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The main building blocks

3.1 Domain walls

3.1.1 Preliminaries

In four dimensions domain walls are two-dimensional extended objects. In three
dimensions they become domain lines, while in two dimensions they reduce to
kinks which can be considered as particles since they are localized. Embeddings of
bosonic models supporting kinks in N = 1 supersymmetric models in two dimen-
sions were first discussed in [1, 7]. Occasional remarks on kinks in models with
four supercharges of the type of the Wess–Zumino models [40] can be found in the
literature in the 1980s but they went unnoticed. The only issue which caused much
interest and debate in the 1980s was the issue of quantum corrections to the BPS
kink mass in 2D models with N = 1 supersymmetry.

The mass of the BPS saturated kinks in two dimensions must be equal to the
central chargeZ in Eq. (2.2.2). The simplest two-dimensional model with two super-
charges, admitting solitons, was considered in [41]. In components the Lagrangian
takes the form

L = 1

2

(
∂μφ ∂

μφ + ψ̄ i � ∂ψ + F 2
)

+ W ′(φ)F − 1

2
W ′′(φ)ψ̄ψ , (3.1.1)

where φ is a real field, ψ is a two-component Majorana spinor in two dimensions,
and W(φ) is a real “superpotential” which in the simplest case takes the form

W(φ) = m2

λ
φ − λ

3
φ3. (3.1.2)

Moreover, the auxiliary field F can be eliminated by virtue of the classical equa-
tion of motion, F = −W ′. This is a real reduction (two supercharges) of the
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16 The main building blocks

Wess–Zumino model (Section 3.1.2). The kink (antikink) BPS equation is

∂zφ = ±dW
dφ

, (3.1.3)

with the boundary condition that φ(z) tends to two distinct vacua, φvac = ±m/λ
at z → ±∞. It can be readily integrated.

The story of kinks in this model is long and dramatic. In the very beginning
it was argued [41] that, due to a residual supersymmetry, the mass of the soliton
calculated at the classical level remains intact at the one-loop level. A few years
later it was noted [42] that the non-renormalization theorem [41] cannot possi-
bly be correct, since the classical soliton mass is proportional to m3/λ2 (where
m and λ are the bare mass parameter and coupling constant, respectively), and
the physical mass of the scalar field gets a logarithmically infinite renormaliza-
tion. Since the soliton mass is an observable physical parameter, it must stay finite
in the limit Muv → ∞, where Muv is the ultraviolet cut off. This implies, in
turn, that the quantum corrections cannot vanish – they “dress” m in the classical
expression, converting the bare mass parameter into the renormalized one. The
one-loop renormalization of the soliton mass was first calculated in [42]. Techni-
cally the emergence of the one-loop correction was attributed to a “difference in
the density of states in continuum in the boson and fermion operators in the soli-
ton background field.” The subsequent work [43] dealt with the renormalization
of the central charge, with the conclusion that the central charge is renormalized
in just the same way as the kink mass, so that the saturation condition is not
violated.

Then many authors repeated one-loop calculations for the kink mass and/or cen-
tral charge [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. The results reported and the
conclusion of saturation/non-saturation oscillated with time, with little sign of con-
vergence. Needless to say, all authors agreed that the logarithmically divergent term
in Z matched the renormalization ofm. However, the finite (non-logarithmic) term
varied from work to work, sometimes even in the successive works of the same
authors. Polemics continued unabated through the 1990s. For instance, Nastase
et al. [53], presenting a perfectly valid calculation of the kink mass, concluded
that the BPS saturation was violated at one loop. This assertion reversed the ear-
lier trend [42, 49, 50], according to which the kink mass and the corresponding
central charge are renormalized in a concerted way. A somewhat later publication
[54] again changed the scene, advocating BPS saturation. However, a dimension-
ally regularized kink mass determined in [54] was not consistent with that found
in [53].

The story culminated in 1998 with the discovery of a quantum anomaly in the
central charge [55]. Classically, the kink central charge Z is equal to the difference
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3.1 Domain walls 17

between the values of the superpotential W at spatial infinities,

Z = W[φ(z = ∞)] − W[φ(z = −∞)]. (3.1.4)

This is known from the pioneering paper [1]. Due to the anomaly, the central charge
gets modified in the following way

W −→ W + W ′′

4π
, (3.1.5)

where the term proportional to W ′′ is anomalous [55]. The right-hand side of
Eq. (3.1.5) must be substituted in the expression for the central charge (3.1.4)
instead of W . Inclusion of the additional anomalous term restores the equal-
ity between the kink mass and its central charge. The BPS nature is preserved,
which is correlated with the fact that the kink supermultiplet is short in the
case at hand [56]. All subsequent investigations confirmed this conclusion (see
e.g. the review paper [57] and original papers [58] by van Nieuwenhuizen and
collaborators).

Critical domain walls in N = 1 four-dimensional theories (four supercharges)
started attracting attention in the 1990s. What is the domain wall? It is a two-
dimensional object of co-dimension one. It is a field configuration interpolating
between vacuum i and vacuum f with some transition domain in the middle. Say,
to the left you have vacuum i, to the right you have vacuum f, in the middle you
have a transition domain which, for obvious reasons, is referred to as the wall
(Fig. 3.1). The most popular model of this time supporting such domain walls was
the generalized Wess–Zumino model with the Lagrangian

L =
∫
d2θ d2θ̄ K(�̄a ,�a)+

(∫
d2θ W (�)+ H.c.

)
(3.1.6)

whereK is the Kähler potential and�a stands for a set of the chiral superfields. The
number of the chiral superfields can be arbitrary, but the superpotential W must
have at least two critical points, two vacua.

(This model can be considered, upon dimensional reduction, in two dimensions
as well.) A popular choice was a trivial Kähler potential,

K =
∑
a

�̄a�a .

BPS walls in this system satisfy the first-order differential equations [59, 24, 60,
61, 62]

gāb ∂z�
b = eiη ∂āW̄ , (3.1.7)
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18 The main building blocks

where the Kähler metric is given by

gāb = ∂2K

∂�̄ā ∂�b
≡ ∂ā∂bK , (3.1.8)

and η is the phase of the (1,0) central charge Z as defined in (2.2.6). The phase
η depends on the choice of the vacua between which the given domain wall
interpolates,

Z = 2
(Wvac f − Wvac i

)
. (3.1.9)

A useful consequence of the BPS equations is that

∂zW = eiη ‖∂a W‖2, (3.1.10)

and thus the domain wall describes a straight line in the W-plane connecting
the two vacua. Needless to say, the first-order BPS equation (3.1.7) guarantees
the validity of the second-order equation of motion. The opposite is not true,
generally speaking. However, if one deals with a single chiral field �, one can
prove [63] that the BPS equation does follow from the second-order equation of
motion.

Construction and analysis of BPS saturated domain walls in four dimensions
crucially depends on the realization of the fact that the central charges relevant to
critical domain walls are not Lorentz scalars; rather they transform as (1,0) + (0,1)
under the Lorentz transformations. It was a textbook statement ascending to the pio-
neering paper [20] that N = 1 superalgebras in four dimensions leave place to no
central charges. This statement is correct only with respect to Lorentz-scalar central
charges. Townsend was the first to note [64] that “supersymmetric branes,” being
BPS saturated, require the existence of tensorial central charges antisymmetric in the
vectorial Lorentz indices. That the anticommutator {Qα ,Qβ} in four-dimensional
Wess–Zumino model contains the (1,0) central charge is obvious. This anti-
commutator vanishes, however, in super-Yang–Mills theory at the classical level
(Section 3.1.3).

3.1.2 Domain wall in the minimal Wess–Zumino model

The Wess–Zumino model describes interactions of an arbitrary number of the chi-
ral superfields. We will consider the minimal Wess–Zumino model [65] which
describes one chiral superfield,

�(xL, θ) = φ(xL)+ √
2 θαψα(xL)+ θ2F(xL), (3.1.11)

(xL)αα̇ = xαα̇ ∓ 2i θαθ̄α̇ , (3.1.12)
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3.1 Domain walls 19

with the canonic kinetic termK = �̄�. In components the Lagrangian has the form

L = (∂μφ̄)(∂μφ)+ ψαi∂αα̇ψ̄
α̇ + F̄F +

{
F W ′(φ)− 1

2
W ′′(φ)ψ2 + H.c.

}
.

(3.1.13)

From Eq. (3.1.13) it is obvious that F can be eliminated by virtue of the classical
equation of motion,

F̄ = − ∂W(φ)

∂φ
, (3.1.14)

so that the scalar potential describing self-interaction of the field φ is

V (φ, φ̄) =
∣∣∣∣∂W(φ)

∂φ

∣∣∣∣
2

. (3.1.15)

In what follows we will often denote the chiral superfield and its lowest (bosonic)
component by one and the same letter, making no distinction between capital and
small φ. Usually it is clear from the context what is meant in each particular case.

If one limits oneself to renormalizable theories, the superpotential W must be
a polynomial function of � of power not higher than three. In the model at hand,
with one chiral superfield, the generic superpotential can be always reduced to the
following “standard” form:

W(�) = m2

λ
�− λ

3
�3. (3.1.16)

The quadratic term can be always eliminated by a redefinition of the field�. More-
over, by using symmetries of the model one can always choose the phases of the
constants m and λ at will.

The superpotential (3.1.16) implies two degenerate classical vacua,

φvac = ±m
λ

. (3.1.17)

Both vacua are physically equivalent. This equivalence could be explained by the
spontaneous breaking of Z2 symmetry, � → −�, present in the action.

Field configurations interpolating between two degenerate vacua are the domain
walls. They have the following properties: (i) the corresponding solutions are static
and depend only on one spatial coordinate; (ii) they are topologically stable and
indestructible – once a wall is created it cannot disappear. Assume for definiteness
that the wall lies in the xy plane. This is the geometry we will always keep in mind.
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20 The main building blocks

Then the wall solution φw will depend only on z. Since the wall extends indefinitely
in the xy plane, its energy Ew is infinite. However, the wall tension Tw (the energy
per unit area Tw = Ew/A) is finite, in principle measurable, and has a clear-cut
physical meaning.

The wall solution of the classical equations of motion superficially looks very
similar to that of the two-dimensional kink,

φw = m

λ
tanh(|m|z). (3.1.18)

Note, however, that the parametersm and λ are not necessarily assumed to be real;
the field φ is complex in the Wess–Zumino model. A remarkable feature of this
solution is that it preserves 1/2 of supersymmetry, much in the same way as the
kink of Section 3.1.1. The difference is that 1/2 BPS in the two-dimensional model
meant one supercharge, now it means two supercharges.

The SUSY transformations generate the following transformation of the fields:

δφ = √
2εψ , δψα = √

2
[
εαF + i ∂μφ (σ

μ)αα̇ ε̄α̇

]
. (3.1.19)

The domain wall we consider is purely bosonic, ψ = 0. Moreover, the BPS
equation is

F |φ̄=φ∗
w

= −e−iη ∂zφw(z), (3.1.20)

where

η = arg
m3

λ2
, (3.1.21)

and F = −∂W̄/∂φ̄. This is a first-order differential equation. The solution quoted
above satisfies this condition. The reason for the occurrence of the phase factor
exp(−iη) on the right-hand side of Eq. (3.1.20) will become clear shortly. Note
that no analog of this phase factor exists in the two-dimensional N = 1 problem on
which we dwelled in Section 3.1.1. There was only a sign ambiguity: two possible
choices of signs corresponded to kink versus antikink.

If the BPS equation is satisfied, then the second supertransformation in
Eq. (3.1.19) reduces to

δψα ∝ εα + i eiη (σ z)αα̇ ε̄
α̇ . (3.1.22)

The right-hand side vanishes provided that

εα = −i eiη (σ z)αα̇ ε̄α̇ . (3.1.23)
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3.1 Domain walls 21

This picks up two supertransformations (out of four) which do not act on the
domain wall (alternatively people often say that they act trivially). Quod erat
demonstrandum.

Now, let us calculate the wall tension. To this end we rewrite the expression for
the energy functional as

E =
∫ +∞

−∞
dz
[
∂zφ̄ ∂zφ + F̄F

]

≡
∫ +∞

−∞
dz

{[
e−iη ∂zW + H.c.

]
+
∣∣∣ ∂zφ + eiη F

∣∣∣2} , (3.1.24)

where φ is assumed to depend only on z. In the literature this procedure is called the
Bogomol’nyi completion. The second term on the right-hand side is non-negative –
its minimal value is zero. The first term, being full derivative, depends only on the
boundary conditions on φ at z = ±∞.

Equation (3.1.24) implies that E ≥ 2 Re
(
e−iη �W). The Bogomol’nyi com-

pletion can be performed with any η. However, the strongest bound is achieved
provided e−iη �W is real. This explains the emergence of the phase factor in the
BPS equations. In the model at hand, to make e−iη �W real, we have to choose
η according to Eq. (3.1.21).

When the energy functional is written in the form (3.1.24), it is perfectly obvious
that the absolute minimum is achieved provided the BPS equation (3.1.20) is sat-
isfied. In fact, the Bogomol’nyi completion provides us with an alternative way of
derivation of the BPS equations. Then, for the minimum of the energy functional –
the wall tension Tw – we get

Tw = |Z| . (3.1.25)

Here Z is the topological charge defined as

Z = 2 {W(φ(z = ∞))− W(φ(z = −∞))} = 8m3

3 λ2
. (3.1.26)

In the problem at hand, the central extension of the superalgebra is tensorial,
with the Lorentz structure (1,0)+(0,1),{

Qα ,Qβ

} = −4αβ Z̄ ,
{
Q̄α̇ , Q̄β̇

}
= −4 ̄α̇β̇ Z . (3.1.27)

Here

αβ = −1

2

∫
dx[μdxν] (σμ)αα̇(σ̄ ν)α̇β (3.1.28)

is the wall area tensor.
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22 The main building blocks

The expressions for two supercharges Q̃α that do annihilate the wall are

Q̃α = eiη/2Qα − 2

A
e−iη/2αβ nβα̇ Q̄

α̇ , (3.1.29)

where
nαα̇ = Pαα̇

TwA
(3.1.30)

is the unit vector proportional to the wall four-momentum Pαα̇; it has only the
time component in the rest frame. The subalgebra of these “residual” (unbroken)
supercharges in the rest frame is{

Q̃α , Q̃β

}
= 8

∑
αβ

{Tw − |Z|} . (3.1.31)

The existence of the subalgebra (3.1.31) immediately proves that the wall tension
Tw is equal to the central charge Z . Indeed, Q̃|wall〉 = 0 implies that Tw −|Z| = 0.
This equality is valid both to any order in perturbation theory and nonperturbatively.

