
J. Appl. Prob. 49, 1015–1035 (2012)
Printed in England

© Applied Probability Trust 2012

ON A NEW CLASS OF TEMPERED STABLE
DISTRIBUTIONS: MOMENTS AND
REGULAR VARIATION

MICHAEL GRABCHAK,∗ University of North Carolina at Charlotte

Abstract

We extend the class of tempered stable distributions, which were first introduced in
Rosiński (2007). Our new class allows for more structure and more variety of the tail
behaviors. We discuss various subclasses and the relations between them. To characterize
the possible tails, we give detailed results about finiteness of various moments. We also
give necessary and sufficient conditions for the tails to be regularly varying. This last part
allows us to characterize the domain of attraction to which a particular tempered stable
distribution belongs.
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1. Introduction

Tempered stable distributions were defined in Rosiński [20] as a class of models obtained by
modifying the Lévy measures of stable distributions by multiplying their densities by completely
monotone functions. This allows for models that are similar to stable distributions in some
central region, but possess lighter (i.e. tempered) tails. It has been observed that these models
provide a good fit to data in a variety of applications. These include mathematical finance [9],
[15], biostatistics [2], [19], computer science [13], and physics [8], [18]. An explanation for
why such models might appear in applications is given in [11].

The purpose of this paper is twofold. First, we provide necessary and sufficient conditions
for tempered stable distributions to have regularly varying tails. This is important both from a
theoretical perspective, since it will allow us to classify which domain of attraction a tempered
stable distribution belongs to, and from an applied point of view, since such models are often
used in practice.

Our second purpose is to introduce the class of p-tempered α-stable distributions, where
p > 0 and α < 2. The parameter p controls the amount of tempering, while α is the index of
stability of the corresponding stable distribution. Clearly, the case where α ≤ 0 no longer has
any meaning in terms of tempering stable distributions; however, it allows the class to be more
flexible. In fact, within certain subclasses, the case where α ≤ 0 has been shown to provide a
good fit to data; see, e.g. [2] or [9].

This class combines a number of important subclasses that have been studied separately in
the literature. In particular, when p = 1 and α ∈ (0, 2), it coincides with Rosiński’s [20]
tempered stable distributions. When p = 2 and α ∈ [0, 2), it coincides with the class of
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tempered infinitely divisible distributions defined in [6]. If we allow the distributions to have
a Gaussian part then we would have the class Jα,p defined in [16]. This, in turn, contains
important subclasses including the Thorin class (when p = 1 and α = 0), the Goldie–Steutel–
Bondesson class (when p = 1 and α = −1), the class of type-M distributions (when p = 2 and
α = 0), and the class of type-G distributions (when p = 2 and α = −1). For more information
on these classes, see [3], [4], and the references therein.

This paper is structured as follows. In Section 2 we define p-tempered α-stable distributions
and state some basic results. We show that, as with tempered stable distributions, for a fixed
α and p, all elements of this class are uniquely determined by a Rosiński measure R and
a shift b. The remaining two sections are concerned with relating the tails of the Rosiński
measure to the tails of the distribution. In Section 3 we give necessary and sufficient conditions
for the existence of moments and exponential moments. We also give explicit formulae for the
cumulants. Finally, in Section 4 we give necessary and sufficient conditions for the tails to be
regularly varying. Specifically, we show that the tails of a p-tempered α-stable distribution are
regularly varying if and only if the tails of the corresponding Rosiński measure are regularly
varying.

Before proceeding, recall that the characteristic function of an infinitely divisible distribution
µ on R

d can be written as µ̂(z) = exp{Cµ(z)}, where

Cµ(z) = −1

2
〈z, Az〉 + i〈b, z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i

〈z, x〉
1 + |x|2

)
M(dx), (1)

A is a symmetric nonnegative-definite d × d matrix, b ∈ R
d , and M satisfies

M({0}) = 0 and
∫

Rd

(|x|2 ∧ 1)M(dx) < ∞.

The measure µ is uniquely identified by the Lévy triplet (A, M, b) and we write µ =
ID(A, M, b).

2. p-tempered α-stable distributions

Recall that, for α ∈ (0, 2), the Lévy measure of an α-stable distribution with spectral measure
σ is given by

L(B) =
∫

Sd−1

∫ ∞

0
1B(ru)r−α−1drσ (du), B ∈ B(Rd).

By analogy, we define the following.

Definition 1. Fix α < 2 and p > 0. An infinitely divisible probability measure µ is called a
p-tempered α-stable distribution if it has no Gaussian part and its Lévy measure is given by

M(B) =
∫

Sd−1

∫ ∞

0
1B(ru)q(rp, u)r−α−1drσ (du), B ∈ B(Rd), (2)

where σ is a finite Borel measure on S
d−1 and q : (0, ∞)×S

d−1 �→ (0, ∞) is a Borel function
such that, for all u ∈ S

d−1, q(·, u) is completely monotone and

lim
r→∞ q(r, u) = 0. (3)
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We denote the class of p-tempered α-stable distributions by TSp
α . If, in addition,

lim
r↓0

q(r, u) = 1 for every u ∈ S
d−1

then µ is called a proper p-tempered α-stable distribution.

Remark 1. The complete monotonicity of q(·, u) implies that, for each u ∈ S
d−1, the function

q(r, u) is differentiable and monotonically decreasing in r . Moreover, by Bernstein’s theorem
(see, e.g. Theorem 1a of [10, Section XIII.4]),

q(rp, u) =
∫

(0,∞)

e−rpsQu(ds) (4)

for some measurable family {Qu}u∈Sd−1 of Borel measures on (0, ∞). For a guarantee that
we can take the family to be measurable, see Remark 3.2 of [4]. Note that the condition
limr↓0 q(r, u) = 1 for every u ∈ S

d−1 is equivalent to the condition that {Qu}u∈Sd−1 is a family
of probability measures.

Remark 2. From (4), it follows that, as p increases, the tails of M (as given in (2)) go to zero
quicker. In this sense p controls the extent to which the tails of the Lévy measure are tempered.

Remark 3. For α ∈ (0, 2) and p > 0, all proper p-tempered α-stable distributions belong to
the class of generalized tempered stable distributions defined in [21]. Many important results
about their Lévy processes are given there. These include short time behavior, conditions for
absolute continuity with respect to the underlying stable process, and a series representation;
see Theorems 3.1, 4.1, and 5.5 of [21] for details.

