
Proceedings of the Royal Society of Edinburgh, 154, 285–303, 2024

DOI:10.1017/prm.2023.12

The existence of unbounded solutions of
asymmetric oscillations in the degenerate
resonant case

Min Li
School of Mathematical Sciences, Ocean University of China, Qingdao
266100, People’s Republic of China (limin@ouc.edu.cn)

Xiong Li
Laboratory of Mathematics and Complex Systems (Ministry of
Education), School of Mathematical Sciences, Beijing Normal
University, Beijing 100875, People’s Republic of China (xli@bnu.edu.cn)

(Received 3 August 2022; accepted 17 January 2023)

We prove the existence of unbounded solutions of the asymmetric oscillation in the
case when each zero of the discriminative function is degenerate. This is the only
case that has not been studied in the literature.
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1. Introduction

We are concerned with the asymmetric oscillation

x′′ + ax+−bx− = f(t), (1.1)

where x+ = max{x, 0}, x− = max{−x, 0}, a, b are two different positive constants,
and f(t) is a 2π-periodic function.

This equation models the suspension bridge [8] and has been widely studied.
Fuçik [3] and Dancer [2] studied it in their investigations of boundary value prob-
lems associated to equations with ‘jumping nonlinearities’. For recent developments,
one can refer to [4, 5, 7, 16] and the references therein.

For Littlewood’s boundedness problem of the asymmetric oscillation (1.1), the
earliest contribution was due to Ortega [12]. In 1996, he considered the equation

x′′ + ax+−bx− = 1 + εh(t),

where the smooth function h(t) is 2π-periodic. He proved that if |ε| is sufficiently
small, then all solutions are bounded. That is, if x(t) is a solution, then it is defined
for all t ∈ R and

sup
t∈R

(|x(t)| + |x′(t)|) < +∞.

c○ The Author(s), 2023. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh

285

https://doi.org/10.1017/prm.2023.12 Published online by Cambridge University Press

mailto:limin@ouc.edu.cn
mailto:xli@bnu.edu.cn
https://doi.org/10.1017/prm.2023.12


286 M. Li and X. Li

This result is in contrast with the well-known phenomenon of linear resonance that
occurs in the case a = b = n2. For example, for any ε �= 0, all solutions of

x′′ + n2x = 1 + ε cos(nt)

are unbounded.
For the asymmetric oscillation (1.1). Let ω0 := 1

2 ( 1√
a

+ 1√
b
).

If ω0 ∈ R\Q, Ortega [14] in 2001 proved the boundedness of all solutions of
equation (1.1) under the condition

∫ 2π

0
f(t)dt �= 0.

Recently, Hu et al. [6] established an invariant curve theorem and applied it
to equation (1.1), then they obtained the boundedness of all solutions with ω0

satisfying the Diophantine condition, but without the assumption
∫ 2π

0
f(t)dt �= 0.

Subsequently, we [10] also proved the boundedness of all solutions of equation
(1.1) without the assumption

∫ 2π

0
f(t)dt �= 0, but ω0 is assumed to satisfy an

approximation function condition.
If ω0 ∈ Q, then there exist two positive integers m and n such that

ω0 =
m

n
. (1.2)

Moreover, m and n are relatively prime.
Denote by C(t) the solution of the ‘homogeneous’ equation

x′′ + ax+−bx− = 0

with the initial conditions C(0) = 1, C ′(0) = 0. Then it is well known that C(t) ∈
C2(R) and can be given explicitly by the formula

C(t) =

⎧⎪⎨
⎪⎩

cos
√

a|t|, 0 � |t| � π

2
√

a
,

−
√

a

b
sin

√
b

(
|t| − π

2
√

a

)
,

π

2
√

a
< |t| � m

n
π.

Denote the derivative of C by S = C ′, then S(t) ∈ C(R) and

(1) C(−t) = C(t), S(−t) = −S(t);

(2) C(t) and S(t) are 2π m
n -periodic functions;

(3) S(t)2 + aC+(t)2 + bC−(t)2 ≡ a.

For a given 2π-periodic function f(t). Let

Φf (θ) :=
∫ 2π

0

C
(m

n
θ + mt

)
f(mt)dt, θ ∈ R,

and

A(f) := {θ ∈ R : Φf (θ) = 0}.
Then Φf (θ) is a 2π-periodic function and its derivative is

Φ′
f (θ) =

m

n

∫ 2π

0

S
(m

n
θ + mt

)
f(mt)dt, θ ∈ R.
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On the one hand, if A = ∅, Liu [11] in 1999 proved that all solutions of equation
(1.1) are bounded. On the other hand, if A �= ∅ and all zeros of Φf (θ) are non-
degenerate, that is, Φ′

f (θ) �= 0 for all θ ∈ A, Alonso and Ortega [1] in 1998 proved
that there exists R > 0 such that every solution of (1.1) with

x(t0)2 + x′(t0)2 > R

for some t0 ∈ R is unbounded. Particularly, the proof of this result implies that if
there is a non-degenerate zero of Φf (θ), then there exist unbounded solutions of
equation (1.1). We remark that the references [11] and [1] assume that Φf (θ) �≡ 0.

In 1998, Ortega [13] proposed an example

x′′ + 4x+−x− = λ + cos 4t, λ ∈ R. (1.3)

In this example, ω0 = 3/4. Hence, the results of [1] and [11] can be applied. If |λ| <
1/45, then all solutions with large initial conditions are unbounded. If |λ| > 1/45,
then all solutions are bounded.

However, when |λ| = 1/45, all zeros of Φf (θ) are degenerate. Therefore, the ref-
erences [1] and [11] can not be applied to this equation. In 2021, we [9] proved the
existence of unbounded solutions of equation (1.3) with λ = ±1/45.