From the non-renormalization theorem for the superpotential [65, 66] we
additionally infer that the central charge Z is not renormalized. This is in con-
tradistinction with the situation in the two-dimensional model of Section 3.1.1. The
fact that in four dimensions there are more conserved supercharges than in two
turns out crucial. As a consequence, the result

Tw = 8

3

∣∣∣∣m3

λ2

∣∣∣∣ (3.1.32)

for the wall tension is exact [62].
The wall tension Tw is a physical parameter and, as such, should be expressible in

terms of the physical (renormalized) parametersmren andλren. One can easily verify
that this is compatible with the statement of non-renormalization of Tw. Indeed,

m = Zmren, λ = Z3/2λren,

where Z is the Z factor coming from the kinetic term. Consequently,

m3

λ2
= m3

ren

λ2
ren

.

Thus, the absence of the quantum corrections to Eq. (3.1.32), the renormalizability
of the theory, and the non-renormalization theorem for superpotentials – all these
three elements are intertwined with each other. In fact, every two elements taken
separately imply the third one.
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3.1 Domain walls 23

What lessons have we drawn from the example of the domain walls? In the
centrally extended SUSY algebras the exact relation Evac = 0 is replaced by
the exact relation Tw − |Z| = 0. Although this statement is valid both pertur-
batively and nonperturbatively, it is very instructive to visualize it as an explicit
cancellation between bosonic and fermionic modes in perturbation theory. The
non-renormalization of Z is a specific feature of four dimensions. We have seen
previously that it does not take place in minimally supersymmetric models in two
dimensions.

Finding the solution to the BPS equation

In two-dimensional theory integration of the first-order BPS equation (3.1.3) was
trivial. Now the BPS equation (3.1.20) presents in fact two equations – one for the
real part and one for the imaginary. Nevertheless finding the solution is still trivial.
This is due to the existence of an “integral of motion,”

∂

∂z

(
Im e−iηW

)
= 0. (3.1.33)

The proof is straightforward and is valid in the generic Wess–Zumino model with
arbitrary number of fields. Indeed, differentiating W and using the BPS equations
we get

∂

∂z

(
e−iηW

)
=
∣∣∣∣∂W∂φ

∣∣∣∣
2

, (3.1.34)

which immediately entails Eq. (3.1.33). The constraint

Im e−iηW = const (3.1.35)

can be interpreted as follows: in the complex W plane the domain wall trajectory
is a straight line (see Section 3.1.1).

Living on a wall

What is the fate of two broken supercharges? As we already know, two out of
four supercharges annihilate the wall – these supersymmetries are preserved in
the given wall background. Two other supercharges are broken: being applied to
the wall solution they create two fermion zero modes. These zero modes corre-
spond to (2+1)-dimensional Majorana (massless) spinor field ψ(t , x, y) localized
on the wall.

To elucidate the above assertion it is convenient to turn first to the fate of another
symmetry of the original theory which is spontaneously broken for each given wall,
namely, translational invariance in the z direction.
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24 The main building blocks

Indeed, each wall solution, e.g. Eq. (3.1.18), breaks this invariance. This means
that in fact we must deal with a family of solutions: if φ(z) is a solution, so is
φ(z − z0). The parameter z0 is a collective coordinate – the wall center. People
also refer to it as a modulus (in plural, moduli). For the static wall z0 is a fixed
constant.

Assume, however, that the wall is slightly bent. The bending should be negligible
compared to the wall thickness (which is of the order ofm−1). The bending can be
described as an adiabatically slow dependence of the wall center z0 on t , x, and y.
We will write this slightly bent wall field configuration as

φ(t , x, y, z) = φw(z− ζ(t , x, y)). (3.1.36)

Substituting this field in the original action we arrive at the following effective
(2+1)-dimensional action for the field ζ(t , x, y):

S
ζ
2+1 = Tw

2

∫
d3x

(
∂mζ

)
(∂mζ ) , m = 0, 1, 2. (3.1.37)

It is clear that ζ(t , x, y) can be viewed as a massless scalar field (called the trans-
lational modulus) which lives on the wall. It is nothing but a Goldstone field
corresponding to the spontaneous breaking of the translational invariance.

Returning to two broken supercharges, they generate a Majorana (2+1)-
dimensional Goldstino field ψα(t , x, y), (α = 1, 2) localized on the wall. The total
(2+1)-dimensional effective action on the wall world volume takes the form

S2+1 = Tw

2

∫
d3x

{(
∂mζ

)
(∂mζ )+ ψ̄∂mγ

mψ
}

(3.1.38)

where γm are three-dimensional gamma matrices (in the Majorana representation,
see Appendix A, Section A.1).

The effective theory of the moduli fields on the wall worldvolume is supersym-
metric, with two conserved supercharges. This is the minimal supersymmetry in
2+1 dimensions. It corresponds to the fact that two out of four supercharges are
conserved.

3.1.3 D-branes in gauge field theory

In 1996 Dvali and Shifman found in supersymmetric gluodynamics [11] an anoma-
lous (1, 0) central charge in superalgebra, not seen at the classical level. They argued
that this central charge is saturated by domain walls interpolating between vacua
with distinct values of the order parameter, the gluino condensate 〈λλ〉, labeling
N distinct vacua of super-Yang–Mills theory with the gauge group SU(N ).
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|vaci >

|vacf >

Transition domain

Figure 3.1. A field configuration interpolating between two distinct degenerate
vacua.

x

x

x

x

x

x

k−wall

x

x

Im <λλ>

Re <λλ>

elementary wall

Figure 3.2. N vacua for SU(N ). The vacua are labeled by the vacuum expectation
value 〈λλ〉 = −6N �3 exp(2π i k/N) where k = 0, 1, . . . ,N − 1. Elementary
walls interpolate between two neighboring vacua.

Supersymmetric gluodynamics (it is often referred to as pure super-Yang–Mills
theory) is defined by the Lagrangian

L = 1

g2

∫
d2θ TrW 2 + H.c. = 1

g2

{
−1

4
Faμν F

aμν + iλaαDαβ̇ λ̄
aβ̇

}
, (3.1.39)

where λaα is the Weyl spinor in the adjoint representation of SU(N ).
The domain wall is a field configuration interpolating between two distinct degen-

erate vacua (see Fig. 3.1). There is a large variety of walls in supersymmetric
gluodynamics. Minimal, or elementary, walls interpolate between vacuan andn+1,
while k-walls interpolate between n and n + k, see Fig. 3.2. In [11] a mechanism
was suggested for localizing gauge fields on the wall through bulk confinement.
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26 The main building blocks

Later this mechanism was implemented in models at weak coupling, as we will
see below.

Shortly afterwards, Witten interpreted the BPS walls in supersymmetric gluody-
namics as analogs ofD-branes [12]. This is because their tension scales asN ∼ 1/gs
rather than 1/g2

s typical of solitonic objects (here gs is the string constant). Many
promising consequences ensued. One of them was the Acharya–Vafa derivation of
the wall worldvolume theory [67]. Using a wrapped D-brane picture and certain
dualities they identified the k-wall worldvolume theory as 1+2 dimensional U(k)
gauge theory with the field content of N = 2 and the Chern–Simons term at level
N breaking N = 2 down to N = 1.

In N = 1 gauge theories with arbitrary matter content and superpotential the
general relation (2.2.5) takes the form{

Qα ,Qβ

} = −4αβ Z̄, (3.1.40)

where

αβ = −1

2

∫
dx[μdxν] (σμ)αα̇(σ̄ ν)α̇β (3.1.41)

is the wall area tensor, and [62, 68]

Z = 2

3
�

⎧⎨
⎩
⎡
⎣3W −

∑
f

Qf

∂W
∂Qf

⎤
⎦

−
⎡
⎣3N −∑f T (Rf )

16π2
TrW 2 + 1

8

∑
f

γf D̄
2(Q̄f e

VQf )

⎤
⎦
⎫⎬
⎭
θ=0

(3.1.42)

In this expression � implies taking the difference at two spatial infinities in the
direction perpendicular to the surface of the wall. The first term in the second
line presents the gauge anomaly in the central charge. The second term in the
second line is a total superderivative. Therefore, it vanishes after averaging over
any supersymmetric vacuum state. Hence, it can be safely omitted. The first line
presents the classical result, cf. Eq. (3.1.9). At the classical levelQf (∂W/∂Qf ) is
a total superderivative too which can be seen from the Konishi anomaly [69],

D̄2 (Q̄f e
VQf ) = 4Qf

∂W
∂Qf

+ T (Rf )

2π2
TrW 2. (3.1.43)

If we discard this total superderivative for a short while (forgetting about quantum
effects), we return to Z = 2�(W), the formula obtained in the Wess–Zumino
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3.1 Domain walls 27

model. At the quantum level Qf (∂W/∂Qf ) ceases to be a total superderivative
because of the Konishi anomaly. It is still convenient to eliminate Qf (∂W/∂Qf )

in favor of TrW 2 by virtue of the Konishi relation (3.1.43). In this way one arrives at

Z = 2�

{
W − N −∑f T (Rf )

16π2
TrW 2

}
θ=0

. (3.1.44)

We see that the superpotential W is amended by the anomaly; in the operator form

W −→ W − N −∑f T (Rf )

16π2
TrW 2. (3.1.45)

Of course, in pure Yang–Mills theory only the anomaly term survives.
Beginning from 2002 we developed a benchmark N = 2 model, weakly coupled

in the bulk (and, thus, fully controllable), which supports both BPS walls and BPS
flux tubes. We demonstrated that a gauge field is indeed localized on the wall; for
the minimal wall this is a U(1) field while for non-minimal walls the localized
gauge field is non-Abelian. We also found a BPS wall-string junction related to the
gauge field localization, see Chapter 8. The field-theory string does end on the BPS
wall, after all! The end-point of the string on the wall, after Polyakov’s dualization,
becomes a source of the electric field localized on the wall. In 2005 Norisuke Sakai
and David Tong analyzed generic wall-string configurations. Following condensed
matter physicists they called them boojums.1

Equation (3.1.42) implies that in pure gluodynamics (super-Yang–Mills theory
without matter) the domain wall tension is

T = N

8π2

∣∣∣〈Trλ2〉vac f − 〈Trλ2〉vac i

∣∣∣ (3.1.46)

where vaci,f stands for the initial (final) vacuum between which the given wall inter-
polates. Furthermore, the gluino condensate 〈Trλ2〉vac was calculated – exactly –
long ago [70], using the very same methods which were later advanced and per-
fected by Seiberg and Seiberg and Witten in their quest for dualities in N = 1
super-Yang–Mills theories [71] and the dual Meissner effect in N = 2 (see [2, 3]).
Namely,

2 〈Trλ2〉 = 〈λaαλa,α〉 = −6N�3 exp

(
2πik

N

)
, k = 0, 1, . . . ,N − 1. (3.1.47)

1 “Boojum” comes from L. Carroll’s children’s book The Hunting of the Snark. Apparently, it is fun to hunt a
snark, but if the snark turns out to be a boojum, you are in trouble! Condensed matter physicists adopted the name
to describe solitonic objects of the wall-string junction type in helium-3. Also: The boojum tree (Mexico) is the
strangest plant imaginable. For most of the year it is leafless and looks like a giant upturned turnip. G. Sykes,
found it in 1922 and said, referring to Carroll, “It must be a boojum!” The common Spanish name for this tree
is Cirio, referring to its candle-like appearance.
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Here k labels the N distinct vacua of the theory, see Fig. 3.2, and� is a dynamical
scale, defined in the standard manner (i.e. in accordance with Ref. [72]) in terms
of the ultraviolet parameters,Muv (the ultraviolet regulator mass), and g2

0 (the bare
coupling constant),

�3 = 2

3
M3

uv

(
8π2

Ng2
0

)
exp

(
− 8π2

Ng2
0

)
. (3.1.48)

In each given vacuum the gluino condensate scales with the number of colors
asN . However, the difference of the values of the gluino condensates in two vacua
which lie not too far away from each other scales as N0. Taking into account
Eq. (3.1.46) we conclude that the wall tension in supersymmetric gluodynamics

T ∼ N .

(This statement just rephrases Witten’s argument why the above walls should be
considered as analogs of D-branes.)

The volume energy density in both vacua, to the left and to the right of the
wall, vanish due to supersymmetry. Inside the transition domain, where the order
parameter changes its value gradually, the volume energy density is expected to be
proportional toN2, just because there areN2 excited degrees of freedom. Therefore,
T ∼ N implies that the wall thickness in supersymmetric gluodynamics must scale
as N−1. This is very unusual, because normally we would say: the glueball mass
is O(N0), hence, everything built of regular glueballs should have thickness of
order O(N0).

If the wall thickness is indeedO(N−1) the question “what consequences ensue?”
immediately comes to one’s mind. This issue is far from complete understanding,
for relevant discussions see [73, 74, 75].

As was mentioned, there is a large variety of walls in supersymmetric
gluodynamics as they can interpolate between vacua with arbitrary values of k.
Even if kf = ki + 1, i.e. the wall is elementary, in fact we deal with several walls,
all having one and the same tension – let us call them degenerate walls. The first
indication on the wall degeneracy was obtained in Ref. [76], where two degenerate
walls were observed in SU(2) theory. Later, Acharya and Vafa calculated the k-wall
multiplicity [67] within the framework of D-brane/string formalism,

νk = CkN = N !
k!(N − k)! . (3.1.49)

For N = 2 only elementary walls exist, and ν = 2. In the field-theoretic setting
Eq. (3.1.49) was derived in [77]. The derivation is based on the fact that the index
ν is topologically stable – continuous deformations of the theory do not change ν.
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Thus, one can add an appropriate set of matter fields sufficient for complete Higgsing
of supersymmetric gluodynamics.The domain wall multiplicity in the effective low-
energy theory obtained in this way is the same as in supersymmetric gluodynamics
albeit the effective low-energy theory, a Wess–Zumino type model, is much simpler.

3.1.4 Domain wall junctions

Two degenerate domain walls can coexist in one plane – a new phenomenon
which, to the best of our knowledge, was first discussed in [78]. It is illustrated
in Fig. 3.3. Two distinct degenerate domain walls lie on the plane; the transition
domain between wall 1 and wall 2 is the domain wall junction (domain line).

Each individual domain wall is 1/2 BPS-saturated. The wall configuration with
the junction line (Fig. 3.3) is 1/4 BPS-saturated. We start from N = 1 four-
dimensional bulk theory (four supercharges). Naively, the effective theory on the
plane must preserve two supercharges, while the domain line must preserve one
supercharge. In fact, they have four and two conserved supercharges, respectively.
This is another new phenomenon – supersymmetry enhancement – discovered in
[78]. One can excite the junction line endowing it with momentum in the direc-
tion of the line, without altering its BPS status. A domain line with a plane wave
propagating on it (Fig. 3.3) preserves the property of the BPS saturation, see [78].