Remark 4. From Theorem 15.10 of [25], it follows that p-tempered α-stable distributions are
self-decomposable if and only if q(rp, u)r−α is a decreasing function of r for every u ∈ S

d−1.
By Remark 1, this always holds when α ∈ [0, 2). Thus, when α ∈ [0, 2), p-tempered α-stable
distributions inherit properties of self-decomposable distributions. In particular, if they are
nondegenerate then they are absolutely continuous with respect to the Lebesgue measure in
d-dimensions and when d = 1, they are unimodal.

Following [20], we will reparametrize the Lévy measure M into a form that is often easier
to work with. Let Q be a Borel measure on R

d given by

Q(A) =
∫

Sd−1

∫
(0,∞)

1A(ru)Qu(dr)σ (du), A ∈ B(Rd).

Note that Q({0}) = 0. Define a Borel measure R on R
d by

R(A) =
∫

Rd

1A

(
x

|x|1+1/p

)
|x|α/pQ(dx), A ∈ B(Rd), (5)

and again note that R({0}) = 0. To get the inverse transformation, we have

Q(A) =
∫

Rd

1A

(
x

|x|p+1

)
|x|αR(dx), A ∈ B(Rd).

The following result extends Theorem 2.3 of [20].
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Theorem 1. Fix p > 0. Let M be given by (2), and let R be given by (5).

1. We can write

M(A) =
∫

Rd

∫ ∞

0
1A(tx)t−1−αe−tp dtR(dx), A ∈ B(Rd), (6)

or, equivalently,

M(A) = p−1
∫

Rd

∫ ∞

0
1A(t1/px)t−1−α/pe−tdtR(dx), A ∈ B(Rd).

2. Equation (6) defines a Lévy measure if and only if either R = 0 or the following hold:

α < 2, R({0}) = 0, (7)

and ∫
Rd

(|x|2 ∧ |x|α)R(dx) < ∞ if α ∈ (0, 2), (8a)∫
Rd

(|x|2 ∧ [1 + log+ |x|])R(dx) < ∞ if α = 0, (8b)∫
Rd

(|x|2 ∧ 1)R(dx) < ∞ if α < 0. (8c)

Moreover, when R satisfies these conditions, M is the Lévy measure of a p-tempered
α-stable distribution and it uniquely determines R.

3. A p-tempered α-stable distribution is proper if and only if in addition to (7) and (8) R

satisfies ∫
Rd

|x|αR(dx) < ∞. (9)

4. If R satisfies (9) then in (2) the measure σ is given by

σ(B) =
∫

Rd

1B

(
x

|x|
)

|x|αR(dx), B ∈ B(Sd−1).

Note that, for all α < 2, the conditions in (8) imply the necessity of∫
Rd

(|x|2 ∧ |x|α)R(dx) < ∞ and
∫

Rd

(|x|2 ∧ 1)R(dx) < ∞.

Before proving Theorem 1, we will translate the integrability conditions on R into integrability
conditions on {Qu}u∈Sd−1 and σ .

Corollary 1. Fix p > 0, let M be given by (2), and let {Qu} be as in (4). Then M is a Lévy
measure if and only if either

Qu(R+) = 0 σ -almost everywhere

or α < 2 and ∫
Sd−1

∫ ∞

0
(t−(2−α)/p ∧ 1)Qu(dt)σ (du) < ∞, α ∈ (0, 2),∫

Sd−1

∫ ∞

0
(t−2/p ∧ [1 + log+(t−1/p)])Qu(dt)σ (du) < ∞, α = 0,∫

Sd−1

∫ ∞

0
(t−(2−α)/p ∧ tα/p)Qu(dt)σ (du) < ∞, α < 0.
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Note that these conditions guarantee that, for any p > 0 and σ -almost everywhere u, (3)
holds and

∫
Rd e−rpsQu(ds) < ∞.

Proof of Theorem 1. We omit most parts of the proof because they are similar to the case
when p = 1 and α ∈ (0, 2), which is given in [20]. We only show that, when M is given by
(6), it is a Lévy measure if and only if (7) and (8) hold. Assume that R �= 0, since the other
case is trivial. We have

M({0}) =
∫

Rd

∫ ∞

0
1{0}(tx)t−α−1e−tp dtR(dx) =

∫
{0}

∫ ∞

0
t−1−αe−tp dtR(dx),

which equals 0 if and only if R({0}) = 0.
Now assume that

∫
(|x|2 ∧ 1)M(dx) < ∞. For any ε > 0,

∞ >

∫
|x|≤1

|x|2M(dx)

=
∫

Rd

|x|2
∫ |x|−1

0
t1−αe−tp dtR(dx)

≥
∫

|x|≤1/ε

|x|2
∫ ε

0
t1−αe−tp dtR(dx)

≥ e−εp

∫
|x|≤1/ε

|x|2
∫ ε

0
t1−αdtR(dx).

Since R �= 0, for this to be finite for all ε > 0, it is necessary that α < 2. Taking ε = 1 gives
the necessity of

∫
|x|≤1 |x|2R(dx) < ∞. Observe that

∞ >

∫
|x|≥1

M(dx)

=
∫

Rd

∫ ∞

|x|−1
t−1−αe−tp dtR(dx)

≥
∫

|x|≥1

∫ ∞

|x|−1
t−1−αe−tp dtR(dx)

≥
∫ ∞

1
t−1−αe−tp dt

∫
|x|≥1

R(dx) + e−1
∫

|x|≥1

∫ 1

|x|−1
t−1−αdtR(dx).

This implies the necessity of
∫
|x|≥1 R(dx) < ∞ and

∫
|x|≥1

∫ 1
|x|−1 t−1−αdtR(dx) < ∞. When

α < 0, we are done. When α = 0, this implies the finiteness of
∫
|x|≥1 log |x|R(dx), and when

α ∈ (0, 2), it implies the finiteness of
∫
|x|≥1 |x|αR(dx). Thus, (7) and (8) hold.

Now assume that (7) and (8) hold. We have∫
|x|≤1

|x|2M(dx) =
∫

Rd

|x|2
∫ |x|−1

0
t1−αe−tp dtR(dx)

≤
∫

|x|≤1
|x|2R(dx)

∫ ∞

0
t1−αe−tp dt +

∫
|x|>1

|x|2
∫ |x|−1

0
t1−αdtR(dx)

= p−1�

(
2 − α

p

) ∫
|x|≤1

|x|2R(dx) + (2 − α)−1
∫

|x|>1
|x|αR(dx)

< ∞.
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Let D = supt≥1 t2−αe−tp . We have∫
|x|≥1

M(dx) =
∫

Rd

∫ ∞

|x|−1
t−1−αe−tp dtR(dx)

≤ D

∫
|x|≤1

∫ ∞

|x|−1
t−3dtR(dx) +

∫
|x|>1

∫ ∞

|x|−1
t−1−αe−tp dtR(dx).