The main idea of [9] is as follows. First, the corresponding Poincaré map in action
and angle variables can be expressed by

⎧⎪⎨
⎪⎩

θ1 = θ0 + 2mπ +
1
r0

μ1(θ0) +
1
r2
0

k1(θ0) +
1
r3
0

h1(θ0) + g1(θ0, r0),

r1 = r0 + μ2(θ0) +
1
r0

k2(θ0) +
1
r2
0

h2(θ0) + g2(θ0, r0).

Then in equation (1.3) with λ = ± 1
45 , for all θ∗ ∈ A, we have Φf (θ∗) = Φ′

f (θ∗) =
0. Thus, μ1(θ) has only degenerate zeros. However, in these two examples, the
function p(θ, r) := μ1(θ) + 1

r k1(θ) + 1
r2 h1(θ) has some non-degenerate zeros. Then

an invariant set near the zero of μ1(θ) can be found, and each solution starting
from this invariant set is unbounded.

Unfortunately, this method to find the invariant set depends on the property
that the function p(θ, r) has non-degenerate zero, and cannot deal with the other
cases, including that all zeros of p(θ, r) are degenerate, or p(θ, r) has no zero. In
this paper, we will obtain the existence of unbounded solutions of equation (1.1)
without considering the zero of p(θ, r). More precisely, we will prove

Theorem 1.1. Assume that the resonance condition (1.2) holds, f(t) is a real ana-
lytic 2π-periodic function such that Φf (θ) �≡ 0 and A(f) �= ∅. Then equation (1.1)
has unbounded solutions.

Remark 1.2. When Φf (θ) �≡ 0, if A(f) = ∅, then all solutions of equation (1.1)
are bounded by [11]. If A(f) �= ∅, then equation (1.1) has unbounded solutions
by theorem 1.1. Therefore, theorem 1.1 together with the result of [11] completely
solves Littlewood’s boundedness problem for the asymmetric oscillation (1.1) in the
resonance case under the assumption Φf (θ) �≡ 0.
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In fact, according to the result of Alonso and Ortega in [1], here we only need to
consider the situation that for all θ∗ ∈ A(f), Φ′

f (θ∗) = 0. The main idea for proving
theorem 1.1 is similar to [15] and as follows. By means of a series of transformations,
the original system is transformed into a normal form, for which the twist condition
is violated. Then an invariant set will be found, and each solution starting from the
invariant set is unbounded.

The rest of this paper is organized in 4 sections as follows. In § 2, we will give
some examples to illustrate the main theorem. Section 3 is devoted to finding the
transformations and the normal form (for which the twist condition is violated).
Then in § 4, we will give some properties of the discriminative function Φf (θ), which
is crucial in this paper. Finally, the proof of the existence of unbounded solutions
will be given in § 5.

2. Some remarks

We give several examples to illustrate theorem 1.1. The first two examples show
that theorem 1.1 is applicable.

Example 2.1. For equation (1.3) with λ = ± 1
45 , the discriminative function takes

the form

Φf (θ) =

⎧⎪⎨
⎪⎩
− 4

45
+

4
45

cos 3θ, λ =
1
45

,

4
45

+
4
45

cos 3θ, λ = − 1
45

.

In view of theorem 1.1, this equation has unbounded solutions, which is consistent
with the result of [9].

Example 2.2. Consider the equation

x′′ + 4x+−x−=λ1 + λ2 cos 4t + λ3 sin 4t. (2.1)

The discriminative function of this equation takes the form

Φf (θ) = −4λ1 +
4
45

λ2 cos 3θ − 4
45

λ3 sin 3θ,

and the results of [1, 11] and theorem 1.1 can be applied.

• When λ2 = λ3 = 0, the discriminative function is of the form

Φf (θ) = −4λ1.

If λ1 �= 0, then all solutions are bounded. If λ1 = 0, then equation (2.1) becomes

x′′ + 4x+−x−=0,

and all solutions are bounded. Thus, when λ2 = λ3 = 0, all solutions of (2.1)
are bounded.
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• When λ2 = 0, λ3 �= 0, the discriminative function is of the form

Φf (θ) = −4λ1 − 4
45

λ3 sin 3θ.

If
∣∣λ1
λ3

∣∣ > 1
45 , then all solutions are bounded. If

∣∣λ1
λ3

∣∣ < 1
45 , then all solutions

with large initial conditions are unbounded. If
∣∣λ1
λ3

∣∣ = 1
45 , then equation (2.1)

has unbounded solutions.

• When λ2 �= 0, the discriminative function is of the form

Φf (θ) = −4λ1 +
4
45

√
λ2

2 + λ2
3 cos(3θ + α), α = arctan

λ3

λ2
.

Thus, if
∣∣∣ λ1√

λ2
2+λ2

3

∣∣∣ > 1
45 , then all solutions are bounded. If

∣∣∣ λ1√
λ2

2+λ2
3

∣∣∣ < 1
45 , then

all solutions with large initial conditions are unbounded. If
∣∣∣ λ1√

λ2
2+λ2

3

∣∣∣ = 1
45 , then

equation (2.1) has unbounded solutions.

Finally, for equation (1.1), when Φf (θ) ≡ 0, there are no results which can be
applied to determine the boundedness of its solutions. The following examples show
that this situation can indeed happen.

Example 2.3. Consider the equation

x′′ + ax+−bx−= cos(rnt),

where the resonance condition (1.2) holds, a �= b and r is a positive integer. Then
the discriminative function is

Φf (θ) =
2
√

a(b − a)n
m(r2n2 − a)(r2n2 − b)

cos
(

rnπ

2
√

a

)
cos(rmθ), r2n2 �= a, b,

and it is easy to see that when rn√
a

is odd, we have Φf (θ) ≡ 0.