Let us pass now to more conventional wall junctions. Assume that the theory
under consideration has a spontaneously broken ZN symmetry, with N ≥ 3, and,
correspondingly, N vacua. Then one can have N distinct walls connected in the
asterisk-like pattern, see Fig. 3.4. This field configuration possesses an obvious
axial symmetry: the vacua are located cyclically.

P3
wall 1

wall 2

junction (P3 ¹ 0)

Figure 3.3. Two distinct degenerate domain walls separated by the wall junction.
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wall junction

vac 1

vac N

vac 2

....

vac 4

vac 5

vac N−1

vac 3

Figure 3.4. The cross section of the wall junction.

This configuration is absolutely topologically stable, as stable as the wall itself.
Moreover, it can be 1/4 BPS-saturated for any value of N . It was noted [24] that
theories with either U(1) or ZN global symmetries may contain 1/4-BPS objects
with axial geometry. They saturate two central charges simultaneously, (1,0) +
(0,1) (the walls) and (1/2, 1/2) (the junction line).

The corresponding Bogomol’nyi equations were derived in [62] and shortly after
rediscovered in [79]. Further advances in the issue of the domain wall junctions of
the hub-and-spokes type were presented in [80, 81, 82, 83], see also later works
[84, 85, 86, 87, 88]. We would like to single out Ref. [81] where the first analytic
solution for a BPS wall junction was found in a specific generalized Wess–Zumino
model. Among stimulating findings in this work is the fact that the junction ten-
sion turned out to be negative in this model. The model has Z3 symmetry. It is
derived from a SU(2) Yang–Mills theory with extended supersymmetry (N = 2)
and one matter flavor perturbed by an adjoint scalar mass. The original model
contains three pairs of chiral superfields and, in addition, one extra chiral super-
field. In fact, the model of [81] can be simplified and adjusted to cover the case
of arbitrary N , which was done in [83]. The latter work demonstrates that the
tension of the wall junctions is generically negative although exceptional mod-
els with the positive tension are possible too. Note that the negative sign of the
wall junction tension does not lead to instability since the wall junctions do not
exist in isolation. They are always attached to walls which stabilize this field
configuration.

Returning to SU(N ) supersymmetric gluodynamics (N ≥ 3) one expects to get
in this theory the 1/4 BPS junctions of the type depicted in Fig. 3.4. Of course,
this theory is strongly coupled; therefore, the classical Bogomol’nyi equations are
irrelevant. However, assuming that such wall junctions do exist, one can find their
tension at largeN even without solving the theory. To this end one uses [74, 83] the
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expression for the (1/2,1/2) central charge2 in terms of the contour integral over the
axial current [27]. At large N the latter integral is determined by two things: the
absolute value of the gluino condensate and the overall change of the phase of
the condensate when one makes the 2π rotation around the hub. In this way one
arrives at the prediction

Twall junction ∼ N2. (3.1.50)

The coefficient in front of the N2 factor is model dependent.
Can one interpret this N2 dependence of the hub of the junction? Assume that

each wall has thickness 1/N and there are N of them. Then it is natural to expect
the radius of the intermediate domain where all walls join together to be of the
order (1/N) × N ∼ N0. This implies, in turn, that the area of the hub is O(N0).
If the volume energy density inside the junction is N2 (i.e. the same as inside the
walls), one immediately gets Eq. (3.1.50).

3.1.5 Webs of walls

Domain walls can form a network when many junctions are connected together –
webs or honeycombs, see Fig. 3.5 borrowed from Ref. [86]. 1/4 BPS solutions
of such type were found (in the strong gauge coupling limit) in [86, 87] in
four-dimensional N = 2 supersymmetric Yang–Mills theory with the gauge

Figure 3.5. Honeycomb web of domain walls. This web in this figure divides 37
vacua and has 18 external legs and 19 internal faces. The moduli space corresponds
to CP(36) whose dimension is 72.

2 There is a subtle point here which must be noted. For the wall type of the hub-and-spokes type the overall
tension is the sum of two tensions: the tension of the walls and the tension of the hub. The first is determined by
the (1,0) central charge, the second by (1/2,1/2). Each separately is somewhat ambiguous in the case at hand.
The ambiguity cancels in the sum [27].
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group U(Nc) and Nf flavor hypermultiplets in the fundamental representation
(Nf > Nc). This model is described in detail in Sections 4.1 and 4.7. The
solution saturates two central charges, (1,0) + (0,1) and ( 1/2,1/2 ). The mod-
uli space of this particular web of walls is the complex Grassmann manifold
GNf ,Nc = SU(Nf )/[SU(Nf −Nc)× SU(Nc)× U(1)].

The web of walls can contain several external legs and loops whose maximal
numbers are determined by Nf and Nc. If the gauge group is U(1) rather than
U(Nc) (with Nc ≥ 2) the moduli space of the web of walls simplifies and becomes
CP(Nf − 1).

Further studies of dynamics of the domain wall loops, as in Fig. 3.5, were carried
out in [89]. The authors used the moduli approximation and found that a phase
rotation induces a repulsive force which can be interpreted as a Noether charge of
Q solitons.

3.2 Vortices in D = 3 and flux tubes in D = 4

Vortices were among the first examples of topological defects treated in the
Bogomol’nyi limit [5, 4, 1] (see also [90]). Explicit embedding of the bosonic
sector in supersymmetric models dates back to the 1980s. In [91] a three-
dimensional Abelian Higgs model was considered. That model had N = 1 super-
symmetry (two supercharges) and thus, according to Section 2.2.2, contained
no central charge that could be saturated by vortices. Hence, the vortices dis-
cussed in [91] were noncritical. BPS saturated vortices can and do occur in
N = 2 three-dimensional models (four supercharges) with a non-vanishing Fayet–
Iliopoulos term [92, 93]. Such models can be obtained by dimensional reduction
from four-dimensional N = 1 models. We will start from a brief excursion
in SQED.
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3.2.1 SQED in 3D

The starting point is SQED with the Fayet–Iliopoulos term ξ in four dimensions.
The SQED Lagrangian is

L =
{

1

4 e2

∫
d2θ W 2 + H.c.

}
+
∫

d4θ Q̄ ene V Q

+
∫

d4θ
¯̃
Qe−ne V Q̃− ne ξ

∫
d2θd2θ̄ V (x, θ , θ̄ ), (3.2.1)

where e is the electric coupling constant, Q and Q̃ are chiral matter superfields
(with charges ne and −ne, respectively), and Wα is the supergeneralization of the
photon field strength tensor,

Wα = 1

8
D̄2DαV = i

(
λα + iθαD − θβ Fαβ − iθ2∂αα̇λ̄

α̇
)

. (3.2.2)

In four dimensions the absence of the chiral anomaly in SQED requires the matter
superfields enter in pairs of the opposite charges, e.g.

iDμψ = (i∂μ + neAμ
)
ψ , iDμψ̃ = (i∂μ − neAμ

)
ψ̃ . (3.2.3)

Otherwise the theory is anomalous, the chiral anomaly renders it non-invariant
under gauge transformations. Thus, the minimal matter sector includes two chiral
superfields Q and Q̃, with charges ne and −ne, respectively. (In the literature
a popular choice isne = 1. In Part II we will use a different normalization,ne = 1/2,
which is more convenient in some problems that we address in Part II.)

In three dimensions there is no chirality. Therefore, one can consider 3D SQED
with a single matter superfieldQ, with charge ne. Classically it is perfectly fine just
to discard the superfield Q̃ from the Lagrangian (3.2.1). However, such “crudely
truncated” theory may be inconsistent at the quantum level [94, 95, 96]. Gauge
invariance in loops requires, as we will see shortly, simultaneous introduction of a
Chern–Simons term in the one matter superfield model [94, 95, 96]. The Chern–
Simons term breaks parity. That’s the reason why this phenomenon is sometimes
referred to as parity anomaly.

A perfectly safe way to get rid of Q̃ is as follows. Let us start from the two-
superfield model (3.2.1), which is certainly self-consistent both at the classical
and quantum levels. The one-superfield model can be obtained from that with two
superfields by making Q̃ heavy and integrating it out. If one manages to introduce
a mass m̃ for Q̃ without breaking N = 2 supersymmetry, the large m̃ limit can be
viewed as an excellent regularization procedure.

Such mass terms are well known, for a review see [97, 98, 96]. They go under the
name of “real masses,” are specific to theories with U(1) symmetries dimensionally
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reduced from D = 4 to D = 3, and present a direct generalization of twisted
masses in two dimensions [32]. To introduce a “real mass” one couples matter fields
to a background vector field with a non-vanishing component along the reduced
direction. For instance, in the case at hand we introduce a background field Vb as

�Lm =
∫
d4θ

¯̃
QeVb Q̃ , Vb = m̃ (2 i)

(
θ1 θ̄ 2̇ − θ2 θ̄ 1̇

)
. (3.2.4)

The reduced spatial direction is that along the y axis. We couple Vb to the U(1)
current of Q̃ ascribing to Q̃ charge one with respect to the background field. At the
same time Q is assumed to have Vb charge zero and, thus, has no coupling to Vb.
Then, the background field generates a mass term only for Q̃, without breaking
N = 2. Needless to say, there is no kinetic term for Vb. Equation (3.2.4) implies
that m̃ = (Ab)2.

After reduction to three dimensions and passing to components (in the Wess–
Zumino gauge) we arrive at the action in the following form (in the three-
dimensional notation):

S =
∫
d3x

{
− 1

4e2
Fμν F

μν + 1

2e2

(
∂μ a

)2 + 1

e2
λ̄ i � ∂ λ

+ 1

2e2
D2 − ne ξ D + ne D

(
q̄ q − ¯̃q q̃

)
+ [Dμq̄ Dμq + ψ̄ i �Dψ]+

[
Dμ ¯̃q Dμq̃ + ¯̃

ψ i �D ψ̃
]

− a2q̄ q − (m̃+ a)2 ¯̃q q̃ + a ψ̄ ψ− (m̃+ a)
¯̃
ψ ψ̃

+ ne
[√

2
(
λ̄ ψ
)
q̄ + H.c.

]
− ne

[√
2
(
λ̄ ψ̃
) ¯̃q + H.c.

] }
. (3.2.5)

Here a is a real scalar field,
a = −ne A2,

λ is the photino field, and q, q̃ and ψ , ψ̃ are matter fields belonging to Q and
Q̃, respectively. The covariant derivatives are defined in Eq. (3.2.3). Finally, D is
an auxiliary field, the last component of the superfield V . Eliminating D via the
equation of motion we get the scalar potential

V = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2 + a2q̄ q + (m̃+ a)2 ¯̃q q̃, (3.2.6)

which implies a potentially rather rich vacuum structure. For our purposes – the
BPS-saturated vortices – only the Higgs phase is of importance. We will assume
that

ξ > 0, m̃ ≥ 0. (3.2.7)
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If ψ̃ and q̃ are viewed as regulators (i.e. m̃ → ∞), they can be integrated out
leaving us with the one matter superfield model. It is obvious that integrating them
out we get a Chern–Simons term at one loop,3 with a well-defined coefficient that
does not vanish in the limit m̃ = ∞. We prefer to keep m̃ as a free parameter,
assuming that m̃ �= 0.

From the standpoint of vortex studies, the model (3.2.1) per se is not quite
satisfactory due to the existence of the flat direction (correspondingly, there is a
gapless mode which renders the theory ill-defined in the infrared, see Section 5.1).
The flat direction is eliminated at m̃ �= 0. Thus, there are three relevant parameters
of dimension of mass,

e2, ξ , and m̃.

The weak coupling regime implies that e2/ξ � 1.
If m̃ �= 0 the vacuum field configuration is as follows:

q̃ = 0, a = 0, q̄q = ξ . (3.2.8)

The vanishing of the D term in the vacuum requires q̄ qvac = ξ . Then the term
a2q̄q in (3.2.6) implies that a = 0 in the vacuum. Up to gauge transformations the
vacuum is unique. The Higgs phase is enforced by our choice m̃ �= 0 and ξ �= 0.
The fields q̃ , ψ̃ play a role only at the level of quantum corrections, providing
a well-defined regularization in loops.

Central charge

The general form of the centrally extended N = 2 superalgebra in D = 3 was
discussed in Section 2.3.2. The central charge relevant in the problem at hand –
vortices – is presented by the last term in Eq. (2.3.6). It can be conveniently derived
using the complex representation for supercharges and reducing from D = 4 to
D = 3. In four dimensions [27]

{Qα , Q̄α̇} = 2Pαα̇ + 2Zαα̇ ≡ 2
(
Pμ + Zμ

) (
σμ
)
αα̇

, (3.2.9)

where Pμ is the momentum operator, and

Zμ = ne ξ

∫
d3x ε0μνρ

(
∂νAρ

)+ · · · (3.2.10)

Here ellipses denote full spatial derivatives of currents 4 that fall off exponentially
fast at infinity. Such terms are clearly inessential.

3 In passing from two matter superfields to one, in order to justify integrating out Q̃, one must consider m̃ � e
√
ξ .

Given that e2/ξ � 1, the condition m̃ � e
√
ξ does not necessarily imply that m̃ � ξ .

4 Moreover, these currents are not unambiguously defined, see [27].
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In three dimensions the central charge of interest reduces to P2 + Z2. Thus, in
terms of complex supercharges the appropriate centrally extended algebra takes
the form5{
Q,
(
Q†
)
γ 0
}

= 2
(
P0 γ

0 + P1 γ
x + P3 γ

z
)

+ 2

{
1

e2

∫
d2x �∇

( �E a
)

+ m̃ q − ne ξ

∫
d2xB

}
, (3.2.11)

where �E is the electric field, B is the magnetic field,

B = ∂Az

∂x
− ∂Ax

∂z
, (3.2.12)

and q is a conserved Noether charge,

q =
∫
d2x j0, jμ ≡ ¯̃

ψ γμ ψ̃ + ¯̃q i ↔
Dμ q̃ . (3.2.13)

The second line in Eq. (3.2.11) presents the vortex-related central charge.6 The
term proportional to a gives a vanishing contribution to the central charge. How-
ever, the q term (sometimes omitted in the literature) plays an important role. It
combines with the ξ term in the expression for the vortex mass converting the bare
value of ξ into the renormalized one. In the problem at hand, the vortex mass gets
renormalized at one loop, and so does the Fayet–Iliopoulos parameter.