The first integral in the above equals 0.5D
∫
|x|≤1 |x|2R(dx), which is assumed finite. The

second integral can be written as∫
|x|>1

∫ 1

|x|−1
t−1−αe−tp dtR(dx) +

∫ ∞

1
t−1−αe−tp dt

∫
|x|>1

R(dx).

Of these, the second integral is finite since
∫
|x|>1 R(dx) < ∞. The first is bounded by∫

|x|>1(|x|α − 1)R(dx)/α when α �= 0 and by
∫
|x|>1 log |x|R(dx) when α = 0. The fact

that both of these are assumed to be finite gives the result.

Definition 2. The unique measure in (5) is called the Rosiński measure of the corresponding
p-tempered α-stable distribution.

Remark 5. For α ∈ (0, 2) and p = 1, the Rosiński measure was called the spectral measure
in [20]. For α ∈ [0, 2) and p = 2, the Rosiński measure was introduced in a slightly different
parametrization in [6].

Remark 6. Fix α < 2 and p > 0, and let µ ∈ TSp
α with Rosiński measure R. Then µ =

ID(0, M, b) for some b ∈ R
d and M uniquely determined by R. We write TSp

α(R, b) to denote
this distribution.

Theorem 1 shows that, for a fixed p > 0 and α < 2, the Rosiński measure is uniquely
determined by the Lévy measure. This leaves the question of whether all of the parameters
are jointly identifiable. Unfortunately, this is not the case. As we will show below, even for a
fixed p > 0 the parameters α and R are not jointly identifiable. However, using ideas similar
to those in [20], we will show that, for a fixed p > 0, in the subclass of proper tempered
stable distributions, they are jointly identifiable. On the other hand, for a fixed α < 2, even
in the subclass of proper tempered stable distributions, the parameters p and R are not jointly
identifiable. We begin with the following lemma.

Lemma 1. Fix α < 2 and p > 0, and let M be the Lévy measure of a p-tempered α-stable
distribution with Rosiński measure R �= 0.

1. The map s �→ sαM(|x| > s) is decreasing and lims→∞ sαM(|x| > s) = 0.

2. If α ∈ (0, 2) then

lim
s↓0

sαM(|x| > s) = 1

α

∫
Rd

|x|αR(dx)

and if α ≤ 0 then
lim
s↓0

sαM(|x| > s) = ∞.

3. If α < 0 then

lim
s↓0

sαM(|x| < s) = 1

|α|
∫

Rd

|x|αR(dx)
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and if α ∈ [0, 2) then, for all s > 0,

M(|x| < s) = ∞.

Lemma 1 extends Corollary 2.5 of [20]. Note that it implies that, in the subclass of proper
tempered stable distributions, both lims↓0 sαM(|x| > s) = ∞ and M(|x| < s) = ∞ if and
only if α = 0.

Proof of Lemma 1. We begin with the first part. Since

sαM(|x| > s) = sα

∫
Rd

∫ ∞

s|x|−1
t−1−αe−tp dtR(dx)

=
∫

Rd

∫ ∞

|x|−1
t−1−αe−(st)p dtR(dx), (10)

the map s �→ sαM(|x| > s) is decreasing. For large enough s, the integrand in (10) is bounded
by t−1−αe−tp , which is integrable. Thus, by dominated convergence,

lim
s→∞ sαM(|x| > s) = 0.

For the second part, by (10) and the monotone convergence theorem,

lim
s↓0

sαM(|x| > s) =
∫

Rd

∫ ∞

|x|−1
t−1−αdtR(dx).

Thus, if α ∈ (0, 2) then

lim
s↓0

sαM(|x| > s) = 1

α

∫
Rd

|x|αR(dx),

and if α ≤ 0 then
lim
s↓0

sαM(|x| > s) = ∞.

Now for the third part. If α ∈ [0, 2) then, for all s > 0,

M(|x| < s) =
∫

Rd

∫ s|x|−1

0
t−1−αe−tp dtR(dx)

≥
∫

Rd

e−(s/|x|)p
∫ s|x|−1

0
t−1−αdtR(dx)

= ∞.

If α < 0 then

lim
s↓0

sαM(|x| < s) = lim
s↓0

sα

∫
Rd

∫ s|x|−1

0
t−1−αe−tp dtR(dx)

= lim
s↓0

∫
Rd

∫ |x|−1

0
t−1−αe−(st)p dtR(dx)

=
∫

Rd

∫ |x|−1

0
t−1−αdtR(dx)

= 1

|α|
∫

Rd

|x|αR(dx),

where the third line follows by the monotone convergence theorem.
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Combining Lemma 1 with (9) gives the following.

Proposition 1. In the subclass of proper tempered stable distributions with parameter p > 0
fixed, the parameters R and α are jointly identifiable.

However, in general, the parameters α and p are not identifiable. This will become apparent
from the following results.

Proposition 2. Fix α < 2 and β ∈ (α, 2), and let K = ∫ ∞
0 sβ−α−1e−sp

ds. If µ = TSp
β(R, b)

and

R′(A) = K−1
∫

Rd

∫ 1

0
1A(ux)u−β−1(1 − up)(β−α)/p−1duR(dx),

then R′ is the Rosiński measure of a p-tempered α-stable distribution and µ = TSp
α(R′, b).

Proof. First we will show that R′ is the Rosiński measure of some p-tempered α-stable
distribution. Let C = maxu∈[0,0.5](1 − up)(β−α)/p−1. We have

K

∫
|x|≤1

|x|2R′(dx) =
∫

Rd

|x|2
∫ 1∧|x|−1

0
u1−β(1 − up)(β−α)/p−1duR(dx)

≤
∫

|x|≤2
|x|2R(dx)

∫ 1

0
u1−β(1 − up)(β−α)/p−1du

+ C

∫
|x|>2

|x|2
∫ |x|−1

0
u1−βduR(dx)

=
∫

|x|≤2
|x|2R(dx)

∫ 1

0
u1−β(1 − up)(β−α)/p−1du

+ C

2 − β

∫
|x|≥2

|x|βR(dx)

< ∞.