Example 2.4. Consider the equation

x′′ + 4x+−x−= cos kt,

where k is a positive integer. Then the discriminative function is

Φf (θ) =

⎧⎨
⎩

0, k = 1, 2,
−4

(k2 − 4)(k2 − 1)
(1 + (−1)k)

(
cos

(
kπ

4
+

3k

4
θ

)
+ cos

(
3kπ

4
+

3k

4
θ

))
, k � 3.

Thus, if k = 4r, r = 1, 2, 3, . . . , then

Φf (θ) =
(−1)r+14

(4r2 − 1)(16r2 − 1)
cos(3rθ),

and if k �= 4r, r = 1, 2, 3, . . . , then Φf (θ) ≡ 0.
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3. Transformations

We make a series of canonical transformations to obtain a normal form for which
the twist condition is violated.

3.1. Action and angle variables

Let y = x′, then equation (1.1) is equivalent to the following planar system

{
x′ = y,
y′ = −ax++bx−+f(t). (3.1)

The following result is standard.

Lemma 3.1. For any (x0, y0) ∈ R2 and t0 ∈ R, the unique solution z(t) =
(x(t; t0, x0, y0), y(t; t0, x0, y0)) of (3.1) satisfying z(t0) = (x0, y0) exists on the
whole t-axis.

For r > 0, θ (mod 2π), define the following generalized polar coordinates Γ :
(r, θ) → (x, y) by

⎧⎨
⎩

x = ρr
1
2 C(

m

n
θ),

y = ρr
1
2 S(

m

n
θ),

where ρ :=
√

2n
am . It is easy to check that Γ is a symplectic transformation.

The Hamiltonian associated to the system (3.1) is expressed in Cartesian
coordinates by

H(x, y, t) =
1
2
y2 +

a

2
(x+)2 +

b

2
(x−)2 − f(t)x.

In the new coordinates (r, θ), it becomes

H(r, θ, t) =
n

m
r − ρr

1
2 C
(m

n
θ
)

f(t). (3.2)

Thus, the system (3.1) is transformed into

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ′ = Hr =
n

m
− 1

2
ρr

−
1
2 C

(m

n
θ
)

f(t),

r′ = −Hθ =
m

n
ρr

1
2 S
(m

n
θ
)

f(t),

(3.3)

which is a semilinear system.

https://doi.org/10.1017/prm.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.12


The existence of unbounded solutions of asymmetric oscillations 291

3.2. A sublinear system

First, introduce a new time variable ϑ by t = mϑ to eliminate the denominator
of the linear part of (3.2). Then, the system (3.3) is transformed into

⎧⎪⎨
⎪⎩

dθ

dϑ
=

∂

∂r
H(r, θ, ϑ),

dr

dϑ
= − ∂

∂θ
H(r, θ, ϑ),

(3.4)

where

H(r, θ, ϑ) = nr − mρr
1
2 C
(m

n
θ
)

f(mϑ). (3.5)

For convenience, we can rewrite (3.5) and (3.4) respectively as

H(r, θ, t) = nr − mρr
1
2 C
(m

n
θ
)

f(mt), (3.6)

and ⎧⎪⎨
⎪⎩

dθ

dt
=

∂

∂r
H(r, θ, t),

dr

dt
= − ∂

∂θ
H(r, θ, t).

Since m is a positive integer, then the new Hamiltonian H(r, θ, t) in (3.6) is 2π-
periodic in θ and t.

Next we introduce a rotation transformation to eliminate the linear part of the
Hamiltonian (3.6), which helps us to obtain a sublinear system.

Define the rotation transformation Φ1 : (r1, θ1, t) → (r, θ, t) by

{
θ = θ1 + nt,
r = r1.

Then under Φ1, the original semilinear system determined by the Hamiltonian (3.6)
is transformed into a sublinear system given by the following Hamiltonian

H1(r1, θ1, t) = −mρr
1
2
1 C

(m

n
θ1 + mt

)
f(mt). (3.7)

It is worth to point out that the above transformations preserve the periodicity
and boundedness of solutions. In fact, if (r1(t + 2π), θ1(t + 2π)) = (r1(t), θ1(t)),
then for the Hamiltonian (3.5), r(ϑ + 2π) = r1(ϑ + 2π) = r1(ϑ) = r(ϑ), and θ(ϑ +
2π) = θ1(ϑ + 2π) + n(ϑ + 2π) = θ1(ϑ) + nϑ + 2nπ = θ(ϑ) + 2nπ. Since t = mϑ, for
the Hamiltonian (3.2), we have r( 1

m t + 2π) = r( 1
m t), and θ( 1

m t + 2π) = θ( 1
m t) +

2nπ. Thus for the original system (3.1), x( 1
m t + 2π) = ρr( 1

m t + 2π)
1
2 C(m

n θ( 1
m t +

2π)) = ρr( 1
m t)

1
2 C(m

n θ( 1
m t) + 2mπ) = x( 1

m t), which leads to x(t + 2π) = x(t).
Thus, the periodicity is preserved. Similarly, it is easy to verify that the boundedness
is also preserved.
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3.3. The normal form without the twist condition

To reduce the power of term containing t in the Hamiltonian (3.7), we make the
transformation Φ2 : (r2, θ2, t) → (r1, θ1, t) given by

⎧⎪⎪⎨
⎪⎪⎩

θ2 = θ1 +
∂S2

∂r2
(r2, θ1, t),

r1 = r2 +
∂S2

∂θ1
(r2, θ1, t)

with the generating function S2(r2, θ1, t) determined by

S2(r2, θ1, t) = −mρr
1
2
2

∫ t

0

[Cf ]
(m

n
θ1

)
− C

(m

n
θ1 + ms

)
f(ms)ds,

where

[Cf ]
(m

n
θ1

)
=

1
2π

∫ 2π

0

C
(m

n
θ1 + mt

)
f(mt)dt.

