Contents

Pı	eface	to the First Edition A	oage xv
Ρı	eface	to the Second Edition	xviii
A	note c	on the choice of metric	XX
Te	xt wei	bsite	xxi
		Part 1 Effective field theory: the Standard Model, supersymmetry,	
		unification	1
1	Befo	re the Standard Model	3
	Sugg	gested reading	7
2	The S	Standard Model	8
	2.1	Yang–Mills theory	8
	2.2	Realizations of symmetry in quantum field theory	10
	2.3	The quantization of Yang–Mills theories	16
	2.4	The particles and fields of the Standard Model: gauge bosons and fermion	s 20
	2.5	The particles and fields of the Standard Model: Higgs scalars and the	
		complete Standard Model	22
	2.6	The gauge boson masses	23
	2.7	Quark and lepton masses	24
	2.8	The Higgs field and its couplings	25
	Sugg	gested reading	26
	Exe	rcises	26
3	Phen	omenology of the Standard Model	27
	3.1	The weak interactions	27
	3.2	Discovery of the Higgs	29
	3.3	The quark and lepton mass matrices	32
	3.4	The strong interactions	34
	3.5	The renormalization group	36
	3.6	Calculating the beta function	39
	3.7	The strong interactions and dimensional transmutation	43
	3.8	Confinement and lattice gauge theory	44
	3.9	Strong interaction processes at high momentum transfer	51
	Sugg	gested reading	61
	Exer	rcises	62

vii

4	The S	tandard Model as an effective field theory	63
	4.1	Integrating out massive fields	63
	4.2	Lepton and baryon number violation; neutrino mass	67
	4.3	Challenges for the Standard Model	71
	4.4	The naturalness principle	74
	4.5	Summary: successes and limitations of the Standard Model	75
	Sugg	gested reading	75
5	Anon	nalies, instantons and the strong CP problem	76
	5.1	The chiral anomaly	77
	5.2	A two-dimensional detour	81
	5.3	Real QCD	88
	5.4	The strong CP problem	98
	5.5	Possible solutions of the strong CP problem	100
	Sugg	gested reading	104
	Exer	cises	104
6	Gran	dunification	106
	6.1	Cancelation of anomalies	108
	6.2	Renormalization of couplings	108
	6.3	Breaking to $SU(3) \times SU(2) \times U(1)$	109
	6.4	$SU(2) \times U(1)$ breaking	110
	6.5	Charge quantization and magnetic monopoles	111
	6.6	Proton decay	112
	6.7	Other groups	112
	Sugg	gested reading	114
	Exer	cises	115
7	7 Magnetic monopoles and solitons		116
	7.1	Solitons in $1 + 1$ dimensions	117
	7.2	Solitons in 2 + 1 dimensions: strings or vortices	118
	7.3	Magnetic monopoles	119
	7.4	The BPS limit	120
	7.5	Collective coordinates for the monopole solution	122
	7.6	The Witten effect: the electric charge in the presence of θ	123
	7.7	Electric-magnetic duality	124
	Sugg	gested reading	125
	Exer	cises	125
8	Techr	nicolor: a first attempt to explain hierarchies	126
	8.1	QCD in a world without Higgs fields	127
	8.2	Fermion masses: extended technicolor	128
	8.3	The Higgs discovery and precision electroweak measurements	130
	8.4	The Higgs as a Goldstone particle	131