If α ∈ (0, 2) then

K

∫
|x|>2

|x|αR′(dx) =
∫

|x|≥2
|x|α

∫ 1/2

|x|−1
uα−1−β(1 − up)(β−α)/p−1duR(dx)

+
∫

|x|≥2
|x|α

∫ 1

1/2
uα−1−β(1 − up)(β−α)/p−1duR(dx)

≤ C

∫
|x|≥2

|x|α
∫ ∞

|x|−1
uα−1−βduR(dx)

+
∫

|x|>2
|x|βR(dx)

∫ 1

1/2
uα−1−β(1 − up)(β−α)/p−1du.

Here the first integral equals (C/(β − α))
∫
|x|≥2 |x|βR(dx) < ∞ and the second is also finite.

Now assume that α = 0 and fix ε ∈ (0, β). By Equation 4.1.37 of [1], there exists a Cε > 0
such that, for all u > 0, log u ≤ Cεu

ε. Thus,

K

∫
|x|>2

log |x|R′(dx) ≤ KCε

∫
|x|>2

|x|εR′(dx),
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which is finite by arguments similar to the previous case. When α < 0,

K

∫
|x|>2

R′(dx) =
∫

|x|>2

∫ 1

|x|−1
u−1−β(1 − up)(β−α)/p−1duR(dx)

≤ C

∫
|x|>2

∫ 1

|x|−1
u−1−βduR(dx)

+
∫

|x|>2
R(dx)

∫ 1

1/2
u−1−β(1 − up)(β−α)/p−1du.

Here the second integral is finite. For β �= 0, the first equals (C/β)
∫
|x|>2(|x|β − 1)R(dx)

which is finite, and, for β = 0, it equals
∫
|x|>2 log |x|R(dx) < ∞.

Now, let M ′ be the Lévy measure of TSp
α(R′, b). By (6),

M ′(A) = K−1
∫

Rd

∫ ∞

0

∫ 1

0
1A(utx)t−1−αe−tpu−β−1(1 − up)(β−α)/p−1du dtR(dx)

= K−1
∫

Rd

∫ ∞

0

∫ t

0
1A(vx)tβ−α−1e−tp v−β−1

(
1 − vp

tp

)(β−α)/p−1

dv dtR(dx)

= K−1
∫

Rd

∫ ∞

0

∫ ∞

v

1A(vx)tp−1e−tp v−β−1(tp − vp)(β−α)/p−1dt dvR(dx)

= K−1
∫

Rd

∫ ∞

0
1A(vx)e−vp

v−β−1dvR(dx)

∫ ∞

0
e−sp

sβ−α−1ds

=
∫

Rd

∫ ∞

0
1A(vx)e−vp

v−β−1dvR(dx),

where the second line follows by the substitution v = ut and the fourth by the substitution
sp = tp − vp.

To show a similar result for the parameter p, we need some additional notation. For r ∈
(0, 1), let fr be the density of the r-stable distribution with∫ ∞

0
e−txfr (x) dx = e−t r .

Such a density exists by Proposition 1.2.12 of [23]. However, the only case where an explicit
formula is known is

f0.5(s) = (2
√

π)−1e−1/(4s)s−3/2 1[s>0]
(see Examples 2.13 and 8.11 of [25]). From Theorem 5.4.1 of [27], it follows that if X ∼ fr

and β ≥ 0, then
E |X|−β < ∞.

Proposition 3. Fix α < 2 and 0 < p < q. If µ = TSp
α(R, b) and

R′(A) =
∫

Rd

∫ ∞

0
1A(s−1/qx)sα/qfp/q(s) dsR(dx),

then R′ is the Rosiński measure of a q-tempered α-stable distribution and µ = TSq
α(R′, b).

Moreover, µ is a proper p-tempered α-stable distribution if and only if it is a proper q-tempered
α-stable distribution.
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This implies that, for a fixed α, the parameters p and R are not jointly identifiable even
within the subclass of proper tempered stable distributions.

Proof of Proposition 3. First we show that R′ is, in fact, the Rosiński measure of a
q-tempered α-stable distribution. We have∫

|x|≤1
|x|2R′(dx) =

∫
Rd

|x|2
∫ ∞

|x|q
s−(2−α)/qfp/q(s) dsR(dx)

≤
∫

|x|≤1
|x|2

∫ ∞

0
s−(2−α)/qfp/q(s) dsR(dx)

+
∫

|x|>1
|x|αR(dx)

∫ ∞

0
fp/q(s) ds

< ∞.

If α �= 0 and β = α ∨ 0, then

∫
|x|>1

|x|βR′(dx) =
∫

Rd

|x|β
∫ |x|q

0
s−(β−α)/qfp/q(s) dsR(dx)

≤
∫

|x|≤1
|x|2

∫ ∞

0
s−(2−α)/qfp/q(s) dsR(dx)

+
∫

|x|>1
|x|β

∫ ∞

0
s−(β−α)/qfp/q(s) dsR(dx)

< ∞.

If α = 0 then ∫
|x|>1

log |x|R′(dx) =
∫

Rd

∫ |x|q

0
log |xs−1/q |fp/q(s) dsR(dx)

≤
∫

|x|≤1
|x|2R(dx)

∫ ∞

0
s−2/qfp/q(s) ds

+
∫

|x|>1
log |x|R(dx)

∫ ∞

0
fp/q(s) ds

+
∫

|x|>1
R(dx)

∫ ∞

0
s−1/qfp/q(s) ds

< ∞,

where the inequality uses the fact that log |x| ≤ |x| (see Equation 4.1.36 of [1]).
If M ′ is the Lévy measure of TSq

α(R′, b) then, by (6),

M ′(A) =
∫

Rd

∫ ∞

0

∫ ∞

0
1A(s−1/q tx)t−1−αe−tq dtsα/qfp/q(s) dsR(dx)

=
∫

Rd

∫ ∞

0
1A(vx)v−1−α

∫ ∞

0
e−vqsfp/q(s) ds dvR(dx)

=
∫

Rd

∫ ∞

0
1A(vx)v−1−αe−vp

dvR(dx).

https://doi.org/10.1239/jap/1354716655 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716655


TSp
α distributions 1025

The last part follows from (9) and the fact that∫
Rd

|x|αR′(dx) =
∫

Rd

|x|αR(dx)

∫ ∞

0
s−α/qsα/qfp/q(s) ds =

∫
Rd

|x|αR(dx).