Under Φ2, the Hamiltonian H1 in (3.7) is transformed into

H2(r2, θ2, t) = −mρ

(
r2 +

∂S2

∂θ1

) 1
2

C
(m

n
θ1 + mt

)
f(mt) +

∂S2

∂t

= −mρr
1
2
2 C

(m

n
θ1 + mt

)
f(mt)

− mρC
(m

n
θ1 + mt

)
f(mt)

∫ 1

0

1
2

(
r2 + μ

∂S2

∂θ1

)− 1
2 ∂S2

∂θ1
dμ

+
∂S2

∂t
.

It is obvious that

−mρr
1
2
2 C

(m

n
θ1 + mt

)
f(mt) +

∂S2

∂t
= −mρr

1
2
2 [Cf ]

(m

n
θ1

)
,

and thus,

H2(r2, θ2, t) = − mρr
1
2
2 [Cf ]

(m

n
θ1

)

− mρC
(m

n
θ1 + mt

)
f(mt)

∫ 1

0

1
2

(
r2 + μ

∂S2

∂θ1

)− 1
2 ∂S2

∂θ1
dμ.

Then by θ2 = θ1 + ∂S2
∂r2

(r2, θ1, t), we get

H2(r2, θ2, t) = −mρr
1
2
2 [Cf ]

(m

n
θ2

)
+ P1(θ2, t) + P2(r2, θ2, t), (3.8)
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where

P1(θ2, t) = − 1
4π

m3n−1ρ2

∫ 2π

0

S
(m

n
θ2 + mt

)
f(mt)

∫ t

0

[Cf ]
(m

n
θ2

)

− C
(m

n
θ2 + ms

)
f(ms)dsdt

+
1
2
m3n−1ρ2C

(m

n
θ2 + mt

)
f(mt)

∫ t

0

[Sf ]
(m

n
θ2

)

− S
(m

n
θ2 + ms

)
f(ms)ds,

and

P2(r2, θ2, t) =
1

4π
m4n−2ρ2

∫ 2π

0
S
(m

n
θ2 + mt

)
f(mt)

∫ t

0(
1

2π

∫ 2π

0

∫ 1

0
S

(
m

n
θ2 + ms − μ

m

n

∂S2

∂r2

)
∂S2

∂r2
f(ms)dμds

−
∫ 1

0
S

(
m

n
θ2 + ms − μ

m

n

∂S2

∂r2

)
∂S2

∂r2
f(ms)dμ

)
dsdt

− 1

2π
m3n−2ρr

1
2
2

∫ 2π

0

∫ 1

0

∫ 1

0
S′
(

m

n
θ2 + mt − sμ

m

n

∂S2

∂r2

)
μ

(
∂S2

∂r2

)2

f(mt)dsdμdt

− 1

2
m4n−2ρ2C

(m

n
θ2 + mt

)
f(mt)

∫ t

0

(
1

2π

∫ 2π

0

∫ 1

0
S′
(

m

n
θ2 + ms − μ

m

n

∂S2

∂r2

)
∂S2

∂r2
f(ms)dμds

−
∫ 1

0
S′
(

m

n
θ2 + ms − μ

m

n

∂S2

∂r2

)
∂S2

∂r2
f(ms)dμ

)
ds

+
1

2
m2n−1ρr

− 1
2

2

∫ 1

0
S

(
m

n
θ2 + mt − μ

m

n

∂S2

∂r2

)
f(mt)

∂S2

∂r2

∂S2

∂θ1
dμ

+
1

4
mρC

(
m

n
θ2 − m

n

∂S2

∂r2
+ mt

)
f(mt)

∫ 1

0

∫ 1

0

(
r2 + sμ

∂S2

∂θ1

)− 3
2

μ

(
∂S2

∂θ1

)2

dsdμ

with

[Sf ]
(m

n
θ
)

=
1
2π

∫ 2π

0

S
(m

n
θ + mt

)
f(mt)dt.

Then we have the following estimates, and the proof is elementary.

Lemma 3.2. For r2 large enough, θ2, t ∈ S1 = R/(2πZ), we have

|∂k
r2

∂j
θ1

S2(r2, θ1, t)| � Cr
1
2−k
2 , k + j � 3,
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and

|∂j
θ2

P1(θ2, t)| � C, j � 1,

|∂k
r2

∂j
θ2

P2(r2, θ2, t)| � Cr
− 1

2−k
2 , k + j � 1,

where C is a constant larger than 1.

Finally, with the definitions of Φf (θ) and [Cf ](m
n θ), [Sf ](m

n θ), the Hamiltonian
H2(r2, θ2, t) in (3.8) can be rewritten as

H(r, θ, t) = − 1
2π

mρr
1
2 Φf (θ) + P1(θ, t) + P2(r, θ, t), (3.9)

and for r large enough, θ, t ∈ S1, one has

|∂j
θP1(θ, t)| � C, j � 1,

|∂k
r ∂j

θP2(r, θ, t)| � Cr−
1
2−k, k + j � 1,

where C is a constant larger than 1.

4. Some properties of Φf(θ)

We present several lemmas for the discriminative function Φf (θ), which will be used
in the proof of the existence of unbounded solutions.