BPS equation for the vortex

At the classical level the fields a and q̃ play no role. They will be set

q̃ = 0, a = 0 . (3.2.14)

The first-order equations describing the ANO vortex in the Bogomol’nyi limit
[5, 4, 1] take the form

B − ne e
2(|q|2 − ξ) = 0,

(Dx + iDz) q = 0, (3.2.15)

with the boundary conditions

q → √
ξ eikα at r → ∞ ,

q → 0 at r → 0 , (3.2.16)

5 In the following expression terms containing equations of motion of the type a( �∇ �E − J0) are omitted.
6 The emergence of the U(1) Noether charge m̃q in the central charge is in one-to-one correspondence with

a similar phenomenon taking place in the two-dimensional CP(N − 1) models with the twisted mass [34].
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r

a

x

z

Figure 3.6. Polar coordinates on the x, z plane.

where α is the polar angle on the x, z plane, while r is the distance from the origin
in the same plane (Fig. 3.6). Moreover k is an integer, counting the number of
windings.

If Eqs. (3.2.15) are satisfied, the flux of the magnetic field is 2πk (the winding
number k determines the quantized magnetic flux), and the vortex mass (string
tension) is

M = 2πξ k, (3.2.17)

The linear dependence of the k-vortex mass on k implies the absence of their
potential interaction.

For the elementary k = 1 vortex it is convenient to introduce two profile functions
φ(r) and f (r) as follows:

q(x) = φ(r) ei α , An(x) = − 1

ne
εnm

xm

r2
[1 − f (r)] . (3.2.18)

The ansatz (3.2.18) goes through the set of equations (3.2.15), and we get the
following two equations on the profile functions:

−1

r

df

dr
+ n2

ee
2
(
φ2 − ξ

)
= 0, r

dφ

dr
− f φ = 0. (3.2.19)

The boundary conditions for the profile functions are rather obvious from the
form of the ansatz (3.2.18) and from our previous discussion. At large distances

φ(∞) = √ξ , f (∞) = 0 . (3.2.20)
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Figure 3.7. Profile functions of the string as functions of the dimensionless variable
mγ r . The gauge and scalar profile functions are given by f and s ≡ φ/

√
ξ ,

respectively.

At the same time, at the origin the smoothness of the field configuration at hand
(the absence of singularities) requires

φ(0) = 0, f (0) = 1 . (3.2.21)

These boundary conditions are such that the scalar field reaches its vacuum value
at infinity. Equations (3.2.19) with the above boundary conditions lead to a unique
solution for the profile functions, although its analytic form is not known. The
vortex size is ∼ e−1 ξ−1/2. The solution can be readily obtained numerically. The
profile functions φ and f which determine the Higgs field and the gauge potential,
respectively, are shown in Fig. 3.7.

The fermion zero modes

Quantization of vortices requires the knowledge of the fermion zero modes for
the given classical solution. More precisely, since the solution under consideration
is static, we are interested in the zero-eigenvalue solutions of the static fermion
equations which, thus, effectively become two- rather than three-dimensional,

i
(
γ x Dx + γ z Dz

)
ψ + ne

√
2 λ q = 0, (3.2.22)

i
(
γ x ∂x + γ z ∂z

)
λ+ e2ne

√
2ψ q̄ = 0.

These equations are obtained from (3.2.5) where we dropped the tilded terms (since
q̃ = 0). The fermion operator is Hermitean implying that every solution for {ψ , λ}
is accompanied by that for {ψ̄ , λ̄}.

Since the solution to equations (3.2.15) discussed above is 1/2 BPS, two of
the four supercharges annihilate it while the other two generate the fermion zero
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modes – superpartners of translational modes. One can show [99] that these are the
only normalizable fermion zero modes in the problem at hand.

Short versus long representations

The (1+2)-dimensional model under consideration has four supercharges. The
corresponding regular super-representation is four-dimensional (i.e. contains two
bosonic and two fermionic states).

The vortex we discuss has two fermion zero modes. Hence, viewed as a particle
in 1+2 dimensions it forms a super-doublet (one bosonic state plus one fermionic).
Hence, this is a short multiplet. This implies, of course, that the BPS bound must
remain saturated when quantum corrections are switched on. Both the central charge
and the vortex mass get corrections [100, 99], but they remain equal to each other.

Vortex mass and central charge renormalizations

Assuming that ne = 1 and saturating the central charge in Eq. (3.2.11) by the
vortex soliton we get

Zvortex = −ξ
∫
d2xB + m̃q = −2π ξ + m̃

2
. (3.2.23)

Here we use the fact that the induced q charge of the vortex is 1/2. This is not
difficult to see for any value of m̃ [101]. Proving this assertion becomes especially
simple at large m̃when one can just integrate the tilded fields out in the given vortex
field. One then arrives at

q =
∫
d2x

1

4π
B = 1

2
. (3.2.24)

Since the renormalized value of the FI parameter ξ is

ξR = ξ + mq − m̃

4π
(3.2.25)

wheremq = √
2ξ e is the mass of the untilded particles, we can rewrite Eq. (3.2.23)

in the form
Zvortex = −2π

(
ξR − mq

4π

)
. (3.2.26)

In the very same “physical” regularization scheme outlined above the vortex mass
shifts by the same amount [100, 101], and

Mvortex = 2π
(
ξR − mq

4π

)
= |Zvortex| . (3.2.27)
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3.2.2 Four-dimensional SQED and the ANO string

In this section we will discuss N = 1 SQED. SQED with extended supersymmetry
(i.e. N = 2) is also very interesting. This latter model is presented in
Appendix C.

The Lagrangian is the same as in Eq. (3.2.1). We will consider the simplest case:
one chiral superfield Q with charge ne = 1/2, and one chiral superfield Q̃ with
charge ne = −1/2. The electric charge of matter is chosen to be half-integer to
make contact with what follows. This normalization is convenient in the case of
non-Abelian models, see Part II. The Lagrangian in components can be obtained
from Eq. (3.2.5) by setting a = m̃ = 0. The scalar potential obviously takes the form

V = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2
. (3.2.28)

The vacuum manifold is a “hyperboloid”

q̄ q − ¯̃q q̃ = ξ . (3.2.29)

Thus, we deal with the Higgs branch of real dimension two. In fact, the vacuum
manifold can be parametrized by a complex modulus q̃q. On this Higgs branch
the photon field and superpartners form a massive supermultiplet, while q̃q and
superpartners form a massless one.

As was shown in [102], no finite-thickness vortices exist at a generic point on
the vacuum manifold, due to the absence of the mass gap (presence of the massless
Higgs excitations). The moduli fields get involved in the solution at the classical
level generating a logarithmically divergent tail. An infrared regularization can
remove this logarithmic divergence, and vortices become well-defined, see [103]
and Chapter 7. One of the possible infrared regularizations is considering a finite-
length string instead of an infinite string. Then all infrared divergences are cut off
at distances of the order of the string length. The thickness of the string is of the
order of logarithm of this length. This is discussed in detail in Chapter 7. Needless
to say, such string is not BPS-saturated.

At the base of the Higgs branch, at q̃ = 0, the classical solutions of the BPS
equations for q and Aμ are well-defined. The form of the solution coincides with
that given in Section 3.2.1.

The fact that there is a flat direction and, hence, massless particles in the bulk
theory does not disappear, of course. Even though at q̃ = 0 the classical string
solution is well-defined, infrared problems arise at the loop level. One can avoid
massless particles in the spectrum if one embeds the theory (3.2.5) in SQED with
eight supercharges, see Section 5.1 and Appendix C. Then the Higgs branch is
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eliminated, and one is left with isolated vacua. After the embedding is done, one
can break N = 2 down to N = 1, if one so desires.

A simpler framework is provided by the so-called M model. Its non-Abelian
version is considered in Section 5.2. Here we will outline the construction of this
model in the context of N = 1 SQED.

We introduce an extra neutral chiral superfield M , which interacts with Q and
Q̃ through the super-Yukawa coupling,

LM =
∫
d2θ d2θ̄

1

h
M̄ M +

{∫
d2θ QMQ̃+ (H.c)

}
. (3.2.30)

Here h is a coupling constant. As we will see momentarily the Higgs branch is
lifted. An obvious advantage of this model is that it makes no reference to N = 2.
This is probably the simplest N = 1 model which supports BPS-saturated ANO
strings without infrared problems.

The scalar potential (3.2.28) is now replaced by

VM = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2 + h |q q̃|2 + |q M|2 + |M q̃|2 . (3.2.31)

The vacuum is unique modulo gauge transformations,

q = q̄ = √ξ , q̃ = 0 , M = 0. (3.2.32)

The classical ANO flux tube solution considered above remains valid as long as
we set, additionally, q̃ = M = 0. The string tension is the same, Tstring = 2πξ .
(Note that in Eq. (3.2.31) the parameter ξ is defined with n2

e factored out. See
also Eq. (C.11) and its derivation.) The quantization procedure is straightfor-
ward, since one encounters no infrared problems whatsoever – all particles in the
bulk are massive. In particular, there are four normalizable fermion zero modes
(cf. Ref. [35]).

For further thorough discussions we refer the reader to Section 7.2.

3.2.3 Flux tube junctions

In theories with ZN symmetry the ANO flux tubes can form junctions of the type
depicted in Fig. 3.8. As an example, let us consider a U(1) × U(1) × U(1) gauge
theory with three “photons” and three (scalar) matter fields, φ, χ , and η,

L = − 1

4e2

3∑
i=1

(Fi)μν(Fi)
μν + (Dμφ̄)(D

μφ)+ (Dμχ̄)(D
μχ)

+ (Dμη̄)(D
μη)+ V (φ,χ , η), (3.2.33)
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Table 3.1. Couplings of φ, χ , and η with respect to three photons A1, A2, and A3
of the U(1)3 theory (3.2.33).

φ χ η

A1 2/3 2/3 −1/3
A2 2/3 −1/3 2/3
A3 −1/3 2/3 2/3

h

B3

B1B2

f

c

Figure 3.8. A junction of three flux tubes (“Mercedes logo”) in the Z3 invariant
theory (3.2.33). The letters φ, χ , and η show which fields have windings in three
sectors.

whose electric charges with respect to three photons are presented in Table 3.1.
The potential V (φ,χ , η) is assumed to be symmetric under the interchange of φ, χ ,
and η. Another requirement to V (φ,χ , η) is spontaneous breaking of all three U(1)
gauge groups through nonvanishing expectation values 〈φ〉 = 〈χ〉 = 〈η〉 �= 0.

The three flux tubes form a planar structure of the “Mercedes logo” type, with
2π/3 angles between them. The flux tube in the left-hand side of Fig. 3.8 carries
the magnetic fluxes of the third and second photons, the next (clockwise) flux tube
the magnetic fluxes of the first and second photons, and the last flux tube of the first
and third.
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3.3 Monopoles

In this section we will discuss magnetic monopoles – very interesting objects which
carry magnetic charges. They emerge as free magnetically charged particles in
non-Abelian gauge theories in which the gauge symmetry is spontaneously broken
down to an Abelian subgroup.7 The simplest example was found by ’t Hooft [105]
and Polyakov [106]. The model they considered had been invented by Georgi and
Glashow [107] for different purposes. As it often happens, the Georgi–Glashow
model turned out to be more valuable than the original purpose, which is long
forgotten, while the model itself is alive and well and is being constantly used by
theorists.

3.3.1 The Georgi–Glashow model: vacuum and elementary excitations

Let us begin with a brief description of the Georgi–Glashow model. The gauge
group is SU(2) and the matter sector consists of one real scalar field φa in the
adjoint representation (i.e. SU(2) triplet). The Lagrangian of the model is

L = − 1

4g2
Faμν F

μν,a + 1

2
(Dμφ

a)(Dμφa)− 1

8
λ(φaφa − v2)2, (3.3.1)

where the covariant derivative in the adjoint acts as

Dμφ
a = ∂μφ

a + εabcAbμφ
c. (3.3.2)

Below we will focus on the limit of BPS monopoles. This limit corresponds to a
vanishing scalar coupling, λ → 0. The only role of the last term in Eq. (3.3.1) is
to provide a boundary condition for the scalar field. As is clear from Chapter 2 the
monopole central charge exists only in N = 2 and N = 4 superalgebras. Therefore,
one should understand the theory (3.3.1) (at λ = 0) as embedded in super-Yang–
Mills theories with extended superalgebra. In Part II we will extensively discuss
such embeddings in the context of N = 2.

The classical definition of magnetic charges refers to theories that support a
long-range (Coulomb) magnetic field. Therefore, in consideration of the isolated
monopole the pattern of the symmetry breaking should be such that some of the
gauge bosons remain massless. In the Georgi–Glashow model (3.3.1) the pattern
is as follows:

SU(2) → U(1). (3.3.3)

7 In the confining regime monopoles can be obtained in some theories with no adjoint fields, in which the gauge
symmetry is broken completely [104]. This is a recent development.
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To see that this is indeed the case let us note the φa self-interaction term (the last
term in Eq. (3.3.1)) forces φa to develop a vacuum expectation value,

〈φa〉 = vδ3a . (3.3.4)

The direction of the vector φa in the SU(2) space (to be referred to as “color space”
or “isospace”) can be chosen arbitrarily. One can always reduce it to the form
(3.3.4) by a global color rotation. Thus, Eq. (3.3.4) can be viewed as a (unitary)
gauge condition on the field φ.

This gauge is very convenient for discussing the particle content of the theory,
elementary excitations. Since the color rotation around the third axis does not
change the vacuum expectation value of φa ,

exp
{
iα
τ3

2

}
φvac exp

{
−iα τ3

2

}
= φvac, φvac = v

τ3

2
, (3.3.5)

the third component of the gauge field remains massless – we will call it a “photon,”

A3
μ ≡ Aμ, Fμν = ∂μAν − ∂νAμ. (3.3.6)

The first and the second components form massive vector bosons,

W±
μ = 1√

2 g

(
A1
μ ± A2

μ

)
. (3.3.7)

As usual in the Higgs mechanism, the massive vector bosons eat up the first and
the second components of the scalar field φa . The third component, the physical
Higgs field, can be parametrized as

φ3 = v + ϕ, (3.3.8)

where ϕ is the physical Higgs field. In terms of these fields the Lagrangian (3.3.1)
can be readily rewritten as

L = − 1

4g2
Fμν Fμν + 1

2
(∂μϕ)

2

− (DαW+
μ

) (
DαW

−
μ

)+ (DμW+
μ

) (
DνW

−
ν

)+ g2(v + φ)2W+
μ W

−
μ

− 2W+
μ Fμν W

−
ν + g2

4

(
W+
μ W

−
ν −W+

ν W
−
μ

)2
, (3.3.9)

where the covariant derivative now includes only the photon field,

Dα W
± = (∂α ± iAα)W

±. (3.3.10)
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The last line presents the magnetic moment of the charged (massive) vector bosons
and their self-interaction. In the limit λ → 0 the physical Higgs field is massless.
The mass of the W± bosons is

MW = g v. (3.3.11)

3.3.2 Monopoles – topological argument

Let us explain why this model has a topologically stable soliton.
Assume that the monopole’s center is at the origin and consider a large sphere

SR of radius R with the center at the origin. Since the mass of the monopole is
finite, by definition, φaφa = v2 on this sphere. φa is a three-component vector in
the isospace subject to the constraint φaφa = v2 which gives us a two-dimensional
sphere SG. Thus, we deal here with mappings of SR into SG. Such mappings split
in distinct classes labeled by an integer n, counting how many times the sphere SG
is swept when we sweep once the sphere SR , since

π2(SU(2)/U(1)) = Z. (3.3.12)

SG = SU(2)/U(1) because for each given vector φa there is a U(1) subgroup which
does not rotate it. The SU(2) group space is a three-dimensional sphere while that
of SU(2)/U(1) is a two-dimensional sphere.