Propositions 2 and 3 give a constructive proof of the following result, a version of which
was shown in [16].

Corollary 2. Fix α < 2 and p > 0, and let µ ∈ TSp
α .

1. For any q ≥ p, µ ∈ TSq
α .

2. For any β ≤ α, µ ∈ TSp
β .

We end this section by characterizing when a p-tempered α-stable distribution is β-stable
for some β ∈ (0, 2).

Proposition 4. Fix α < 2, p > 0, and β ∈ (0, 2). Let µ be a β-stable distribution with
spectral measure σ �= 0. If β ≤ α then µ /∈ TSp

α . If β ∈ (0 ∨ α, 2) then µ = TSp
α(R, b) and

R(A) = K−1
∫

Sd−1

∫ ∞

0
1A(rξ)r−1−βdrσ (dξ), A ∈ B(Rd), (11)

where K = ∫ ∞
0 tβ−α−1e−tp dt .

Note that ∫
Rd

|x|αR(dx) = K−1σ(Sd−1)

∫ ∞

0
r−(β−α)−1dr = ∞.

Thus, by part 3 of Theorem 1, no stable distributions are proper p-tempered α-stable.

Proof of Proposition 4. If µ ∈ TSp
α then its Lévy measure can be written as (2). By

uniqueness of the polar decomposition of Lévy measures (see Lemma 2.1 of [4]), the function
q(r, u) = r(α−β)/p. This is not completely monotone when β < α, and it does not satisfy (3)
when β = α.

Now assume that β > α and let R be as in (11). In this case R({0}) = 0 and, for any
γ ∈ [0, β),∫

Rd

(|x|2 ∧ |x|γ )R(dx) = K−1σ(Sd−1)

∫ ∞

0
(r1−β ∧ rγ−β−1) dr < ∞.

Thus, by Theorem 1, R is the Rosiński measure of a p-tempered α-stable distribution. If M is
the Lévy measure of TSp

α(R, b) then

M(A) = K−1
∫

Sd−1

∫ ∞

0

∫ ∞

0
1A(rtξ)t−1−αe−tp dtr−1−βdrσ (dξ)

= K−1
∫ ∞

0
tβ−α−1e−tp dt

∫
Sd−1

∫ ∞

0
1A(rξ)r−1−βdrσ (dξ)

=
∫

Sd−1

∫ ∞

0
1A(rξ)r−1−βdrσ (dξ),

which is the Lévy measure of µ.
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3. Moments

In this section we give necessary and sufficient conditions for the finiteness of moments and
exponential moments. We also give explicit formulae for the cumulants when they exist. This
is useful, for instance, in parameter estimation by the method of moments. First we introduce
some notation. For any x ∈ R

d , let xi be the ith component. For simplicity, throughout this
section, we will use M to denote the Lévy measure of a p-tempered α-stable distribution.

Let k be a d-dimensional vector of nonnegative integers. Let Cµ be as in (1). Recall that
we define the cumulant

ck = (−i)
∑

ki
∂

∑
ki

∂z
kd

d · · · ∂z
k1
1

Cµ(z)

∣∣∣∣
z=0

,

when the derivative exists and is continuous in a neighborhood of 0. Cumulants can be uniquely
expressed in terms of moments. Let X ∼ µ. When ki = 1 and kj = 0 for all j �= i, then
ck = E Xi ; when ki = 2 and kj = 0 for all j �= i, then ck = var(Xi); and when, for some
i �= j , ki = kj = 1 and k
 = 0 for all 
 �= i, j , then ck = cov(Xi, Xj ). In the statement of the
following theorem, we adopt the convention that 00 = 1.

Theorem 2. Fix α < 2 and p > 0, and let µ = TSp
α(R, b).

1. If α ∈ (0, 2) and q1, . . . , qd ≥ 0 with q := ∑d
j=1 qj < α, then

∫
Rd

( d∏
j=1

|xj |qj

)
µ(dx) ≤

∫
Rd

|x|qµ(dx) < ∞. (12)

2. If α ∈ (0, 2) then∫
Rd

|x|αµ(dx) < ∞ ⇐⇒
∫

|x|>1
|x|α log |x|R(dx) < ∞. (13)

Additionally, if q1, . . . , qd ≥ 0 with
∑d

j=1 qj = α then

∫
Rd

( d∏
j=1

|xj |qj

)
µ(dx) < ∞

if and only if

∫
|x|>1

( d∏
j=1

|xj |qj

)
log |x|R(dx) < ∞. (14)

3. If q > (α ∨ 0) then∫
Rd

|x|qµ(dx) < ∞ ⇐⇒
∫

|x|>1
|x|qR(dx) < ∞.

Additionally, if q1, . . . , qd ≥ 0 with
∑d

j=1 qj > (α ∨ 0) then

∫
Rd

( d∏
j=1

|xj |rj
)

µ(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d,
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if and only if

∫
|x|>1

( d∏
j=1

|xj |rj
)

R(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d. (15)

4. Let q1, . . . , qd be nonnegative integers, and let q = ∑d
i=1 qi . Furthermore, if q = α,

assume that (14) holds and, if q > α, assume that (15) holds. If qi = q = 1 for some i

then

c(q1,...,qd ) = bi +
∫

Rd

∫ ∞

0
xi

|x|2
1 + |x|2t2 t2−αe−tp dtR(dx).

If q ≥ 2 then

c(q1,...,qd ) = p−1�

(
n − α

p

) ∫
Rd

( d∏
j=1

x
qj

j

)
R(dx).

For proper 1-tempered α-stable distributions with α ∈ (0, 2), a somewhat weaker version
of part 4 above was given in [26].

Proof of Theorem 2. By Corollary 25.8 of [25], the condition
∫

Rd |x|qµ(dx) < ∞ is equiv-
alent to the condition

∫
|x|>1 |x|qM(dx) < ∞. Similarly, by Theorem 1 of [24], the condition∫

Rd (
∏d

j=1 |xj |rj )µ(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d, is equivalent to the condition∫
|x|>1(

∏d
j=1 |xj |rj )M(dx) < ∞ for all rk ∈ [0, qk], k = 1, . . . , d.

We will now transfer the integrability conditions from M to R. Let fq(x) be either |x|q or∏d
j=1 |xj |rj , where

∑d
j=1 rj = q. By (6),∫

|x|>1
fq(x)M(dx) =

∫
Rd

∫ ∞

|x|−1
fq(x)tq−1−αe−tp dtR(dx).