First, we prove that under the assumptions of theorem 1.1, Φf (θ) is an ana-
lytic function, and thus for any θ∗ ∈ A, there exists an integer k � 2 such that
Φ(k)

f (θ∗) �= 0.

Lemma 4.1. Under the assumptions of theorem 1.1, for any θ∗ ∈ A, there exists an
integer k � 2 such that Φf (θ∗) = Φ′

f (θ∗) = · · · = Φ(k−1)
f (θ∗) = 0, Φ(k)

f (θ∗) �= 0.

Proof. Since f is real analytic and 2π-periodic in t, then it can be written as a
uniformly convergent Fourier series

f(t) =
∑
k∈Z

fkeikt, t ∈ R,

where the Fourier coefficients

fk =
1
2π

∫ 2π

0

f(t)e−iktdt, k ∈ Z.

Moreover, f can be analytically extended into a complex domain {t ∈ C : |Imt| � r},
with r > 0 a small constant, and we have |fk| � ‖f‖re

−|k|r, where ‖f‖r =
sup|Imt|�r |f(t)|.
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Then it is obvious that the series

C
(m

n
θ + mt

)(∑
k∈Z

fkeikmt

)
=
∑
k∈Z

fkC
(m

n
θ + mt

)
eikmt

=
∑
k∈Z

fkC
(m

n
θ + mt

)
(cos(kmt) + i sin(kmt))

is also uniformly convergent to C(m
n θ + mt)f(mt). Thus,

Φf (θ) =

∫ 2π

0
C
(m

n
θ + mt

)
f(mt)dt

=
∑
k∈Z

fk

∫ 2π

0
C
(m

n
θ + mt

)
cos(kmt)dt + i

∑
k∈Z

fk

∫ 2π

0
C
(m

n
θ + mt

)
sin(kmt)dt

:=
∑
k∈Z

fkΦak(θ) + i
∑
k∈Z

fkΦbk(θ),

where

Φak(θ) =
∫ 2π

0

C
(m

n
θ + mt

)
cos(kmt)dt,

Φbk(θ) =
∫ 2π

0

C
(m

n
θ + mt

)
sin(kmt)dt.

The periodicity of C and f yields that

Φak(θ) =
∫ 2π

0

C
(m

n
θ + mt

)
cos(kmt)dt =

∫ 2π

0

C(mt) cos
(
kmt − k

m

n
θ
)

dt

=
n−1∑
l=0

∫ l+1
m ( π√

a
+ π√

b
)

l
m ( π√

a
+ π√

b
)

C(mt) cos
(
kmt − k

m

n
θ
)

dt,

where∫ l+1
m

( π√
a

+ π√
b
)

l
m

( π√
a

+ π√
b
)

C(mt) cos
(
kmt − k

m

n
θ
)

dt

=

∫ l
m

( π√
a

+ π√
b
)+ π

2m
√

a

l
m

( π√
a

+ π√
b
)

(−1)l cos

(√
amt − l

√
a

b
π

)
cos
(
kmt − k

m

n
θ
)

dt

+

∫ l
m

( π√
a

+ π√
b
)+ π

2m
√

a
+ π

m
√

b

l
m

( π√
a

+ π√
b
)+ π

2m
√

a

(−1)l+1

√
a

b
sin

(√
bmt − (2l + 1)

√
b

2
√

a
π

)
cos
(
kmt − k

m

n
θ
)

dt

+

∫ l+1
m

( π√
a

+ π√
b
)

l
m

( π√
a

+ π√
b
)+ π

2m
√

a
+ π

m
√

b

(−1)l+1 cos

(√
amt − (l + 1)

√
a

b
π

)
cos
(
kmt − k

m

n
θ
)

dt.
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By some calculations, when k = ±√
a, we get

Φak(θ) =
1

2m
√

a
sin
(√

a
m

n
θ
)

+
π

4m
√

a
cos
(√

a
m

n
θ
)
−

√
a

m(b − a)
sin
(√

a
m

n
θ
)

+
n−2∑
l=0

(−1)l+1 π

2m
√

a
cos
(

(l + 1)
√

a

b
π −√

a
m

n
θ

)

+ (−1)n 1
2m

√
a

sin
(

n

√
a

b
π −√

a
m

n
θ

)

+ (−1)n π

4m
√

a
cos
(

n

√
a

b
π −√

a
m

n
θ

)

+ (−1)n+1

√
a

m(b − a)
sin
(

n

√
a

b
π −√

a
m

n
θ

)
.

When k = ±√
b, similarly we have

Φak(θ) = −
√

b

m(a − b)
sin
(√

b
m

n
θ
)

+

√
b

m(a − b)
(−1)n−1 sin

(
n

√
b

a
π −

√
b
m

n
θ

)

+
n−1∑
l=0

(−1)l

√
aπ

2mb
sin

(
l

√
b

a
π +

√
bπ

2
√

a
−
√

b
m

n
θ

)
.

When k �= ±√
a, ±√

b, we also obtain

Φak(θ) =
n−1∑
l=0

√
a(b − a)

m(k2 − a)(k2 − b)

(
cos
(

lk

(
π√
a

+
π√
b

)
+

kπ

2
√

a
− k

m

n
θ

)

+ cos
(

lk

(
π√
a

+
π√
b

)
+

kπ

2
√

a
+

kπ√
b
− k

m

n
θ

))
.