	Suggested reading	131
		152
	Part 2 Supersymmetry	133
9	Supersymmetry	135
	9.1 The supersymmetry algebra and its representations	136
	9.2 Superspace	136
	9.3 $N = 1$ Lagrangians	140
	9.4 The supersymmetry currents	142
	9.5 The ground state energy in globally supersymmetric theories	143
	9.6 Some simple models	144
	9.7 Non-renormalization theorems	146
	9.8 Local supersymmetry: supergravity	148
	Suggested reading	149
	Exercises	150
10	A first look at supersymmetry breaking	151
	10.1 Spontaneous supersymmetry breaking	151
	10.2 The goldstino theorem	153
	10.3 Loop corrections and the vacuum degeneracy	154
	10.4 Explicit soft supersymmetry breaking	155
	10.5 Supersymmetry breaking in supergravity models	157
	Suggested reading	159
	Exercises	159
11	The Minimal Supersymmetric Standard Model	160
	11.1 Soft supersymmetry breaking in the MSSM	162
	11.2 $SU(2) \times U(1)$ breaking	166
	11.3 Embedding the MSSM in supergravity	167
	11.4 Radiative corrections to the Higgs mass limit	168
	11.5 Fine tuning of the Higgs mass	170
	11.6 Reducing the tuning: the NMSSM	170
	11.7 Constraints on low-energy supersymmetry: direct searches and rare	
	processes	171
	Suggested reading	176
	Exercises	176
12	Supersymmetric grand unification	177
	12.1 A supersymmetric grand unified model	177
	12.2 Coupling constant unification	178
	12.3 Dimension-five operators and proton decay	179
	Suggested reading	181
	Exercises	181

13	Supersymmetric dynamics	182
	13.1 Criteria for supersymmetry breaking: the Witten index	182
	13.2 Gaugino condensation in pure gauge theories	184
	13.3 Supersymmetric QCD	185
	13.4 $N_{\rm f} < N$: a non-perturbative superpotential	188
	13.5 The superpotential in the case $N_{\rm f} < N - 1$	190
	13.6 $N_{\rm f} = N - 1$: the instanton-generated superpotential	191
	Suggested reading	196
	Exercises	196
14	Dynamical supersymmetry breaking	198
	14.1 Models of dynamical supersymmetry breaking	198
	14.2 Metastable supersymmetry breaking	200
	14.3 Particle physics and dynamical supersymmetry breaking	203
	Suggested reading	209
	Exercises	210
15	Theories with more than four conserved supercharges	211
	15.1 $N = 2$ theories: exact moduli spaces	211
	15.2 A still simpler theory: $N = 4$ Yang–Mills	213
	15.3 A deeper understanding of the BPS condition	214
	15.4 Seiberg–Witten theory	216
	Suggested reading	221
	Exercises	221
16	More supersymmetric dynamics	222
	16.1 Conformally invariant field theories	222
	16.2 More supersymmetric QCD	224
	16.3 $N_{\rm f} = N_{\rm c}$	224
	$16.4 N_{\rm f} > N + 1$	228
	16.5 $N_{\rm f} \ge 3N/2$	229
	Suggested reading	229
	Exercises	230
17	An introduction to general relativity	231
	17.1 Tensors in general relativity	232
	17.2 Curvature	236
	17.3 The gravitational action	237
	17.4 The Schwarzschild solution	239
	17.5 Features of the Schwarzschild metric	241
	17.6 Coupling spinors to gravity	243
	Suggested reading	244
	Exercises	244

18	Cosmology	245
	18.1 The cosmological principle and the FRW universe	245
	18.2 A history of the universe	248
	Suggested reading	253
	Exercises	253
19	Particle astrophysics and inflation	254
	19.1 Inflation	256
	19.2 The axion as the dark matter	264
	19.3 The LSP as the dark matter	267
	19.4 The moduli problem	270
	19.5 Baryogenesis	272
	19.6 Flat directions and baryogenesis	280
	19.7 Supersymmetry breaking in the early universe	281
	19.8 The fate of the condensate	282
	19.9 Dark energy	284
	Suggested reading	285
	Exercises	286
	Part 3 String theory	287
20	Introduction	289
	20.1 The peculiar history of string theory	290
	Suggested reading	294
21	The bosonic string	295
	21.1 The light cone gauge in string theory	297
	21.2 Closed strings	300
	21.3 String interactions	301
	21.4 Conformal invariance	303
	21.5 Vertex operators and the S-matrix	309
	21.6 The S-matrix versus the effective action	314
	21.7 Loop amplitudes	315
	Suggested reading	317
	Exercises	318
22	The superstring	319
	22.1 Open superstrings	319
	22.2 Quantization in the Ramond sector: the appearance of space-time fermions	321
	22.3 Type II theory	322
	22.4 World-sheet supersymmetry	323
	22.5 The spectra of the superstrings	323
	22.6 Manifest space-time supersymmetry: the Green-Schwarz formalism	330
	22.7 Vertex operators	332