From here, (13) and parts 1 and 3 follow by arguments similar to those in Proposition 2.7 of [20].
The second half of part 2 follows, essentially, from arguments similar to those in Proposition 2.7
of [20] as well, but to guarantee that the integral remains finite for all rk ∈ [0, qk), we use (12).

For general infinitely divisible distributions, the form of the cumulants in terms of the Lévy
measure is given in Theorems 5.1 and 5.2 of [12]. From this, part 4 follows by using (6) and
simplifying.

In the rest of this section we will give conditions for the finiteness of certain exponential
moments.

Theorem 3. Fix α < 2, p ∈ (0, 1], and θ > 0. Let µ = TSp
α(R, b).

1. If α ∈ (0, 2) then∫
Rd

eθ |x|pµ(dx) < ∞ ⇐⇒ R({|x| > θ−1/p}) = 0.

2. If α < 0 then
∫

Rd eθ |x|pµ(dx) < ∞ if and only if

R({|x| ≥ θ−1/p}) = 0 and
∫

0<|x|−p−θ<1
(|x|−p − θ)α/pR(dx) < ∞.
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3. If α = 0 then
∫

Rd eθ |x|pµ(dx) < ∞ if and only if

R({|x| ≥ θ−1/p}) = 0 and
∫

0<|x|−p−θ<1
| log(|x|−p − θ)|R(dx) < ∞.

This implies that, unless R = 0, it is impossible to have
∫

Rd eθ |x|pµ(dx) < ∞ for all
θ > 0. Note that in parts 2 and 3 of Theorem 3 we have the condition R({|x| ≥ θ−1/p}) = 0,
whereas in part 1 we have a similar condition, but with strict inequality. Note also that the
set {0 < |x|−p − θ < 1} = {(1 + θ)−1/p < |x| < θ−1/p}. The latter form may be somewhat
more appealing, but it loses emphasis on why the integrals may diverge.

Proof of Theorem 3. The proof of part 1 is similar to the proof of Proposition 2.7 of [20].
Now fix α ≤ 0. By Corollary 25.8 of [25], the finiteness of

∫
Rd eθ |x|pµ(dx) is equivalent to the

finiteness of
∫
|x|>1 eθ |x|pM(dx). We have∫

|x|>1
eθ |x|pM(dx) =

∫
Rd

∫ ∞

|x|−1
e(θ |x|p−1)tp t−α−1dtR(dx)

≥
∫

|x|p≥θ−1

∫ ∞

θ1/p

t−α−1dtR(dx).

This shows the necessity of R({|x| ≥ θ−1/p}) = 0 in both parts 2 and 3. We will henceforth
assume that this property holds both when showing necessity and sufficiency. We have∫

|x|>1
eθ |x|pM(dx) =

∫
|x|<θ−1/p

∫ ∞

|x|−1
e(θ |x|p−1)tp t−1−αdtR(dx)

= p−1
∫

0<|x|−p−θ

(1 − θ |x|p)α/p

∫ ∞

|x|−p−θ

e−uu−1−α/pduR(dx).

This can be divided into two parts:

p−1
∫

1≤|x|−p−θ

(|x|−p − θ)−|α|/p|x|−|α|
∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

+ p−1
∫

0<|x|−p−θ<1
(|x|−p − θ)−|α|/p|x|−|α|

∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

=: p−1(I1 + I2).

Let Cθ := supu>1 e−uu−1+|α|/p(u + θ)(2+|α|)/p+1. We have

I1 ≤
∫

1≤|x|−p−θ

|x|−|α|
∫ ∞

|x|−p−θ

e−uu−1+|α|/pduR(dx)

≤ Cθ

∫
1≤|x|−p−θ

|x|−|α|
∫ ∞

|x|−p−θ

(u + θ)−(2+|α|)/p−1duR(dx)

= Cθ

p

2 − α

∫
|x|≤(1+θ)−1/p

|x|2R(dx)

< ∞.

Thus, finiteness is determined by I2.
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If α < 0 and 0 < |x|−p − θ < 1, we have∫ ∞

1
e−uu−1+|α|/pdu ≤

∫ ∞

|x|−p−θ

e−uu−1+|α|/pdu ≤ �

( |α|
p

)

and
θ |α|/p ≤ |x|−|α| ≤ (1 + θ)|α|/p.

Thus, when α < 0, I2 is finite if and only if∫
0<|x|−p−θ<1

(|x|−p − θ)−|α|/pR(dx) < ∞.

If α = 0 then, for 0 < |x|−p − θ < 1, we have∫ ∞

|x|−p−θ

e−uu−1du =
∫ ∞

1
e−uu−1du +

∫ 1

|x|−p−θ

e−uu−1du,

where the first integral is finite. For the second, we have∫ 1

|x|−p−θ

e−uu−1du ≤
∫ 1

|x|−p−θ

u−1du = − log(|x|−p − θ)

and ∫ 1

|x|−p−θ

e−uu−1du ≥ e−1
∫ 1

|x|−p−θ

u−1du = −e−1 log(|x|−p − θ).

Thus, when α = 0, the finiteness of I2 is equivalent to the finiteness of

−
∫

0<|x|−p−θ<1
log(|x|−p − θ)R(dx) =

∫
0<|x|−p−θ<1

| log(|x|−p − θ)|R(dx).

This completes the proof.

Theorem 4. Fix α < 2 and p > 0, and let µ = TSp
α(R, b).

1. If q ∈ (0, 1] with q < p then, for any θ > 0,∫
Rd

eθ |x|q µ(dx) < ∞ (16)

whenever ∫
|x|>1

exp{Ap,q(θ |x|q)p/(p−q)}|x|−αq/(p−q)R(dx) < ∞,

where Ap,q = (q/p)q/(p−q)(1 − q/p).

2. If R �= 0 then
∫

Rd eθ |x| log |x|µ(dx) = ∞ for every θ > 0.