An isolated monopole field configuration (the ’t Hooft–Polyakov monopole)
corresponds to a mapping with n = 1. Since it is impossible to continuously deform
it to the topologically trivial mapping, the monopoles are topologically stable.

3.3.3 Mass and magnetic charge

Classically the monopole mass is given by the energy functional

E =
∫
d3x

{
1

2 g2
Bai B

a
i + 1

2

(
Diφ

a
) (
Diφ

a
)}

, (3.3.13)

where

Bai = −1

2
εijkF

a
jk . (3.3.14)

The fields are assumed to be time-independent, Bai = Bai (�x), φa = φa(�x). For
static fields it is natural to assume that Aa0 = 0. This assumption will be veri-
fied a posteriori, after we find the field configuration minimizing the functional
(3.3.13). Equation (3.3.13) assumes the limit λ → 0. However, in performing min-
imization we should keep in mind the boundary condition φa(�x)φa(�x) → v2 at
|�x| → ∞.
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Equation (3.3.13) can be identically rewritten as follows:

E =
∫
d3x

{
1

2

(
1

g
Bai −Diφ

a

)(
1

g
Bai −Diφ

a

)
+ 1

g
Bai Diφ

a

}
. (3.3.15)

The last term on the right-hand side is a full derivative. Indeed, after integrating by
parts and using the equation of motion DiBai = 0 we get∫

d3x

{
1

g
Bai Diφ

a

}
= 1

g

∫
d3x ∂i

(
Bai φ

a
)

= 1

g

∫
SR
d2Si

(
Bai φ

a
)

. (3.3.16)

In the last line we made use of Gauss’ theorem and passed from the volume integra-
tion to that over the surface of the large sphere. Thus, the last term in Eq. (3.3.15)
is topological.

The combination Bai φ
a can be viewed as a gauge invariant definition of the

magnetic field �B. More exactly,

Bi = 1

v
Bai φ

a . (3.3.17)

Indeed, far away from the monopole core one can always assume φa to be aligned
in the same way as in the vacuum (in an appropriate gauge), φa = vδ3a . Then
Bi = B3

i . The advantage of the definition (3.3.17) is that it is gauge independent.
Furthermore, the magnetic chargeQM inside a sphere SR can be defined through

the flux of the magnetic field through the surface of the sphere,8

QM =
∫

SR
d2Si

1

g
Bi . (3.3.18)

From Eq. (3.3.30) (see below) we will see that

Bi ≡ 1

v
Bai φ

a −→ ni
1

r2
at r → ∞, (3.3.19)

and, hence,

QM = 4π

g
. (3.3.20)

8 A remark: Conventions for the charge normalization used in different books and papers may vary. In his
original paper on the magnetic monopole [108], Dirac uses the convention e2 = α and the electromagnetic
Hamiltonian H = (8π)−1( �E2 + �B2). Then, the electric charge is defined through the flux of the electric field as
e = (4π)−1 ∫SR d2SiEi , and analogously for the magnetic charge. We use the convention according to which

e2 = 4πα, and the electromagnetic Hamiltonian H = (2g2)−1( �E2 + �B2). Then e = g−1 ∫SR d2SiEi while

QM = g−1 ∫SR d2SiBi .
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Combining Eqs. (3.3.18), (3.3.17) and (3.3.16) we conclude that

E = v QM +
∫
d3x

{
1

2

(
1

g
Bai −Diφ

a

)(
1

g
Bai −Diφ

a

)}
. (3.3.21)

The minimum of the energy functional is attained at

1

g
Bai −Diφ

a = 0. (3.3.22)

The mass of the field configuration realizing this minimum – the monopole mass —
is obviously equal

MM = 4π v

g
. (3.3.23)

Thus, the mass of the critical monopole is in one-to-one relation with its magnetic
charge. Equation (3.3.22) is nothing but the Bogomol’nyi equation in the monopole
problem. If it is satisfied, the second-order differential equations of motion are
satisfied too.

3.3.4 Solution of the Bogomol’nyi equation for monopoles

To solve the Bogomol’nyi equations we need to find an appropriate ansatz for φa .
As one sweeps SR the vector φa must sweep the group space sphere. The simplest
choice is to identify these two spheres point-by-point,

φa = v
xa

r
= vna , r → ∞. (3.3.24)

whereni ≡ xi/r . This field configuration obviously belongs to the class withn = 1.
The SU(2) group index a got entangled with the coordinate �x. Polyakov proposed
to refer to such fields as “hedgehogs.”

Next, observe that finiteness of the monopole energy requires the covariant
derivative Diφa to fall off faster than r−3/2 at large r , cf. Eq. (3.3.13). Since

∂iφ
a = v

1

r

{
δai − nani

}
∼ 1

r
(3.3.25)

one must chooseAbi in such a way as to cancel (3.3.25). It is not difficult to see that

Aai = εaij
1

r
n j , r → ∞. (3.3.26)

Then the term 1/r is canceled in Diφa .
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Equations (3.3.24) and (3.3.26) determine the index structure of the field
configuration we are going to deal with. The appropriate ansatz is perfectly clear
now,

φa = v naH(r), Aai = εaij
1

r
n j F (r), (3.3.27)

where H and F are functions of r with the boundary conditions

H(r) → 1, F(r) → 1 at r → ∞, (3.3.28)

and

H(r) → 0, F(r) → 0 at r → 0. (3.3.29)

The boundary condition (3.3.28) is equivalent to Eqs. (3.3.24) and (3.3.26), while
the boundary condition (3.3.29) guarantees that our solution is nonsingular at
r → 0.

After some straightforward algebra we get

Bai =
(
δai − nani

) 1

r
F ′ + nani

1

r2

(
2F − F 2

)
,

Diφ
a = v

{(
δai − nani

) 1

r
H(1 − F)+ naniH ′

}
, (3.3.30)

where prime denotes differentiation with respect to r .
Let us return now to the Bogomol’nyi equations (3.3.22). This is a set of nine

first-order differential equations. Our ansatz has only two unknown functions. The
fact that the ansatz goes through and we get two scalar equations on two unknown
functions from the Bogomol’nyi equations is a highly nontrivial check. Comparing
Eqs. (3.3.22) and (3.3.30) we get

1

g
F ′ = v H(1 − F),

H ′ = 1

g v

1

r2

(
2F − F 2

)
. (3.3.31)

The functions H and F are dimensionless. It is convenient to make the radius r
dimensionless too. A natural unit of length in the problem at hand is (gv)−1. From
now on we will measure r in these units,

ρ = r (gv). (3.3.32)
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Figure 3.9. The functions F (solid line) and H (long dashes) in the critical
monopole solution, vs. ρ. The short-dashed line shows the flux of the magnetic
field Bi (in the units 4π ) through the sphere of radius ρ.

The functionsH and F are to be considered as functions of ρ, while the prime will
denote differentiation over ρ. Then the system (3.3.31) takes the form

F ′ = H(1 − F),

H ′ = 1

ρ2

(
2F − F 2

)
. (3.3.33)

These equations have known analytical solutions,

F = 1 − ρ

sinhρ
,

H = coshρ

sinhρ
− 1

ρ
. (3.3.34)

At large ρ the functions H and F tend to unity (cf. Eq. (3.3.28)) while at ρ → 0

F = O(ρ2), H = O(ρ).

They are plotted in Fig. 3.9. Calculating the flux of the magnetic field through the
large sphere we verify that for the solution at hand QM = 4π/g.

3.3.5 Collective coordinates (moduli)

The monopole solution presented in the previous section breaks a number of valid
symmetries of the theory, for instance, translational invariance. As usual, the sym-
metries are restored after the introduction of the collective coordinates (moduli),
which convert a given solution into a family of solutions.
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Our first task is to count the number of moduli in the monopole problem.
A straightforward way to count this number is counting linearly independent zero
modes. To this end, one represents the fields Aμ and φ as a sum of the monopole
background plus small deviations,

Aaμ = Aa(0)μ + aaμ, φa = φa(0) + (δφ)a , (3.3.35)

where the superscript (0) marks the monopole solution. At this point it is necessary
to impose a gauge-fixing condition. A convenient condition is

1

g
Dia

a
i − εabcφb(δφ)c = 0, (3.3.36)

where the covariant derivative in the first term contains only the background field.
Substituting the decomposition (3.3.35) in the Lagrangian one finds the quadratic

form for {a, (δφ)}, and determines the zero modes of this form (subject to the
condition (3.3.36)).

We will not trace this procedure in detail, referring the reader to the original
literature [109]. Instead, we suggest a simple heuristic consideration.

Let us ask ourselves what are the valid symmetries of the model at hand? They are:
(i) three translations; (ii) three spatial rotations; (iii) three rotations in the SU(2)
group. Not all these symmetries are independent. It is not difficult to check that
the spatial rotations are equivalent to the SU(2) group rotations for the monopole
solution. Thus, we should not count them independently. This leaves us with six
symmetry transformations.

One should not forget, however, that two of those six act non-trivially in the
“trivial vacuum.” Indeed, the latter is characterized by the condensate (3.3.4).
While rotations around the third axis in the isospace leave the condensate intact
(see Eq. (3.3.5)), the rotations around the first and second axes do not. Thus,
the number of moduli in the monopole problem is 6 − 2 = 4. These four
collective coordinates have a very transparent physical interpretation. Three of
them correspond to translations. They are introduced in the solution through the
substitution

�x → �x − �x0. (3.3.37)

The vector �x0 now plays the role of the monopole center. The unit vector �n is now
defined as �n = (�x − �x0)/|�x − �x0|.

The fourth collective coordinate is related to the unbroken U(1) symmetry of the
model. This is the rotation around the direction of alignment of the field φ. In the
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“trivial vacuum” φa is aligned along the third axis. The monopole generalization
of Eq. (3.3.5) is

A(0) → U−1A(0)U − iU−1∂U ,

φ(0) → U−1φ(0)U = φ(0),

U = exp
{
iαφ(0)/v

}
, (3.3.38)

where the fields A(0) and φ(0) are understood here in the matrix form,

A(0) = Aa(0) (τ a/2), φ(0) = φa(0) (τ a/2) .

Unlike the vacuum field, which is not changed under (3.3.5), the monopole solution
for the vector field changes its form. The change looks as a gauge transformation.
Note, however, that the gauge matrix U does not tend to unity at r → ∞. Thus,
this transformation is in fact a global U(1) rotation. The physical meaning of the
collective coordinateαwill become clear shortly. Now let us note that (i) for smallα
Eq. (3.3.38) reduces to

δAai = α
1

v
(Diφ

(0))a , δφ = 0, (3.3.39)

and this is compatible with the gauge condition (3.3.36); (ii) the variable α is
compact, since the points α and α + 2π can be identified (the transformation of
A(0) is identically the same for α and α+2π ). In other words, α is an angle variable.

Having identified all four moduli relevant to the problem we can proceed to the
quasiclassical quantization. The task is to obtain quantum mechanics of the moduli.
Let us start from the monopole center coordinate �x0. To this end, as usual, we assume
that �x0 weakly depends on time t , so that the only time dependence of the solution
enters through �x0(t). The time dependence is important only in time derivatives, so
that the quantum-mechanical Lagrangian of the moduli can be obtained from the
following expression:

LQM = −MM + 1

2
(ẋ0)k(ẋ0)j

∫
d3x

{[
1

g
F
a(0)
ik

] [
1

g
F
a(0)
ij

]

+
[
Dkφ

a(0)
] [
Djφ

a(0)
]}

, (3.3.40)

where ∂kA and ∂kφ where supplemented by appropriate gauge transformations to
satisfy the gauge condition (3.3.36).
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Averaging over the angular orientations of �x yields

LQM = −MM + 1

2
(�̇x0)

2
∫
d3x

{
2

3

1

g2
B
a(0)
i B

a(0)
i + 1

3
Diφ

a(0)Diφ
a(0)
}

= −MM + MM

2
(�̇x0)

2. (3.3.41)

This last result readily follows if one combines Eqs. (3.3.13) and (3.3.22). Of course,
this final answer could have been guessed from the very beginning since this is
nothing but the Lagrangian describing free non-relativistic motion of a particle of
mass MM endowed with the coordinate �x0.

Now, having tested the method in the case where the answer was obvious, let us
apply it to the fourth collective coordinate α. Using Eq. (3.3.39) we get

LαQM = 1

2

MM

M2
W

α̇2, (3.3.42)

or, equivalently,

Hα = 1

2

M2
W

MM

p2
α , pα ≡ −i d

dα
, (3.3.43)

where Hα is the part of the Hamiltonian relevant to α. The full quantum-mechanical
Hamiltonian describing the moduli dynamics is, thus,

H = MM + p2

2MM

+ 1

2

M2
W

MM

p2
α , p ≡ −i d

dx0
. (3.3.44)

It describes free motion of a spinless particle endowed with an internal (compact)
variable α. While the spatial part of H does not raise any questions, the α dynamics
deserves additional discussion.

The α motion is free, but one should not forget that α is an angle. Because of the
2π periodicity, the corresponding wave functions must have the form

�(α) = eikα , (3.3.45)

where k is an integer, k = 0, ±1, ±2, . . . . Strictly speaking, only the ground state,
k = 0, describes the monopole – a particle with the magnetic charge 4π/g and
vanishing electric charge. Excitations with k �= 0 correspond to a particle with the
magnetic charge 4π/g and the electric charge kg, the dyon.