	Suggested reading	333
	Exercises	333
23	The heterotic string	335
	23.1 The $O(32)$ theory	335
	23.2 The $E_8 \times E_8$ theory	336
	23.3 Heterotic string interactions	337
	23.4 A non-supersymmetric heterotic string theory	338
	Suggested reading	339
	Exercises	339
24	Effective actions in ten dimensions	340
	24.1 Eleven-dimensional supergravity	340
	24.2 The IIA and IIB supergravity theories	341
	24.3 Ten-dimensional supersymmetric Yang-Mills theory	342
	24.4 Coupling constants in string theory	343
	Suggested reading	346
	Exercise	346
25	Compactification of string theory I. Tori and orbifolds	347
	25.1 Compactification in field theory: the Kaluza–Klein program	347
	25.2 Closed strings on tori	350
	25.3 Enhanced symmetries and <i>T</i> -duality	354
	25.4 Strings in background fields	355
	25.5 Bosonic formulation of the heterotic string	359
	25.6 Orbifolds	360
	25.7 Effective actions in four dimensions for orbifold models	366
	25.8 Non-supersymmetric compactifications	369
	Suggested reading	370
	Exercises	371
26	Compactification of string theory II. Calabi–Yau compactifications	372
	26.1 Mathematical preliminaries	372
	26.2 Calabi–Yau spaces: constructions	376
	26.3 The spectrum of Calabi–Yau compactifications	379
	26.4 World-sheet description of Calabi–Yau compactification	381
	26.5 An example: the quintic in CP^4	383
	26.6 Calabi–Yau compactification of the heterotic string at weak coupling	385
	Suggested reading	395
	Exercises	395

27	Dynamics of string theory at weak coupling	397
	27.1 Non-renormalization theorems	398
	27.2 Fayet–Iliopoulos D terms	401
	27.3 Gaugino condensation: breakdown of axion shift symmetries beyond	
	perturbation theory	405
	27.4 Obstacles to a weakly coupled string phenomenology	406
	Suggested reading	407
28	Beyond weak coupling: non-perturbative string theory	408
	28.1 Perturbative dualities	409
	28.2 Strings at strong coupling: duality	409
	28.3 D-branes	410
	28.4 Branes from the <i>T</i> -duality of Type I strings	413
	28.5 Strong-weak coupling dualities: equivalence of different string theories	417
	28.6 Strong-weak coupling dualities: some evidence	418
	28.7 Strongly coupled heterotic string	423
	28.8 Non-perturbative formulations of string theory	425
	Suggested reading	429
	Exercises	430
29	Large and warped extra dimensions	431
	29.1 Large extra dimensions: the ADD proposal	431
	29.2 Warped spaces: the Randall–Sundrum proposal	434
	Suggested reading	436
	Exercise	436
30	The landscape: a challenge to the naturalness principle	437
	30.1 The cosmological constant revisited	437
	30.2 Candidates for an underlying landscape	439
	30.3 The nature of physical law in a landscape	439
	30.4 Physics beyond the Standard Model in a landscape	440
	30.5 't Hooft's naturalness priciple challenged	442
	30.6 Small and medium size hierarchies: split supersymmetry	442
	Suggested reading	443
31	Coda: Where are we heading?	444
	31.1 The hierarchy or naturalness problem	444
	31.2 Dark matter, the baryon asymmetry and dark energy	445
	31.3 Inflationary cosmology	446
	31.4 String theory and other approaches to foundational questions	446
	Suggested reading	447

Contents

Part 4 Appendices	449
Appendix A Two-component spinors	451
Appendix B Goldstone's theorem and the pi mesons	454
Exercises	456
Appendix C Some practice with the path integral in field theory	457
C.1 Path integral review	457
C.2 Finite-temperature field theory	458
C.3 QCD at high temperatures	462
C.4 Weak interactions at high temperatures	463
C.5 Electroweak baryon number violation	464
Suggested reading	466
Exercises	466
Appendix D The beta function in supersymmetric Yang—Mills theory	467
Suggested reading	468
Exercise	469
References	470
Index	477