Thus, for all k ∈ Z, Φak(θ) can be analytically extended to Φ̃ak(θ) in {θ ∈ C :
| Im θ| < r′}, with r′ � r n

m , and it is easy to see that

∣∣Φ̃ak(θ)
∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2 + nπ

2m
√

a
+

2
√

a

m|b − a|
)

e

√
a
m

n
r′

, k = ±√
a;

(
2
√

b

m|b − a| +
√

anπ

2mb

)
e

√
b
m

n
r′

, k = ±√
b;

2
√

a|b − a|n
m|k2 − a||k2 − b|e

|k|
m

n
r′

, k �= ±√
a,±√

b.
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Similarly, for all k ∈ Z, Φbk(θ) can also be analytically extended to Φ̃bk(θ) in {θ ∈
C : | Im θ| < r′}, and

∣∣Φ̃bk(θ)
∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2 + nπ

2m
√

a
+

2
√

a

m|b − a|
)

e

√
a
m

n
r′

, k = ±√
a;

(
2
√

b

m|b − a| +
√

anπ

2mb

)
e

√
b
m

n
r′

, k = ±√
b;

2
√

a|b − a|n
m|k2 − a||k2 − b|e

|k|
m

n
r′

, k �= ±√
a,±√

b.

Then with |fk| � ‖f‖re
−|k|r, where ‖f‖r = sup|Imt|�r |f(t)|, and since r′ � r n

m ,
we have

|fkΦ̃ak(θ)|, |ifkΦ̃bk(θ)| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖f‖r

(
2 + nπ

2m
√

a
+

2
√

a

m|b − a|
)

, k = ±√
a;

‖f‖r

(
2
√

b

m|b − a| +
√

anπ

2mb

)
, k = ±√

b;

‖f‖r
2
√

a|b − a|n
m|k2 − a||k2 − b| , k �= ±√

a,±√
b.

By Weierstrass M-test, since the series
∑
k∈Z

k �=±√
a, ±√

b

1
|k2−a||k2−b| is convergent, then in

the domain {θ ∈ C : | Im θ| < r′}, the series∑
k∈Z

fkΦ̃ak(θ) + i
∑
k∈Z

fkΦ̃bk(θ)

uniformly converge to Φ̃f (θ), which is a complex extension of Φf (θ). Since all
Φ̃ak(θ), Φ̃bk(θ) are analytic, then by Weierstrass’s Theorem, Φ̃f (θ) is also analytic
in the domain {θ ∈ C : | Im θ| < r′}.

Finally, under the assumptions of theorem 1.1, for any θ∗ ∈ A, we have Φ̃f (θ∗) =
Φf (θ∗) = 0, Φ̃′

f (θ∗) = Φ′
f (θ∗) = 0. Then with the isolation of zeros for analytic func-

tions, for any θ∗ ∈ A, there exists an integer k � 2 such that Φ̃f (θ∗) = Φ̃′
f (θ∗) =

· · · = Φ̃(k−1)
f (θ∗) = 0, Φ̃(k)

f (θ∗) �= 0. Thus, Φf (θ∗) = Φ′
f (θ∗) = · · · = Φ(k−1)

f (θ∗) = 0,

Φ(k)
f (θ∗) �= 0. �

By lemma 4.1, choose some θ∗ ∈ A. Without loss of generality, we can assume
that Φ(k)

f (θ∗) > 0, otherwise, make a time change t 
→ −t.
In the following, for a fixed θ∗ ∈ A and the corresponding integer k � 2, some

estimates of Φf (θ) near θ∗ are given.

Lemma 4.2. Assume that there exist θ∗ ∈ R and 2 � k ∈ N such that Φf (θ∗) =
Φ′

f (θ∗) = · · · = Φ(k−1)
f (θ∗) = 0, Φ(k)

f (θ∗) > 0. Then there exists δ1 > 0 such that for
all θ : 0 < θ − θ∗ � δ1, one has Φf (θ) > 0, Φ′

f (θ) > 0.
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Proof. This lemma can be easily proved by properties of the derivative, so we omit
the details here. �

Let τ = θ − θ∗. Then Φf (θ) = Φf (τ + θ∗), and we get the following lemma.

Lemma 4.3. Assume that there exists 2 � k ∈ N such that Φf (θ∗) = Φ′
f (θ∗) =

· · · = Φ(k−1)
f (θ∗) = 0, Φ(k)

f (θ∗) > 0. Then there exists δ1 > 0 such that for all
τ : 0 < τ � δ1, we have Φf (τ + θ∗) > 0, Φ′

f (τ + θ∗) > 0.

Lemma 4.4. Assume that the function g(x) is analytic at x = 0, and
g(j)(0) = 0, j = 0, 1, . . . , k − 1, g(k)(0) > 0. Then there exists δ2 > 0 such that
for all x : 0 � x � δ2, one has

g(x) ∈
[c1

k!
xkg(k)(0),

c2

k!
xkg(k)(0)

]
,

where

c1 =
6k + 10
6k + 11

< 1, c2 =
6k + 12
6k + 11

> 1.

Proof. On the one hand, let

h1(x) = g(x) − c1

k!
xkg(k)(0).

Then h1(0) = h′
1(0) = · · · = h

(k−1)
1 (0) = 0, and h

(k)
1 (0) = (1 − c1)g(k)(0) = 1

6k+11

g(k)(0) > 0, so there exists δ3 > 0 such that for all x : 0 � x � δ3, we have h1(x) � 0,
which leads to

g(x) � c1

k!
xkg(k)(0).

On the other hand, let

h2(x) = g(x) − c2

k!
xkg(k)(0).

Then h2(0) = h′
2(0) = · · · = h

(k−1)
2 (0) = 0, and h

(k)
2 (0) = (1 − c2)g(k)(0) = −1

6k+11

g(k)(0) < 0, so there exists δ4 > 0 such that for all x : 0 � x � δ4, we have h2(x) � 0,
which leads to

g(x) � c2

k!
xkg(k)(0).