To see that this is indeed the case, let us note that for k �= 0 the expectation value
of pα is k and, hence, the expectation value of α̇ = (M2

W/MM)pα is M2
Wk/MM .
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Moreover, let us define a gauge-invariant electric field Ei (analogous to Bi of Eq.
(3.3.17)) as

Ei ≡ 1

v
Eai φ

a = 1

v
φa(0) Ȧ

a(0)
i = 1

v2
α̇ φa(0) (Diφ

a(0)). (3.3.46)

Since for the critical monopole Diφa(0) = (1/g)Ba(0)i we see that

Ei = α̇
1

MW

Bi , (3.3.47)

and the flux of the gauge-invariant electric field over the large sphere is

1

g

∫
SR
d2Si Ei = M2

Wk

MM

1

MW

1

g

∫
SR
d2SiBi (3.3.48)

where we replaced α̇ by its expectation value. Thus, the flux of the electric field
reduces to

1

g

∫
SR
d2Si Ei = kg, (3.3.49)

which proves the above assertion of the electric charge kg.
It is interesting to note that the mass of the dyon can be written as

MD = MM + 1

2

M2
W

MM

k2 ≈
√
M2
M +M2

W k
2 = v

√
Q2
M +Q2

E . (3.3.50)

Although from our derivation it might seem that the square root formula is approx-
imate, in fact, the prediction for the dyon mass MD = v(Q2

M +Q2
E)

1/2 is exact;
it follows from the BPS saturation and the central charges in N = 2 model (see
Chapter 2).

Magnetic monopoles were introduced in theory by Dirac in 1931 [108]. He
considered macroscopic electrodynamics and derived a self-consistency condition
for the product of the magnetic charge of the monopole QM and the elementary
electric charge e,9

QM e = 2π . (3.3.51)

This is known as the Dirac quantization condition. For the ’t Hooft–Polyakov
monopole we have just derived that QMg = 4π , twice larger than in the Dirac

9 In Dirac’s original convention the charge quantization condition is, in fact, QMe = (1/2).
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quantization condition. Note, however, that g is the electric charge of theW bosons.
It is not the minimal possible electric charge that can be present in the theory at hand.
If quarks in the fundamental (doublet) representation of SU(2) were introduced in
the Georgi–Glashow model, their U(1) charge would be e = g/2, and the Dirac
quantization condition would be satisfied for such elementary charges.

3.3.6 Singular gauge, or how to comb a hedgehog

The ansatz (3.3.27) for the monopole solution we used so far is very convenient
for revealing a nontrivial topology lying behind this solution, i.e. the fact that
SU(2)/U(1) ∼ S2 in the group space is mapped onto the spatial S2. However, it
is often useful to gauge-transform it in such a way that the scalar field becomes
oriented along the third axis in the color space, φa ∼ δ3a , in all space (i.e. at all x),
repeating the pattern of the “plane” vacuum (3.3.4). Polyakov suggested to refer to
this gauge transformation as “combing the hedgehog.” Comparison of Figs. 3.10a
and 3.10b shows that this gauge transformation cannot be nonsingular. Indeed, the
matrix which combs the hedgehog,

U† (naτa)U = τ 3, (3.3.52)

has the form

U = 1√
2

(√
1 + n3 + i

νaτ a√
1 + n3

)
, (3.3.53)

where

νa = ε3ab nb, νaνa = 1 − (n3)2, (3.3.54)

and �n is the unit vector in the direction of �x. The matrix U is obviously singular at
n3 = −1 (see Fig. 3.10). This is a gauge artifact since all physically measurable
quantities are nonsingular and well-defined. In the “old” Dirac description of the
monopole [110] the singularity of U at n3 = −1 would correspond to the Dirac
string.

In the singular gauge the monopole magnetic field at large |�x| takes the “color-
combed” form

Bi → τ 3

2

ni

r2
= 4π

τ 3

2

ni

4π r2
. (3.3.55)

The latter equation naturally implies the same magnetic charge QM = 4π/g, as
was derived in Section 3.3.2.
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Dirac string

fa “combed”

fa

radial gauge(a) (b) singular gauge

Figure 3.10. Transition from the radial to singular gauge or combing the hedgehog.

3.3.7 Monopoles in SU(N )

Let us now extend the construction presented above from SU(2) to SU(N ) [111,
112]. The starting Lagrangian is the same as in Eq. (3.3.1), with the replacement of
the structure constants εabc of SU(2) by the SU(N ) structure constants f abc. The
potential of the scalar-field self-interaction can be of a more general form than in
Eq. (3.3.1). Details of this potential are unimportant for our purposes since in the
critical limit the potential tends to zero; its only role is to fix the vacuum value of
the field φ at infinity.

Recall that all generators of the Lie algebra can be always divided into two
groups – the Cartan generators Hi , which all commute with each other, and a set
of raising (lowering) operators Eα ,

E
†
α = E−α . (3.3.56)

For SU(N ) – and we will not discuss other groups – there areN−1 Cartan generators
which can be chosen as

H 1 = 1

2
diag {1, −1, 0, . . . , 0} ,

H 2 = 1

2
√

3
diag {1, 1, −2, 0, . . . , 0} ,

. . .

Hm = 1√
2m(m+ 1)

diag {1, 1, 1, . . . , −m, . . . , 0} ,

. . . (3.3.57)

HN−1 = 1√
2N(N − 1)

diag {1, 1, 1, . . . , 1, −(N − 1)} ,
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N(N−1)/2 raising generatorsEα , andN(N−1)/2 lowering generatorsE−α . The
Cartan generators are analogs of τ3/2 while E±α are analogs of τ±/2. Moreover,
N(N − 1) vectors α, −α are called root vectors. They are (N − 1)-dimensional.

By making an appropriate choice of basis, any element of SU(N ) algebra can
be brought to the Cartan subalgebra. Correspondingly, the vacuum value of the
(matrix) field φ ≡ φaT a can always be chosen to be of the form

φvac = h H, (3.3.58)

where h is an (N − 1)-component vector,

h = {h1, h2, . . . , hN−1}. (3.3.59)

For simplicity we will assume that for all simple roots h γ > 0 (otherwise, we will
just change the condition defining positive roots to meet this constraint).

Depending on the form of the self-interaction potential distinct patterns of gauge
symmetry breaking can take place. We will discuss here the case when the gauge
symmetry is maximally broken,

SU(N) → U(1)N−1. (3.3.60)

The unbroken subgroup is Abelian. This situation is general. In special cases, when
h is orthogonal to αm for some m (or a set of m’s) the unbroken subgroup will
contain non-Abelian factors, as will be explained momentarily. These cases will
not be considered here.

The topological argument proving the existence of a variety of topologically
stable monopoles in the above set-up parallels that of Section 3.3.2, except that
Eq. (3.3.12) is replaced by

π2

(
SU(N)/U(1)N−1

)
= π1

(
U(1)N−1

)
= ZN−1. (3.3.61)

There are N − 1 independent windings in the SU(N ) case.
The gauge field Aμ (in the matrix form, Aμ ≡ Aaμ T

a) can be represented as

Aaμ T
a =

N−1∑
m=1

Amμ H
m +

∑
α

Aα
μ Eα , (3.3.62)

where Amμ ’s (m = 1, . . . ,N − 1) can be viewed as “photons,” while Aα
μ ’s as

“W bosons.” The mass terms are obtained from the term

Tr
([
Aμ, φ

])2
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in the Lagrangian. Substituting here Eqs. (3.3.58) and (3.3.62) it is easy to see that
the W -boson masses are

Mα = g hα. (3.3.63)

N−1 massive bosons corresponding to simple roots γ play a special role: they can
be thought of as fundamental, in the sense that the quantum numbers and masses
of all other W bosons can be obtained as linear combinations (with non-negative
integer coefficients) of those of the fundamental W bosons. With regards to the
masses this is immediately seen from Eq. (3.3.63) in conjunction with

α =
∑
γ

kγ γ . (3.3.64)

Construction of SU(N ) monopoles reduces, in essence, to that of a SU(2)
monopole through various embeddings of SU(2) in SU(N ). Note that each simple
root γ defines an SU(2) subgroup10 of SU(N ) with the following three generators:

t1 = 1√
2

(
Eγ + E−γ

)
,

t2 = 1√
2 i

(
Eγ − E−γ

)
,

t3 = γ H, (3.3.65)

with the standard algebra [t i , t j ] = iεijk tk . If the basic SU(2) monopole
solution corresponding to the Higgs vacuum expectation value v is denoted as
{φa(r; v), Aai (r; v)}, see Eq. (3.3.27), the construction of a specific SU(N )
monopole proceeds in three steps: (i) choose a simple root γ ; (ii) decompose the
vector h in two components, parallel and perpendicular with respect to γ ,

h = h‖ + h⊥ ,

h‖ = ṽγ , h⊥γ = 0 ,

ṽ ≡ γ h > 0 ; (3.3.66)

(iii) replace Aai (r; v) by Aai (r; ṽ) and add a covariantly constant term to the field
φa(r; ṽ) to ensure that at r → ∞ it has the correct asymptotic behavior, namely,
2 Tr φ2 = h2. Algebraically the SU(N ) monopole solution takes the form

φ = φa(r; ṽ) ta + h⊥H, Ai = Aai (r; ṽ) ta . (3.3.67)

10 Generally speaking, each root α defines an SU(2) subalgebra according to Eq. (3.3.65), but we will deal only
with the simple roots for reasons which will become clear momentarily.
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Note that the mass of the corresponding W boson Mγ = gṽ, in full parallel with
the SU(2) monopole.

It is instructive to verify that (3.3.67) satisfies the BPS equation (3.3.22). To this
end it is sufficient to note that [h⊥H, Ai] = 0, which in turn implies

Di (h⊥H) = 0.

What remains to be done? We must analyze the magnetic charges of the SU(N )
monopoles and their masses. In the singular gauge (Section 3.3.6) the Higgs field
is aligned in the Cartan subalgebra, φ ∼ h H. The magnetic field at large distances
from the monopole core, being commutative with φ, also lies in the Cartan sub-
algebra. In fact, from Eq. (3.3.65) we infer that combing of the SU(N ) monopole
leads to

Bi → 4π γ H
ni

4π r2
, (3.3.68)

which implies, in turn, that the set ofN−1 magnetic charges of the SU(N ) monopole
is given by the components of the (N − 1)-vector

QM = 4π

g
γ . (3.3.69)

Of course, the very same result is obtained in a gauge invariant manner from a
defining formula

2Tr (Biφ) −→
r → ∞

(
QMh

) g
4π

ni

r2
. (3.3.70)

Equation (3.3.15) implies that the mass of this monopole is

MMγ = QMh = 4π ṽ

g
, (3.3.71)

to be compared with the mass of the corresponding W bosons,

Mγ = gγ h = gṽ, (3.3.72)

in perfect parallel with the SU(2) monopole results of Section 3.3.3. The general
magnetic charge quantization condition takes the form

exp
{
igQMH

} = 1. (3.3.73)

Let us ask ourselves what happens if one builds monopoles on non-simple
roots. Such solutions are in fact composite: they consist of the basic “simple-root”
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monopoles – the masses and quantum numbers (magnetic charges) of the composite
monopoles can be obtained by summing up the masses and quantum numbers of
the basic monopoles, according to Eq. (3.3.64).

3.3.8 The θ term induces a fractional electric charge
for the monopole (the Witten effect)

There is a P - and T -odd term, the θ term, which can be added to the Lagrangian
for the Yang–Mills theory without spoiling renormalizability. It is given by

Lθ = θ

32π2
FaμνF̃

aμν = − θ

8π2
�Ea · �Ba . (3.3.74)

This interaction violatesP andCP but notC.As is well known, this term is a surface
term and does not affect the classical equations of motion. There is, however, a θ
dependence in instanton effects which involve nontrivial long-range behavior of
the gauge fields. As was realized by Witten [113], in the presence of magnetic
monopoles θ also has a nontrivial effect, it shifts the allowed values of electric
charge in the monopole sector of the theory.

Since the equations of motions do not change, the monopole solution obtained
above stays intact. What changes is the effective quantum-mechanical Lagrangian.
As usual, we assume an adiabatic time dependence of moduli. In the case at hand we
must replace the constant phase modulus α by α(t). This generates the electric field

Eai = α̇ (δAai /δα) = α̇

v

(
Diφ

(0)
)a

,

where Eq. (3.3.39) is used. The magnetic field does not change, and can be expressed
through

(
Diφ

(0)
)a

using Eq. (3.3.22). As a result, the quantum-mechanical
Lagrangian for α acquires a full derivative term,

LαQM = 1

2μ
α̇2 − θ

2π
α̇, μ = M2

W

MM

. (3.3.75)

This changes the expression for the canonic momentum conjugated to α. If
previously pα was α̇/μ, now

pα = α̇

μ
− θ

2π
. (3.3.76)

Correspondingly,

α̇ = μ

(
pα + θ

2π

)
. (3.3.77)
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From Sect. 3.3.5 we know that the electric charge of the field configuration at hand
is (see Eq. (3.3.49))

QE = 1

MW g
〈α̇〉

∫
SR
d2Si Bi . (3.3.78)

Substituting Eq. (3.3.77) and 〈pα〉 = k we arrive at

QE =
(
k + θ

2π

)
g. (3.3.79)

We see that at θ �= 0 the electric charge of the dyon is non-integer. As θ changes
from zero to the physically equivalent point θ = 2π the dyon charges shift by one
unit. The dyon spectrum as a whole remains intact.

3.4 Monopoles and fermions

The critical ’t Hooft–Polyakov monopoles we have just discussed can be embedded
in N = 2 super-Yang–Mills. There are no N = 1 models with the ’t Hooft–
Polyakov monopoles (albeit N = 1 theories supporting confined monopoles
are found [104]). The minimal model with the BPS-saturated ’t Hooft–Polyakov
monopole is the N = 2 generalization of supersymmetric gluodynamics, with the
gauge group SU(2). In terms of N = 1 superfields it contains one vector superfield
in the adjoint describing gluon and gluino, plus one chiral superfield in the adjoint
describing a scalar N = 2 superpartner for gluon and a Weyl spinor, an N = 2
superpartner for gluino.

The couplings of the fermion fields to the boson fields are of a special form,
they are fixed by N = 2 supersymmetry. In this section we will first present the
Lagrangian of N = 2 supersymmetric gluodynamics, including the part with the
adjoint fermions, and then consider effects due to the adjoint fermions. We conclude
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Section 3.4 with a comment on fermions in the fundamental representation in the
monopole background.

3.4.1 N = 2 super-Yang–Mills (without matter)

Two N = 1 superfields are used to build the model,

Wα = i
(
λα + iθα D − θβ Fαβ − iθ2Dαα̇λ̄

α̇
)

, (3.4.1)

and

A = a + √
2ψ θ + θ2F . (3.4.2)

Here the notation is spinorial, and all fields are in the adjoint representation of
SU(2). The corresponding generators are(

T a
)
bd

= i εbad . (3.4.3)

The Lagrangian contains kinetic terms and their supergeneralizations. In compo-
nents

L = 1

g2

{
−1

4
Fa μνF aμν + λα,a i Dαα̇ λ̄

α̇,a + 1

2
DaDa

+ ψα,a iDαα̇ ψ̄
α̇,a + (Dμ ā)(Dμ a)

− √
2 εabc

(
āa λα,b ψcα + aa λ̄bα̇ ψ̄

α̇,c
)

− i εabc D
a āb ac

}
. (3.4.4)

As usual, theD field is auxiliary and can be eliminated via the equation of motion,

Da = i εabc ā
bac. (3.4.5)

There is a flat direction: if the field a is real allD terms vanish. If a is chosen to be
purely real or purely imaginary and the fermion fields ignored we obviously return
to the Georgi–Glashow model discussed above.

