Yield and chemical composition of contrasting maize cultivars at sequential stages of maturity J.P. Lynch^{1,2}, P. O'Kiely¹, E.M. Doyle²

¹Teagasc, Grange Beef Research Centre, Dunsany, Co. Meath, Ireland

Introduction Forage maize of high starch content is a high quality feed for ruminants that supports high dry matter intakes and animal performance. However in Ireland, unsuitable climatic conditions can result in poor yields compared to other forages such as grass silage. This study evaluated the effects of maturity at harvest on the yield and composition of the cob and stover components of maize cultivars selected for cold tolerance, high biomass and conventional forage maize silage use.

Material and methods Six cultivars of forage maize selected as conventional (Tassilo and Beethoven), cold tolerant (Andante and Nescio) and high biomass (Atletico and KXA 7211) were sown under plastic mulch on 7 May 2008. Plots from the three replicate blocks of a split-plot design were harvested on 16 September, 7 October and 28 October. Samples of whole crop, stover and cob were precision chopped and sampled for chemical analyses. Data were analysed using GLM procedures of SAS software (SAS, 2002).

Results Whole-crop yield and the proportion of cob present both increased with later harvest dates (Table 1). Delaying harvest also resulted in higher DM and starch content of cobs. The *in vitro* dry matter digestibility (DMD) of stover decreased with later harvest. High biomass cultivars had a lower cob DM content and cob proportion compared to the other cultivars.

Table 1 Yield and physical composition of forage maize

¹= harvest date; ²=cultivar, ³= water soluble carbohydrates; ⁴=*in vitro* dry matter digestibility.

*	P < 0.05	** P<0	01 ***	P < 0.001	NS =	P > 0.05

H^1	C^2	Whole crop		Cob			Stover		
		DM yield	Proportion of	DM	Starch	WSC^3	DM	DMD^4	NDF
		(t/ha)	crop (g/kg)	(g/kg)	(g/kgDM)	(g/kgDM)	(g/kg)	(g/kg)	(g/kgDM)
16 Sept	Tassilo	9.63	612	268	227	157	175	703	575
-	Beethoven	13.66	651	242	276	175	179	667	605
	Andante	11.56	519	281	314	120	180	660	627
	Nescio	9.92	623	182	175	223	189	683	583
	Atletico	13.05	442	204	211	188	194	682	597
	KXA 7211	12.01	376	175	103	211	199	657	601
7 Oct	Tassilo	14.35	700	380	481	126	160	675	623
	Beethoven	15.33	678	367	545	117	172	618	684
	Andante	14.75	665	364	528	108	183	620	668
	Nescio	12.79	763	304	405	135	171	675	597
	Atletico	14.33	520	189	138	247	188	677	573
	KXA 7211	14.89	567	255	308	194	192	658	598
28 Oct	Tassilo	15.02	767	381	537	39	218	578	719
	Beethoven	15.52	738	446	612	31	244	545	755
	Andante	14.74	765	479	606	24	259	551	736
	Nescio	12.29	762	304	585	54	197	576	717
	Atletico	16.47	597	261	317	147	193	632	617
	KXA 7211	16.41	697	255	525	86	216	592	706
Sig	Н	**	**	***	**	***	***	***	***
S	C	***	***	***	***	***	**	**	***
	HxC	NS	NS	**	***	***	***	NS	*
SEM	HxC	0.829	51.5	17.0	36.6	12.6	7.9	16.8	17.6

Conclusion Later maturity at harvest increased whole-crop DM yield due to an increase in the yield of cob. This paralleled a rise in the starch content of the cob with later maturity. Cobs from high biomass crops had a lower DM and starch content than cold tolerant and conventional cultivars.

Acknowledgements Funding for this research was provided under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Fisheries & Food, Ireland #RSF 5769.

References

SAS (2002-2003) Statistical Analysis Institute (version 9.1). SAS Institute inc., Cary, N. Carolina, USA

²School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland *Email: joseph.lynch@teagasc.ie*