For the case where α ∈ (0, 2), p = 2, and q = 1, a necessary and sufficient condition for
(16) is given in [6]. Their method of proof is easily extended to the case when α < 2 and
p = 2q. In this case, the necessary and sufficient condition for (16) is∫

|x|>1
eθ2|x|2q/4|x|−q−αR(dx) < ∞.
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Proof of Theorem 4. We begin with part 1. Fix c = (2p/(θq))1/p. By Corollary 25.8 of
[25], the problem is equivalent to the finiteness of∫

|x|>1
eθ |x|q M(dx) =

∫
|x|≤c

∫ ∞

|x|−1
eθ |x|q tq−tp t−1−αdtR(dx)

+
∫

|x|>c

∫ (θ |x|q )1/(p−q)

|x|−1
eθ |x|q tq−tp t−1−αdtR(dx)

+
∫

|x|>c

∫ ∞

(θ |x|q )1/(p−q)

eθ |x|q tq−tp t−1−αdtR(dx)

=: I1 + I2 + I3.

For the first integral, we have

I1 =
∫

|x|≤c

∫ ∞

|x|−1
eθ |x|q tq−tp t1−αt−2dtR(dx)

≤
∫

|x|≤c

|x|2R(dx)

∫ ∞

c−1
eθcq tq−tp t1−αdt

< ∞.

For the third integral, by the substitution u = tp−q/(θ |x|q), we have

I3 = 1

p − q

∫
|x|>c

(θ |x|q)−α/(p−q)

∫ ∞

1
e−(1−1/u)(uθ |x|q )p/(p−q)

u−1−α/(p−q)duR(dx)

≤ 1

p − q

∫
|x|>c

(θ |x|q)−α/(p−q)R(dx)

∫ ∞

1
e−(1−1/u)(uθcq )p/(p−q)

u−1−α/(p−q)du.

Clearly, this is finite for α ∈ [0, 2). We will show that it is, in fact, always finite when I2 < ∞.
To see this, observe that, after the substitution u = tp−q/(θ |x|q), we have

I2 = 1

p − q

∫
|x|>c

(θ |x|q)−α/(p−q)

∫ 1

|x|−p/θ

e(1/u−1)(uθ |x|q )p/(p−q)

u−1−α/(p−q)duR(dx)

≥ 1

p − q

∫
|x|>c

(θ |x|q)−α/(p−q)R(dx)

∫ 1

c−p/θ

u−1−α/(p−q)du. (17)

Thus, everything is determined by I2.
Note that, as a function of u, (1/u − 1)(uθ |x|q)p/(p−q) is strictly increasing until u = q/p,

where it attains a maximum and is then decreasing. Thus,∫ q/(2p)

|x|−p/θ

e(1/u−1)(uθ |x|q )p/(p−q)

u−1−α/(p−q)du

≤ e(2p/q−1)(θ |x|qq/(2p))p/(p−q)

(|x|pθ)0∨[1+α/(p−q)] (18)

and, for some constant C > 0,∫ 1

q/(2p)

e(1/u−1)(uθ |x|q )p/(p−q)

u−1−α/(p−q)du ≤ Ce(p/q−1)[qp−1θ |x|q ]p/(p−q)

. (19)
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Note that (p/q − 1)(q/p)p/(p−q) = Ap,q . Observing that the right-hand side of (19) goes to
∞ faster than the right-hand side of (18), and combining this with (17) gives part 1.

Now to show part 2. For any h > 0, let Th = {|x| > h}. Assume that R �= 0. Since
R({0}) = 0, there exists a ε > 0 such that R(Tε) > 0. Thus, for any h > 0,

M(Th) =
∫

Rd

∫ ∞

h|x|−1
e−tp t−1−αdtR(dx)

≥
∫

|x|>ε

∫ ∞

hε−1
e−tp t−1−αdtR(dx)

= R(Tε)

∫ ∞

hε−1
e−tp t−1−αdt

> 0.

From here, the result follows by Theorem 26.1 of [25].

4. Regular variation

In this section we give necessary and sufficient conditions for tempered stable distributions
to have regularly varying tails. To simplify the notation, we adopt the following convention.
For c ∈ R and real-valued functions f, g with g strictly positive in some neighborhood of ∞,
we write f (t) ∼ cg(t) as t → ∞ to mean

lim
t→∞

f (t)

g(t)
= c.

We now recall what it means for a measure to have regularly varying tails.

Definition 3. Fix � ≥ 0. Let R be a Borel measure on R
d such that, for some T > 0,

R({x ∈ R
d : |x| > T }) < ∞

and, for all s > 0,
R({x ∈ R

d : |x| > s}) > 0.

We say that R has regularly varying tails with index � if there exists a finite Borel measure
σ �= 0 on S

d−1 such that, for all D ∈ B(Sd−1) with σ(∂D) = 0,

lim
r→∞

R(|x| > rt : x/|x| ∈ D)

R(|x| > r)
= t−� σ (D)

σ(Sd−1)
.

When this holds, we write R ∈ RV−�(σ ).

Clearly, a measure R ∈ RV−�(σ ) if and only if there exists a slowly varying function 
 such
that, for all D ∈ B(Sd−1) with σ(∂D) = 0,

R

(
|x| > t,

x

|x| ∈ D

)
∼ σ(D)t−�
(t) as t → ∞. (20)

It is well known (see, e.g. [5]) that if R ∈ RV−�(σ ) then

∫
|x|≥T

|x|γ R(dx)

{
< ∞ ifγ < �,

= ∞ ifγ > �.
(21)
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Let µ = TSp
α(R, b). If α ∈ (0, 2) then Theorem 2 implies that

∫
Rd |x|�µ(dx) < ∞ for

all � ∈ [0, α), and, hence, by (21), µ cannot have regularly varying tails with index � < α.
However, other tail indices are possible. We will now categorize when µ has regularly varying
tails.

Theorem 5. Fix α < 2 and p > 0. Let µ = TSp
α(R, b), and let M be the Lévy measure of µ.

If � > α ∨ 0 then

µ ∈ RV−�(σ ) ⇐⇒ M ∈ RV−�(σ ) ⇐⇒ R ∈ RV−�(σ ).

Moreover, if M ∈ RV−�(σ ) then, for all D ∈ B(Sd−1) with σ(∂D) = 0 and σ(D) > 0,

lim
r→∞

R(|x| > r, x/|x| ∈ D)

M(|x| > r, x/|x| ∈ D)
= p

�((� − α)/p)
.

Before proving the theorem let us state a useful corollary. Recall that, for γ ∈ (0, 2), a
probability measure µ is in the domain of attraction of a γ -stable distribution with spectral
measure σ �= 0 if and only if µ ∈ RV−γ (σ ). See, e.g. [17] or [22], although they make the
additional assumption that the limiting stable distribution is full.