Let us perform the Bogomol’nyi completion of the bosonic part of the Lagrangian
(3.4.4) for static field configurations. Neglecting all time derivatives and, as usual,
setting A0 = 0, one can write the energy functional as follows:

E =
∑

i=1,2,3; a=1,2,3

∫
d3x

[
1√
2g
F ∗a
i ± 1

g
Dia

a

]2

∓
√

2

g2

∫
d3x ∂i

(
F ∗a
i aa

)
, (3.4.6)
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where

F ∗
m = 1

2
εmnk Fnk ,

and the square of theD term (3.4.5) is omitted – theD term vanishes provided a is
real, which we will assume. This assumption also allows us to replace the absolute
value in the first line by the square brackets. The term in the second line can be
written as an integral over a large sphere,

√
2

g2

∫
d3x ∂i

(
F ∗a
i aa

) =
√

2

g2

∫
dSi

(
aa F ∗a

i

)
. (3.4.7)

The Bogomol’nyi equations for the monopole are

F ∗a
i ± √

2Di a
a = 0. (3.4.8)

This coincides with Eq. (3.3.22) in the Georgi–Glashow model, up to a normaliza-
tion. (The field a is complex, generally speaking, and its kinetic term is normalized
differently.) If the Bogomol’nyi equations are satisfied, the monopole mass is deter-
mined by the surface term (classically). Assuming that in the “flat” vacuum aa is
aligned along the third direction and taking into account that in our normalization
the magnetic flux is 4π we get

MM =
√

2 a3
vac

g2
4π , (3.4.9)

where – we recall – a3
vac is assumed to be positive. This is in full agreement with

Eq. (3.3.23).

3.4.2 Supercurrents and the monopole central charge

The general classification of central charges in N = 2 theories in four dimensions
is presented in Section 2.3.3. Here we will briefly discuss the Lorentz-scalar central
charge Z in the theory (3.4.4). It is this central charge that is saturated by critical
monopoles.

The model, being N = 2, possesses two conserved supercurrents,

J I
αββ̇

= 2

g2

{
iF aβαλ̄

a

β̇
+ εβαD

aλ̄a
β̇

+ √
2
(
Dαβ̇ā

a
)
ψaβ

}
+ f .d.,

J II
αββ̇

= 2

g2

{
iF aβαψ̄

a

β̇
+ εβαD

aψ̄a
β̇

− √
2
(
Dαβ̇ā

a
)
λaβ

}
+ f .d., (3.4.10)
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where f.d. stands for full derivatives. Both expressions can be combined in one
compact formula if we introduce an SU(2) index f (f = 1, 2) (to be repeatedly
used in Part II) in the following way:

λf =
{
λ, f = 1
ψ , f = 2.

(3.4.11)

Then λ1 = −ψ and λ2 = λ. The supercurrent takes the form ( f = 1, 2)

Jαββ̇, f = 2

g2

{
iF aβαλ̄

a

β̇, f
+ εβαD

aλ̄a
β̇, f

− √
2
(
Dαβ̇ā

a
)
λaβ, f

+
√

2

6

[
∂αβ̇(λβ, f ā)+ ∂ββ̇(λα, f ā)− 3εβα∂

γ

β̇
(λγ , f ā)

]}
. (3.4.12)

Classically the commutator of the corresponding supercharges is

{QI
α , QII

β } = 2Z εαβ = −2
√

2

g2
εαβ

∫
d3x div

(
āa
( �Ea − i �Ba

))

= −2
√

2

g2
εαβ

∫
dSj

(
āa
(
Eaj − i Baj

))
. (3.4.13)

Z in Eq. (3.4.13) is sometimes referred to as the monopole central charge. For the
BPS-saturated monopoles MM = Z.

Quantum corrections in the monopole central charge and in the mass of the BPS
saturated monopoles were first discussed in Refs. [8, 114, 43] two decades ago. The
monopole central charge is renormalized at one-loop level. This is obvious due to
the fact that the corresponding quantum correction must convert the bare coupling
constant in Eq. (3.4.13) into the renormalized one. The fact that the logarithmic
renormalizations of the monopole mass and the gauge coupling constant match was
established long ago. However, there is a residual non-logarithmic effect which
cannot be obtained from Eq. (3.4.13). It was not until 2004 that people realized
that the monopole central charge (3.4.13) must be supplemented by an anomalous
term [39].

To elucidate the point, let us consider (following [38]) the formula for the
monopole/dyon mass obtained in the exact Seiberg–Witten solution [2],

Mne , nm = √
2
∣∣∣a (ne − aD

a
nm

)∣∣∣ , (3.4.14)
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where ne,m are integer electric and magnetic numbers (we will consider here only
a particular case when either ne = 0, 1 or nm = 0, 1) and

aD = i a

(
4π

g2
0

− 2

π
ln
M0

a

)
. (3.4.15)

The subscript 0 is introduced for clarity, it marks the bare charge. The renormalized
coupling constant is defined in terms of the ultraviolet parameters as follows:

∂aD

∂a
≡ 4πi

g2
. (3.4.16)

Because of the a ln a dependence, ∂aD/∂a differs from aD/a by a constant (non-
logarithmic) term, namely,

aD

a
= i

(
4π

g2
− 2

π

)
. (3.4.17)

Combining Eq. (3.4.14) and (3.4.17) we get

Mne ,nm = √
2

∣∣∣∣a
(
ne − i

(
4π

g2
− 2

π

)
nm

)∣∣∣∣ , (3.4.18)

This does not match Eq. (3.4.13) in the non-logarithmic part (i.e. the term
2
√

2 nm/π ). Since the relative weight of the electric and magnetic parts in
Eq. (3.4.13) is fixed to be g2, the presence of the above non-logarithmic term
implies that, in fact, the chiral structure Eaj − i Baj obtained at the canonic commu-
tator level cannot be maintained once quantum corrections are switched on. This is
a quantum anomaly.

So far no direct calculation of the anomalous contribution in {QI
α , QII

β } in the
operator form has been carried out. However, it is not difficult to reconstruct it
indirectly, using Eq. (3.4.18) and a close parallel between N = 2 super-Yang–
Mills theory and N = 2 CP(N − 1) model with twisted mass in two dimensions
in which a similar problem was solved [34],

{
QI
α , QII

β

}
anom

= 2 εαβ δZanom = − (εαβ) 2
√

2
1

4π2

∫
dSj 

j(3.4.19)

where

j = i

2

∂

∂θ̄ β̇

(Āa W̄ a
α̇

) (
σ j
)α̇β̇ ∣∣∣

θ̄=0

= āa
( �Ea + i �Ba

)j −
√

2

2
λ̄aα̇

(
σ j
)α̇β̇

ψ̄a
β̇

, (3.4.20)
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to be added to Eq. (3.4.13). The (1,0) conversion matrix
(
σ j
)α̇β̇

is defined in
Section A.5. Equation (3.4.20) is to be compared with that obtained at the end
of Section 4.5.3. We hasten to note that the bifermion term λ̄ψ̄ in δZanom was
calculated in Ref. [39].

In the SU(N ) theory we would have N/8π2 instead of 1/4π2 in Eq. (3.4.19).
Adding the canonic and the anomalous terms in {QI

α , QII
β } together we see that

the fluxes generated by color-electric and color-magnetic terms are now shifted,
untied from each other, by a non-logarithmic term in the magnetic part. Normalizing
to the electric term, MW = √

2a, we get for the magnetic term

MM = √
2 a

(
4π

g2
− 2

π

)
, (3.4.21)

as it is necessary for the consistency with the exact Seiberg–Witten solution.

3.4.3 Zero modes for adjoint fermions

Equations for the fermion zero modes can be readily derived from the Lagrangian
(3.4.4),

iDαα̇λ
α, c − √

2 εabc a
a ψ̄bα̇ = 0

iDαα̇ψ
α, c + √

2 εabc a
a λ̄bα̇ = 0, (3.4.22)

plus Hermitean conjugate. After a brief reflection we can get two complex (four
real) zero modes.11 Two of them are obtained if we substitute

λα = Fαβ , ψ̄α̇ = √
2Dαα̇ ā. (3.4.23)

The other two solutions correspond to the following substitution:

ψα = Fαβ , λ̄α̇ = √
2Dαα̇ ā. (3.4.24)

This result is easy to understand. Our starting theory has eight supercharges. The
classical monopole solution is BPS-saturated, implying that four of these eight
supercharges annihilate the solution (these are the Bogomol’nyi equations), while
the action of the other four supercharges produces the fermion zero modes.

With four real fermion collective coordinates, the monopole supermultiplet is
four-dimensional: it includes two bosonic states and two fermionic. (The above
counting refers just to monopole, without its antimonopole partner. The anti-
monopole supermultiplet also includes two bosonic and two fermionic states.) From

11 This means that the monopole is described by two complex fermion collective coordinates, or four real.
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the standpoint of N = 2 supersymmetry in four dimensions this is a short multiplet.
Hence, the monopole states remain BPS saturated to all orders in perturbation theory
(in fact, the criticality of the monopole supermultiplet is valid beyond perturbation
theory [2, 3]).

3.4.4 Zero modes for fermions in the fundamental representation

This topic, being related to an interesting phenomenon of charge fractionalization,
is marginal for this review. Therefore, we will limit ourselves to a brief comment.
The interested reader is referred to [16, 115, 17] for further details. The fermion
part of the Lagrangian can be obtained from (3.4.4) with the obvious replacement
of the adjoint Dirac fermion by the fundamental one, which we will denote by χ ,

L = 1

g2

{
−1

4
Fa μνF aμν + 1

2
(Dμ φ)(Dμ φ)+ χ̄ i �Dχ − χ̄ φχ

}
. (3.4.25)

The Dirac equation then takes the form

(iγ μDμ − φ)χ = 0. (3.4.26)

Gamma matrices can be chosen in any representation. The one which is most
convenient here is

γ 0 =
(

0 −i
i 0

)
, γ i =

( −iσ i 0
0 iσ i

)
. (3.4.27)

For the static ’t Hooft–Polyakov monopole configuration (with A0 = 0) the zero
mode equations reduce to two decoupled equations

�Dχ− ≡ (σ iDi + φ)χ− = 0.

�D†χ+ ≡ (σ iDi − φ)χ+ = 0, i = 1, 2, 3. (3.4.28)

provided we parametrize χ(�x) in terms of the following two-component spinors:

χ =
(
χ+
χ−

)
. (3.4.29)

Now we can use the Callias theorem [116] which says

dim ker �D − dim ker �D† = nm , (3.4.30)

where nm is the topological number, nm = 1 for the monopole and nm = −1 for the
antimonopole. This implies, in turn, that Eq. (3.4.28) has one complex zero mode,
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i.e. in the case at hand we characterize the monopole by one complex fermion
collective coordinate (and a conjugate, of course). This fact leads to a drastic con-
sequence: the monopole acquires a half-integer electric charge. It becomes a dyon
with charge 1/2 even in the absence of the θ term. This phenomenon – the charge
fractionalization in the cases with a single complex fermion collective coordinate –
is well known in the literature [115, 16, 34, 17] and dates back to Jackiw and
Rebbi [117].

3.4.5 The monopole supermultiplet:
dimension of the BPS representations

As was first noted by Montonen and Olive [118], all states in N = 2 model –
W bosons and monopoles alike – are BPS saturated. This results in the fact
that supermultiplets of this model are short. Regular (long) supermultiplet would
contain 22N = 16 helicity states, while the short ones contain 2N = 4 helic-
ity states – two bosonic and two fermionic. This is in full accord with the
fact that the number of the fermion zero modes on the given monopole solu-
tion is four, resulting in dim-4 representation of the supersymmetry algebra. If
we combine particles and antiparticles together, as is customary in field the-
ory, we will have one Dirac spinor on the fermion side of the supermultiplet.
This statement is valid in both cases, the monopole supermultiplet and that of
W -bosons.

3.5 More on kinks (in N = 2 CP(1) model)

Kinks in two-dimensional N = 2 CP(N − 1) models will play a crucial role in
our subsequent studies of confined monopoles in Part II of this book (see e.g.
Sections 4.4.1, 4.4.3, 4.4.4, and 4.5). Here we will review basic features of such
kinks using CP(1) as the simplest example.
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The Lagrangian of the CP(1) model with the twisted mass has the form [32]

LCP(1) = G
{
∂μφ

† ∂μφ − |m|2φ† φ + i

2

(
ψ

†
L

↔
∂R ψL + ψ

†
R

↔
∂LψR

)
− i

1 − φ† φ

χ

(
mψ

†
LψR + m̄ψ

†
RψL

)
− i

χ

[
ψ

†
LψL

(
φ†

↔
∂R φ

)+ ψ
†
R ψR

(
φ†

↔
∂Lφ

)]
− 2

χ2
ψ

†
L ψL ψ

†
R ψR

}
+ ig2 θ

4π
Gεμν∂μφ

† ∂νφ, (3.5.1)

where

∂L = ∂

∂t
+ ∂

∂z
, ∂R = ∂

∂t
− ∂

∂z
, (3.5.2)

and

G = 2

g2 χ2
, χ = 1 + φφ†. (3.5.3)

Moreover, m is a complex mass parameter and θ is the vacuum angle. The above
Lagrangian has an obvious U(1) symmetry. At m = 0 it describes the N = 2
supergeneralization of the σ model on the sphere S2 (see Appendix B). The metric
of the sphere G is chosen in the Fubini–Study form.

It is not difficult to derive the supercurrent,

Jμα = √
2G
[
∂νφ

†γ νγ μψ + iφ†γ μμψ
]
α

, (3.5.4)

where

μ = m
1 + γ5

2
+ m̄

1 − γ5

2
. (3.5.5)

The superalgebra is centrally extended, as in Eq. (2.3.4) with Z′ = 0 and

Z = mqU(1) − i

∫
dz ∂z

{
mD − 1

2π

(
mg2

0D − i R ψ
†
R ψL

)}
, (3.5.6)

where

R = 2

χ2
, D = 2

g2

φ†φ

χ
, (3.5.7)

and qU(1) is the Noether charge corresponding to the U(1) current

Jμ = G
[
φ†i

↔
∂μφ + ψ̄γμ

(
ψ + �φ ψ

)]
, � = −2

φ†

χ
. (3.5.8)
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Thus, the term mqU(1) in Z represents the Noether charge while the integral
represents the topological charge.

