d(v) =

k. If d(v) ≥ 6, then w∗(v) ≥ 0.

If d(v) = 5, then v is incident with at most one triangle by the distance condition,

or at most two 4-faces by Lemma 3.3; that is, |F3( f )| ≤ 1, |F4( f )| ≤ 2. If |F4( f )| = 2,

then v is not incident with any 3-faces by Lemma 3.3, so |F7+ (v)| ≥ 3, and we have

w∗(v) ≥ w(v) + 1
3
∗ 3 = 0 by (R3).

If d(v) = 4 or d(v) = 3, we can easily get w∗(v) ≥ 0 by the diagram calculations

in Figure 5.
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✠
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✒
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1
2

1
2

1
2

4- f

7+- f
1
2

1
2

✠
1

4- f1

1■

1
❘

7+- f

■
❘

7+- f

7+- f 7+- f
4- f

7+- f

3- f

4- f

1

■
❘

7+- f

1
2 3- f

7+- f

7+- f
1 1

2

❘
✒

7+- f

■

Figure 1

Now let f be a face with d( f ) = h. The proof is divided into five cases according

to the value of h.

Case 1 h = 3. Then ω∗( f ) = ω( f ) = 0, since no charge is discharged from or to

f .

Case 2 h = 4. Then ω( f ) = 2.

By Lemma 3.2, f is incident with at least one 4+-vertex. Because f transfers weight

only to the incident sublight 3-vertex, we derive that ω∗( f ) ≥ ω( f ) − 3 × 2
3
= 0 by

(R1.3).

For convenience, we denote by p the number of light 3-vertices, by q the number

of sublight 3-vertices and by r the number of rest vertices on b( f ), respectively.

Because whatever happens, the weight 1
3
, which transferred from a 7+-face to the

incident 5-vertices, is less than the weight which transferred from a 7+-face to 4−-

vertices. So we only consider the 4−-vertices on b( f ). Moreover, because the weight

transferred from a 7+-face to light 3-vertices is 3
2

by (R1.2), which is more than 7
6

transferred from a 7+-face to sublight 3-vertices by (R1.1) and is more than weight

transferred from a 7+-face to the vertices in other cases. So we consider the case that

p is as large as possible, and assume f transfers 1 to every incident 4-vertex.

Case 3 h = 7. Then ω( f ) = 8.

|F3( f )| ≤ 1 by |F3( f )| ≤ ⌊ d( f )
4
⌋, so p ≤ 2. And |F4( f )| = 0, while |F3( f )| = 1 by

Lemma 3.5. If p = 0, then q ≤ 6 by Lemma 3.3, and hence w∗( f ) ≥ w( f )− 7
6
× q−

1 × r ≥ 8 − 7
6
× 6 − 1 × 1 = 0. If 1 ≤ p ≤ 2, then |F3( f )| = 1 and |F4( f )| = 0, so

q = 0. We have ω∗( f ) ≥ ω( f ) − 3
2
× p − 7

6
× q − 1 × r ≥ 8 − 3

2
× 2 − 1 × 5 = 0.

Case 4 h = 8. Then ω( f ) = 10.

By Lemma 3.7, |F4( f )| ≤ 1, so q ≤ 2, and p ≤ 2 for |F3( f )| ≤ 1 by Lemma 3.6.

So ω∗( f ) ≥ ω( f ) − 3
2
× p − 7

6
× q − 1 × r ≥ 10 − 3

2
× 2 − 7

6
× 2 − 1 × 4 =

2
3
> 0.
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Case 5 h ≥ 9. Then ω( f ) ≥ 12.

For G ∈ G, we have |F3( f )| ≤ ⌊ d( f )
4
⌋. Even if f is incident with 2 × ⌊ h

4
⌋ light

3-vertices and transfers 7
6

to other sublight 3-vertices on b( f ), then

ω∗( f ) ≥ ω( f ) −
3

2
× 2 ×

⌊ h

4

⌋

−
7

6
×
(

h − 2 ×
⌊ h

4

⌋)

=
5h

6
− 6 −

2

3
×

⌊ h

4

⌋

.

Consider that h
4
− 1 < ⌊ h

4
⌋ ≤ h

4
, so ω∗( f ) ≥ 5h

6
− 6 − 2

3
× h

4
=

4h−36
6

≥ 0 when

h ≥ 9.
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