Let δ2 = min{δ3, δ4} > 0. Then for all x : 0 � x � δ2, we have

g(x) ∈
[c1

k!
xkg(k)(0),

c2

k!
xkg(k)(0)

]
,

where

c1 =
6k + 10
6k + 11

< 1, c2 =
6k + 12
6k + 11

> 1.

�
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Applying lemmas 4.1–4.4 to Φf (τ + θ∗) and Φ′
f (τ + θ∗). Then we can easily

obtain the following result.

Lemma 4.5. Under the assumptions of theorem 1.1, there exists δ > 0 such that for
all τ : 0 < τ � δ, we have Φf (τ + θ∗) > 0, Φ′

f (τ + θ∗) > 0, and

Φf (τ + θ∗) ∈
[
c1

k!
τkΦ(k)

f (θ∗),
c2

k!
τkΦ(k)

f (θ∗)
]
,

Φ′
f (τ + θ∗) ∈

[
c1

(k − 1)!
τk−1Φ(k)

f (θ∗),
c2

(k − 1)!
τk−1Φ(k)

f (θ∗)
]
,

where c1 = 6k+10
6k+11 < 1, c2 = 6k+12

6k+11 > 1.

5. The existence of unbounded solutions

In this section, we prove that the Hamiltonian system with the Hamiltonian (3.9)
has unbounded solutions.

The system with the Hamiltonian (3.9) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dθ

dt
=

∂H

∂r
= − 1

4π
mρr

−
1
2 Φf (θ) + ∂rP2(r, θ, t),

dr

dt
= −∂H

∂θ
=

1
2π

mρr

1
2 Φ′

f (θ) − ∂θP1(θ, t) − ∂θP2(r, θ, t).

(5.1)

Let τ = θ − θ∗. Then the system (5.1) is transformed into⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dτ

dt
= − 1

4π
mρr

−
1
2 Φf (τ + θ∗) + ∂rP2(r, τ + θ∗, t),

dr

dt
=

1
2π

mρr

1
2 Φ′

f (τ + θ∗) − ∂τP1(τ + θ∗, t) − ∂τP2(r, τ + θ∗, t).

(5.2)

For fixed 2 � k ∈ N from lemma 4.1 and δ from lemma 4.5, choose r∗ � 1
satisfying

(1) r∗ � ‖f‖;
(2) 2(r∗)−

1
3k < δ;

(3) 1
3π

c1
(k−1)!mρ( r∗

2 )
1

2(2k−1) Φ(k)
f (θ∗) � 1, where c1 = 6k+10

6k+11 .

Give an initial point (r(0), τ(0)) ∈ D :=
{

(r, τ) : r−
1

2k−1 � τ � r−
1
3k

}
and

r(0) � r∗.
First, the second equation in (5.2) implies that dr

dt = O(r
1
2 + 1), thus r(t) � 1

2r∗

for any t ∈ [0, 2π] by r∗ � ‖f‖. Also the first equation in (5.2) implies dτ
dt = O(r−

1
2 ),

hence 0 < τ(t) � 2(r∗)−
1
3k for any t ∈ [0, 2π]. Thus, lemma 4.5 can be applied in

the following.

https://doi.org/10.1017/prm.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.12


300 M. Li and X. Li

We claim that if the initial point (r(0), τ(0)) ∈ D and r(0) � r∗, then
(r(t), τ(t)) ∈ D for any t ∈ [0, 2π]. Otherwise, let t1 := sup{t : (r(s), τ(s)) ∈
D, 0 � s � t} < 2π. It is obvious that (r(t1), τ(t1)) ∈ ∂D, which leads to
r(t1)lτ(t1) = 1 with l = 1

2k−1 or 1
3k .

By a direct computation, we get

(r(t)lτ(t))′|t=t1

= lr(t)l−1r′(t)τ(t) + r(t)lτ ′(t)|t=t1

= lr(t)l−1τ(t)
(

1
2π

mρr(t)
1
2 Φ′

f (τ(t) + θ∗)

−∂τP1(τ(t) + θ∗, t) − ∂τP2(r(t), τ(t) + θ∗, t))
∣∣∣
t=t1

+ r(t)l

(
− 1

4π
mρr(t)−

1
2 Φf (τ(t) + θ∗) + ∂rP2(r(t), τ(t) + θ∗, t)

) ∣∣∣
t=t1

:= J1 + J2.

Since r(t1)lτ(t1) = 1, r(t) � 1
2r∗ and 0 < τ(t) � 2(r∗)−

1
3k < δ for t ∈ [0, 2π], then

we get

J1 = lr(t1)l−1τ(t1)
(

1
2π

mρr(t1)
1
2 Φ′

f (τ(t1) + θ∗) − ∂τP1(τ(t)

+θ∗, t)|t=t1 − ∂τP2(r(t), τ(t) + θ∗, t)|t=t1)

=
1
2π

mρlr(t1)−
1
2 Φ′

f (τ(t1) + θ∗) + O(r(t1)−1),

and

J2 = r(t1)l

(
− 1

4π
mρr(t1)−

1
2 Φf (τ(t1) + θ∗) + ∂rP2(r(t), τ(t) + θ∗, t)|t=t1

)

= − 1
4π

mρr(t1)−
1
2 r(t1)lΦf (τ(t1) + θ∗) + O

(
r(t1)−

3
2+l
)

.