Corollary 3. Fix α < 2 and p > 0, and let µ = TSp
α(R, b). If σ �= 0 is a finite Borel measure

on S
d−1 and γ ∈ (0 ∨ α, 2), then µ is in the domain of attraction of a γ -stable distribution

with spectral measure σ if and only if R ∈ RV−γ (σ ).

In Theorem 5, the relationship between the regular variation of µ and M is well known;
see, for example, [14]. A proof of the fact that R ∈ RV−�(σ ) implies that M ∈ RV−�(σ ) can
be accomplished using standard tools. However, the other direction requires more complex
arguments. For brevity, we use the same approach for both directions.

Let k : (0, ∞) �→ R be a Borel function. The Mellin transform of k is defined by

k̂(z) =
∫ ∞

0
uz−1k

(
1

u

)
du

for all z ∈ C for which the integral converges. We will need the following result, which
combines Theorems 4.4.2 and 4.9.1 of [7].

Lemma 2. Let −∞ < γ < ρ < τ < ∞, c ∈ R, and let 
 be a slowly varying function.
Assume that k is a continuous and nonnegative function on (0, ∞) such that∑

−∞<n<∞
max{e−γ n, e−τn} sup

en≤x≤en+1
k(x) < ∞

and
k̂(z) �= 0 when Re z = ρ.

Let U be a monotone, right continuous function on (0, ∞) with

lim sup
r↓0

|U(r)|
rγ

< ∞.

Then ∫
(0,∞)

k

(
x

t

)
dU(t) ∼ cρk̂(ρ)xρ
(x) as x → ∞

if and only if
U(x) ∼ cxρ
(x) as x → ∞.
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Let µ = TSp
α(R, b), let M be the Lévy measure of µ, and assume that σ �= 0 is a finite

Borel measure on S
d−1. For all D ∈ B(Sd−1) with σ(∂D) = 0, define, for r > 0,

MD(r) = M

(
|x| > r,

x

|x| ∈ D

)
and

RD(r) = R

(
|x| > r,

x

|x| ∈ D

)
.

Note that, for any integrable function f : R → R,∫
x/|x|∈D

f (|x|)R(dx) = −
∫

(0,∞)

f (x) dRD(x). (22)

Lemma 3. If � > α ∨ 0 and 
 ∈ RV∞
0 , then

MD(r) ∼ σ(D)p−1�

(
� − α

p

)
r−�
(r) as r → ∞

if and only if
RD(r) ∼ σ(D)r−�
(r) as r → ∞.

Proof. For simplicity, let β = α ∨ 0. Note that, by (6) and (22),

MD(r) =
∫

x/|x|∈D

∫ ∞

r|x|−1
t−1−αe−tp dtR(dx)

= −
∫

(0,∞)

∫ ∞

r/x

t−1−αe−tp dt dRD(x)

= −
∫

(0,∞)

k

(
r

x

)
RD(dx),

where

k(s) =
∫ ∞

s

t−α−1e−tp dt = p−1
∫ ∞

sp

t−α/p−1e−t dt.

For Re z < −β,

k̂(z) =
∫ ∞

0
uz−1k

(
1

u

)
du

=
∫ ∞

0
uz−1

∫ ∞

1/u

t−1−αe−tp dt du

=
∫ ∞

0
uz+α−1

∫ ∞

1
t−1−αe−(t/u)p dt du

=
∫ ∞

0
u−z−α−1e−up

du

∫ ∞

1
tz−1 dt

= − 1

pz
�

(−z − α

p

)
.

Thus, since −� < −β,

k(−�) = 1

p�
�

(
� − α

p

)
.

From here, the result will follow by Lemma 2. We just need to verify that the assumptions hold.
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It is easy to see that k is a continuous, nonnegative function on (0, ∞) and that k̂(z) has no
zeros. Fix τ ∈ (−�, −β) and γ < −(� ∨ 2), and let C = supt≥1 t−α/p−1e−t/2. Note that
γ < τ < 0. We have

p

∞∑
n=0

max{e−γ n, e−τn} sup
en≤x≤en+1

k(x) =
∞∑

n=0

e|γ |n
∫ ∞

enp

t−α/p−1e−t/2e−t/2 dt

≤ C

∞∑
n=0

e|γ |n
∫ ∞

enp

e−t/2 dt

= 2C

∞∑
n=0

e|γ |ne−enp/2

< ∞
and

p
∑

−∞<n≤−1

max{e−γ n, e−τn} sup
en≤x≤en+1

k(x) =
∞∑

n=1

e−|τ |n
∫ ∞

e−np

t−α/p−1e−tdt.

When α < 0, this is bounded by∫ ∞

0
t−α/p−1e−t dt

∞∑
n=1

e−|τ |n < ∞.

When α = 0, it is bounded by
∞∑

n=1

e−|τ |n
(∫ 1

e−np

t−1 dt +
∫ ∞

1
e−t dt

)
=

∞∑
n=1

e−|τ |n(np + e−1) < ∞.

When α ∈ (0, 2), it is bounded by
∞∑

n=1

e−|τ |n
∫ ∞

e−np

t−α/p−1 dt = p

α

∞∑
n=1

e−|τ |n+αn = p

α

∞∑
n=1

e−(|τ |−α)n < ∞.

Recall that γ < −2, and note that −RD(r) is a right-continuous, monotonically increasing
function on (0, ∞) with

lim sup
r↓0

| − RD(r)|
rγ

≤ lim sup
r↓0

r2
∫

|x|>r

R(dx)

≤ lim sup
r↓0

∫
1>|x|>r

|x|2R(dr) + lim sup
r↓0

r2R(|x| ≥ 1)

≤
∫

|x|<1
|x|2R(dr)

< ∞.

This completes the proof of Lemma 3.

The proof of Theorem 5 follows immediately from Lemma 3 and (20).

Acknowledgements

Most of the research for this paper was done while the author was a PhD student working
with Professor Gennady Samorodnitsky. Professor Samorodnitsky’s comments and support

https://doi.org/10.1239/jap/1354716655 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716655


TSp
α distributions 1035

are gratefully acknowledged. This work was supported, in part, by funds provided by the
University of North Carolina at Charlotte.

References

[1] Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables, 9th edn. Dover Publications, New York.

[2] Allen, O. O. (1992). Modelling heterogeneity in survival analysis by the compound Poisson distribution. Ann.
Appl. Prob. 2, 951–972.
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