The first two terms are classical, while the term in parentheses is the quantum
anomaly derived in [33, 34].12 At large |m| the theory is at weak coupling.

3.5.1 BPS solitons at the classical level

The U(1) invariant scalar potential term

V = |m|2G φ̄φ (3.5.9)

lifts the vacuum degeneracy leaving us with two discrete vacua: at the south and
north poles of the sphere (Fig. 3.11) i.e. φ = 0 and φ = ∞.

The kink solutions interpolate between these two vacua. Let us focus, for
definiteness, on the kink with the boundary conditions

φ → 0 at z → −∞, φ → ∞ at z → ∞ . (3.5.10)

Consider the following linear combinations of supercharges

Q = QR − i e−iβQL, Q̄ = Q̄R + i eiβQ̄L, (3.5.11)

Figure 3.11. Meridian slice of the target space sphere (thick solid line). Arrows
present the scalar potential in (3.5.1), their length being the strength of the potential.
Two vacua of the model are denoted by closed circles.

12 In the first of these papers only the bifermion part of the anomaly was obtained. The full anomalous term in
the central charge (3.5.6) was found in [34]; later it was confirmed in [119].
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where β is the argument of the mass parameter,

m = |m| eiβ . (3.5.12)

Then

{QQ̄} = 2H − 2Z , {QQ} = {Q̄Q̄} = 0. (3.5.13)

Now, let us require Q and Q̄ to vanish on the classical solution. Since for static
field configurations

Q = − (∂zφ̄ − |m|φ̄) (�R + ie−iβ�L
)

,

the vanishing of these two supercharges implies

∂zφ̄ = |m|φ̄ or ∂zφ = |m|φ . (3.5.14)

This is the BPS equation in the CP(1) model with the twisted mass.
The BPS equation (3.5.14) has a number of peculiarities compared to those in

more familiar Wess–Zumino models. The most important feature is its complexifi-
cation, i.e. the fact that Eq. (3.5.14) is holomorphic in φ.

The solution of this equation is, of course, trivial, and can be written as

φ(z) = e|m|(z−z0)−iα . (3.5.15)

Here z0 is the kink center while α is an arbitrary phase. In fact, these two parameters
enter only in the combination |m|z0 + iα. We see that the notion of the kink center
also gets complexified.

The physical meaning of the modulusα is obvious: there is a continuous family of
solitons interpolating between the north and south poles of the target space sphere.
This is due to U(1) symmetry. The soliton trajectory can follow any meridian
(Fig. 3.12).

Equation (3.5.6) for the central charge implies that classically the kink mass is

M0 = |m| (D(∞)−D(0)) = 2|m|
g2

. (3.5.16)

(The subscript 0 emphasizes that this result is obtained at the classical level.)
Quantum corrections will be considered shortly.
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Figure 3.12. The soliton solution family. The collective coordinate α in Eq.
(3.5.15) spans the interval 0 ≤ α ≤ 2π . For given α the soliton trajectory on
the target space sphere follows a meridian, so that when α varies from 0 to 2π all
meridians are covered.

3.5.2 Quantization of the bosonic moduli

To carry out conventional quasiclassical quantization we, as usual, assume the
moduli z0 and α in Eq. (3.5.15) to be (weakly) time-dependent, substitute (3.5.15)
in the bosonic part of the Lagrangian (3.5.1), integrate over z and arrive at

LQM = −M0 + M0

2
ż2

0 +
{

1

g2|m| α̇
2 − θ

2π
α̇

}
. (3.5.17)

The first term is the classical kink mass, the second describes free motion of the
kink along the z axis. The term in the braces is most interesting. The variable α is
compact. Its very existence is related to the exact U(1) symmetry of the model. The
energy spectrum corresponding to α dynamics is quantized. It is not difficult to see
that

E[α] = g2|m|
4

q2
U(1), (3.5.18)

where qU(1) is the U(1) charge of the soliton,

qU(1) = k + θ

2π
, k = an integer. (3.5.19)

Here we see the Witten phenomenon at work, analogously to that discussed in
Section 3.3.8 for monopoles. The kink U(1) charge is no longer integer in the
presence of the θ term, it is shifted by θ/(2π).

https://doi.org/10.1017/9781009402200.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.003


72 The main building blocks

3.5.3 The kink mass and holomorphy

Taking account of E[α] – the energy of an “internal motion” – the kink mass can be
written as

M = 2|m|
g2

+ g2|m|
4

(
k + θ

2π

)2

= 2|m|
g2

{
1 + g4

4

(
k + θ

2π

)2
}1/2

= 2|m|
∣∣∣∣ 1

g2
+ i

θ + 2πk

4π

∣∣∣∣ . (3.5.20)

Formally, the second equality here is approximate, valid to the leading order in the
coupling constant. In fact, it is exact. The important circumstance to be stressed is
that the kink mass depends on a special combination of the coupling constant and
θ , namely,

τ = 1

g2
+ i

θ

4π
(3.5.21)

In other words, it is the complexified coupling constant that enters.
Note that g2 in Eq. (3.5.20) is the bare coupling constant. It is quite clear that the

kink mass, being a physical parameter, should contain the renormalized constant
g2(m), after taking account of radiative corrections.

Since the kink mass M = |Z| radiative corrections must replace the bare 1/g2

by the renormalized 1/g2(m) inZ. One-loop calculation is quite trivial. First, rotate
the mass parameter m in such a way as to make it real, m → |m|. Simultaneously,
the θ angle is replaced by an effective θ ,

θ → θeff = θ + 2β, (3.5.22)

where the phase β is defined in Eq. (3.5.11). Next, decompose the field φ into a
classical plus quantum part,

φ → φ + δφ.

Then the D part of the central charge

Z = mq − i

∫
dz ∂z mD

becomes

D → D + 2

g2

1 − φ†φ(
1 + φ̄φ

)3 δφ† δφ. (3.5.23)
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(The term in parentheses in (3.5.6) – the anomaly – gives a non-logarithmic con-
tribution which we ignore for the time being.) Contracting δφ† δφ into a loop and
calculating this loop we arrive at

D → φ†φ

χ

[
2

g2
− 2

4π
ln
M2

uv

|m|2
]

, (3.5.24)

which, in turn, yields

Z = 2im

{
τ − 1

4π
ln
M2

uv

m2
− i

k

2

}
≡ 2im

{
τren − i

k

2

}
. (3.5.25)

A salient feature of this formula is the holomorphic dependence of Z on m and τ .
Such holomorphic dependence would be impossible if two and more loops con-
tributed to D renormalization. Thus, D renormalization beyond one loop must
cancel, and it does.13 Note also that the bare coupling in Eq. (3.5.25) conspires with
the logarithm in such a way as to replace the bare coupling by that renormalized at
|m|, as was expected.

The analysis carried out above is quasiclassical. It tells us nothing about possible
occurrence of nonperturbative terms in Z. In fact, all terms of the type

{
M2

uv

m2
exp (−4πτ)

}�
, � = integer

are fully compatible with holomorphy; they can and do emerge from instantons.
An indirect calculation of nonperturbative terms was performed in Ref. [30].

The exact formula for this central charge obtained by Dorey is

Z = mq − imD T , (3.5.26)

where the subscript D in mD appears for historical reasons, in parallel with the
Seiberg–Witten solution (it stands for dual), and

mD = m

π

⎡
⎣1

2
ln
m+ √

m2 + 4�2

m− √
m2 + 4�2

−
√

1 + 4�2

m2

⎤
⎦ . (3.5.27)

Furthermore, T is the topological charge of the kink under consideration, T = ±1.
The limit |m|/� → ∞ corresponds to the quasiclassical domain, while corrections
of the type (�/m)2k are induced by instantons.

13 Fermions are important for this cancellation.
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It is instructive to consider the quasiclassical limit of Eq. (3.5.27) when the mass
m is real and large, m � �. In this limit

〈
Z
〉
kink = − i m

2π

[
ln
(
− m2

�2

)
− 2

]

= 1

2
m− im

(
2

g2
0

− 1

2π
ln
M2

uv

m2

)
+ i m

π
, (3.5.28)

where g2
0 is the bare coupling constant, and Muv is the ultraviolet cut off. The first

term in the second line reflects the fractional U(1) charge, q = 1/2, carried by
the soliton at θ = 0. The reason for the occurrence of half-integer charge will be
explained in detail in Section 3.5.5. The second term coincides with the one-loop
corrected average of (−i∫dz∂zOcanon) in the central charge. The third term im/π

represents the anomaly.
What happens when one travels from the domain of large |m| to that of small |m|?

If m = 0 we know (e.g. from the mirror representation [120]) that there are two
degenerate two-dimensional kink supermultiplets, corresponding to the Cecotti–
Fendley–Intriligator–Vafa (CFIV) index = 2 [121]. They have quantum numbers
{q, T } = (0, 1) and (1, 1), respectively. Away from the point m = 0 the masses
of these states are no longer equal; there is one singular point with one of the two
states becoming massless [34]. The region containing the pointm = 0 is separated
from the quasiclassical region of large m by the curve of marginal stability (CMS)
on which an infinite number of other BPS states, visible quasiclassically, decay,
see Fig. 3.13.14 Thus, the infinite tower of the {q, T } BPS states existing in the
quasiclassical domain degenerates in just two stable BPS states in the vicinity of
m = 0.

3.5.4 Fermions in quasiclassical consideration

Non-zero modes are irrelevant for our consideration since, being combined with the
boson non-zero modes, they cancel for critical solitons, a usual story. Thus, for our
purposes it is sufficient to focus on the (static) zero modes in the kink background
(3.5.15). The coefficients in front of the fermion zero modes will become (time-
dependent) fermion moduli, for which we are going to build corresponding quantum
mechanics. There are two such moduli, η̄ and η.

14 CMS for CP(N − 1) with N > 2 is considered in [122].
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Re m2

Im m2

0

Figure 3.13. Curve of marginal stability in CP(1) with twisted mass. We set
4�2 → 1. From Ref. [34].

The equations for the fermion zero modes are

∂z�L − 2

χ

(
φ̄∂zφ

)
�L − i

1 − φ̄φ

χ
|m|eiβ�R = 0,

∂z�R − 2

χ

(
φ̄∂zφ

)
�R + i

1 − φ̄φ

χ
|m|e−iβ�L = 0 (3.5.29)

(plus similar equations for �̄; since our operator is Hermitean we do not need to
consider them separately).

It is not difficult to find a solution to these equations, either directly, or using
supersymmetry. Indeed, if we know the bosonic solution (3.5.15), its fermionic
superpartner – and the fermion zero modes are such superpartners – is obtained
from the bosonic one by those two supertransformations which act on φ̄, φ
nontrivially. In this way we conclude that the functional form of the fermion zero
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mode must coincide with the functional form of the boson solution (3.5.15).
Concretely,

(
�R

�L

)
= η

(
g2|m|

2

)1/2 ( −ie−iβ
1

)
e|m|(z−z0) (3.5.30)

and (
�̄R

�̄L

)
= η̄

(
g2|m|

2

)1/2 (
ieiβ

1

)
e|m|(z−z0), (3.5.31)

where the numerical factor is introduced to ensure proper normalization of the
quantum-mechanical Lagrangian. Another solution which asymptotically, at large
z, behaves as e3|m|(z−z0) must be discarded as non-normalizable.

Now, to perform quasiclassical quantization we follow the standard route: the
moduli are assumed to be time-dependent, and we derive quantum mechanics of
moduli starting from the original Lagrangian (3.5.1). Substituting the kink solution
and the fermion zero modes for � one gets

L′
QM = i η̄η̇. (3.5.32)

In the Hamiltonian approach the only remnants of the fermion moduli are the
anticommutation relations

{η̄η} = 1, {η̄η̄} = 0, {ηη} = 0, (3.5.33)

which tell us that the wave function is two-component (i.e. the kink supermultiplet
is two-dimensional). One can implement Eq. (3.5.33) by choosing e.g. η̄ = σ+,
η = σ−.

The fact that there are two critical kink states in the supermultiplet is consistent
with the multiplet shortening in N = 2. Indeed, in two dimensions the full N = 2
supermultiplet must consist of four states: two bosonic and two fermionic. 1/2 BPS
multiplets are shortened – they contain twice less states than the full supermultiplets,
one bosonic and one fermionic. This is to be contrasted with the single-state kink
supermultiplet in the minimal supersymmetric model of Section 3.1.1. The notion
of the fermion parity remains well-defined in the kink sector of the CP(1) model.

3.5.5 Combining bosonic and fermionic moduli

Quantum dynamics of the kink at hand is summarized by the Hamiltonian

HQM = M0

2
˙̄ζ ζ̇ (3.5.34)
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acting in the space of two-component wave functions. The variable ζ here is a
complexified kink center,

ζ = z0 + i

|m| α. (3.5.35)

For simplicity, we set the vacuum angle θ = 0 for the time being (it will be reinstated
later).

The original field theory we deal with has four conserved supercharges. Two of
them, Q and Q̄, see Eq. (3.5.11), act trivially in the critical kink sector. In moduli
quantum mechanics they take the form

Q = √
M0 ζ̇ η, Q̄ = √

M0
˙̄ζ η̄ ; (3.5.36)

they do indeed vanish provided that the kink is at rest. Superalgebra describing
kink quantum mechanics is {Q̄ Q} = 2HQM. This is nothing but Witten’s N = 1
supersymmetric quantum mechanics [123] (two supercharges). The realization we
deal with is peculiar and distinct from that of Witten. Indeed, the standard Wit-
ten quantum mechanics includes one (real) bosonic degree of freedom and two
fermionic, while we have two bosonic degrees of freedom, x0 and α. Neverthe-
less, superalgebra remains the same due to the fact that the bosonic coordinate is
complexified.

Finally, to conclude this section, let us calculate the U(1) charge of the
kink states. We start from Eq. (3.5.8), substitute the fermion zero modes and
get15

�qU(1) = 1

2
[η̄η] (3.5.37)

(this is to be added to the bosonic part, Eq. (3.5.19)). Given that η̄ = σ+ and
η = σ− we arrive at �qU(1) = 1

2σ3. This means that the U(1) charges of two kink
states in the supermultiplet split from the value given in Eq. (3.5.19): one has the
U(1) charge

k + 1

2
+ θ

2π
,

15 To set the scale properly, so that the U(1) charge of the vacuum state vanishes, one must antisymmetrize the
fermion current, �̄γ μ� → (1/2)

(
�̄γ μ� − �̄cγ μ�c

)
where the superscript c denotes C conjugation.

https://doi.org/10.1017/9781009402200.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.003


78 The main building blocks

and another

k − 1

2
+ θ

2π
.

In this way we explain the occurrence of 1/2 seen from the quasiclassical expansion
of the exact formula (3.5.28).
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