Now it is a position to apply lemma 4.5 to J1 and J2. On the one hand, if l = 1
3k ,

then we have

J1 + J2 =
1
2π

mρlr(t1)−
1
2 Φ′

f (τ(t1) + θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)lΦf (τ(t1) + θ∗) + O

(
r(t1)−

3
2+l
)

� 1
2π

mρlr(t1)−
1
2

c2

(k − 1)!
τ(t1)k−1Φ(k)

f (θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)l c1

k!
τ(t1)kΦ(k)

f (θ∗) + O
(
r(t1)−

3
2+l
)
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=
1
2π

mρlr(t1)−
1
2

c2

(k − 1)!
r(t1)−l(k−1)Φ(k)

f (θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)l c1

k!
r(t1)−lkΦ(k)

f (θ∗) + O
(
r(t1)−

3
2+l
)

=
1
2π

1
(k − 1)!

mρ
(
c2l − c1

2k

)
r(t1)−

1
2−l(k−1)Φ(k)

f (θ∗)

+ O(r(t1)−1) + O
(
r(t1)−

3
2+l
)

.

Since c1 = 6k+10
6k+11 , c2 = 6k+12

6k+11 and l = 1
3k , k � 2, then c2l − c1

2k < 0, − 3
2 + l <

−1 < − 1
2 − l(k − 1), which lead to

J1 + J2 =
1
2π

1
(k − 1)!

mρ
(
c2l − c1

2k

)
r(t1)−

1
2−l(k−1)Φ(k)

f (θ∗)(1 + o(1)) < 0.

That is, if l = 1
3k , then (r(t)lτ(t))′|t=t1 < 0. Therefore, there exists t2 > t1 such

that r(t)
1
3k τ(t) � 1 for t ∈ [t1, t2], which contradicts the definition of t1. Thus for

all t ∈ [0, 2π], we have τ(t) � r(t)−
1
3k .

On the other hand, if l = 1
2k−1 , then we have

J1 + J2 =
1
2π

mρlr(t1)−
1
2 Φ′

f (τ(t1) + θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)lΦf (τ(t1) + θ∗) + O

(
r(t1)−

3
2+l
)

� 1
2π

mρlr(t1)−
1
2

c1

(k − 1)!
τ(t1)k−1Φ(k)

f (θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)l c2

k!
τ(t1)kΦ(k)

f (θ∗) + O
(
r(t1)−

3
2+l
)

=
1
2π

mρlr(t1)−
1
2

c1

(k − 1)!
r(t1)−l(k−1)Φ(k)

f (θ∗) + O(r(t1)−1)

− 1
4π

mρr(t1)−
1
2 r(t1)l c2

k!
r(t1)−lkΦ(k)

f (θ∗) + O
(
r(t1)−

3
2+l
)

=
1
2π

1
(k − 1)!

mρ
(
c1l − c2

2k

)
r(t1)−

1
2−l(k−1)Φ(k)

f (θ∗)

+ O(r(t1)−1) + O
(
r(t1)−

3
2+l
)

.

Since c1 = 6k+10
6k+11 , c2 = 6k+12

6k+11 and l = 1
2k−1 , k � 2, then c1l − c2

2k > 0, − 3
2 + l <

−1 < − 1
2 − l(k − 1), which lead to

J1 + J2 =
1
2π

1
(k − 1)!

mρ
(
c1l − c2

2k

)
r(t1)−

1
2−l(k−1)Φ(k)

f (θ∗)(1 + o(1)) > 0.

That is, if l = 1
2k−1 , then (r(t)lτ(t))′|t=t1 > 0. Therefore, there exists t2 > t1 such

that r(t)
1

2k−1 τ(t) � 1 for t ∈ [t1, t2], which contradicts the definition of t1. Thus for
all t ∈ [0, 2π], one has τ(t) � r(t)−

1
2k−1 . The proof of the claim is completed.
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Now we prove that every solution of system (5.2) with the initial point
(r(0), τ(0)) ∈ D and r(0) � r∗ is unbounded.

From the claim, if the initial point (r(0), τ(0)) ∈ D and r(0) � r∗, then for any
t ∈ [0, 2π], one has r(t)−

1
2k−1 � τ(t) � r(t)−

1
3k � 2(r∗)−

1
3k . Thus, from the second

equation of (5.2), for any t ∈ [0, 2π], we obtain

dr

dt
=

1
2π

mρr(t)
1
2 Φ′

f (τ(t) + θ∗) − ∂τP1(τ(t) + θ∗, t) − ∂τP2(r(t), τ(t) + θ∗, t)

=
1
2π

mρr(t)
1
2 Φ′

f (τ(t) + θ∗) + O(1)

� 1
2π

mρr(t)
1
2

c1

(k − 1)!
τ(t)k−1Φ(k)

f (θ∗) + O(1)

� 1
2π

mρr(t)
1
2

c1

(k − 1)!
r(t)−

k−1
2k−1 Φ(k)

f (θ∗) + O(1)

=
1
2π

c1

(k − 1)!
mρr(t)

1
2(2k−1) Φ(k)

f (θ∗) + O(1)

� 1
3π

c1

(k − 1)!
mρr(t)

1
2(2k−1) Φ(k)

f (θ∗).

Choose r∗ sufficiently large such that 1
3π

c1
(k−1)!mρ( r∗

2 )
1

2(2k−1) Φ(k)
f (θ∗) � 1. Then

r(2π) � r(0) + 2π > r∗.
In a word, if (r(0), τ(0)) ∈ D and r(0) � r∗, then (r(2π), τ(2π)) ∈ D and r(2π) �

r(0) + 2π > r∗.
Using the above argument repeatedly, if (r(0), τ(0)) satisfies the above initial

conditions, then r(2πi) � r(0) + 2πi for any i ∈ N, which means that the solution
(r(t), τ(t)) is unbounded. Up to now theorem 1.1 is proved.
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