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In collisionless and weakly collisional plasmas, such as hot accretion flows onto
compact objects, the magnetorotational instability (MRI) can differ significantly
from the standard (collisional) MRI. In particular, pressure anisotropy with respect
to the local magnetic-field direction can both change the linear MRI dispersion
relation and cause nonlinear modifications to the mode structure and growth rate,
even when the field and flow perturbations are very small. This work studies these
pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta
regime, before the MRI saturates into strong turbulence. Our goal is to better
understand how the saturation of the MRI in a low-collisionality plasma might differ
from that in the collisional regime. We focus on two key effects: (i) the direct impact
of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode,
and (ii) the influence of pressure anisotropy on the ‘parasitic instabilities’ that are
suspected to cause the mode to break up into turbulence. Our main conclusions are: (i)
The mirror instability regulates the pressure anisotropy in such a way that the linear
MRI in a collisionless plasma is an approximate nonlinear solution once the mode
amplitude becomes larger than the background field (just as in magnetohyrodynamics).
This implies that differences between the collisionless and collisional MRI become
unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into
turbulence via parasitic instabilities is similar in collisionless and collisional plasmas.
Together, these conclusions suggest that the route to magnetorotational turbulence in a
collisionless plasma may well be similar to that in a collisional plasma, as suggested
by recent kinetic simulations. As a supplement to these findings, we offer guidance
for the design of future kinetic simulations of magnetorotational turbulence.
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1. Introduction
Across a wide variety of accreting astrophysical systems, the inflow of matter is

thought to rely on turbulent angular-momentum transport driven by the magnetorotatio-
nal instability (MRI; Balbus & Hawley 1991, 1998). The majority of works studying
the MRI, in particular its saturation into turbulence (e.g. Hawley, Gammie & Balbus
1995; Hawley, Balbus & Stone 2001; Ryan et al. 2017), have been based on
magnetohydrodynamics (MHD). They thus implicitly assume that the collisional
mean free path of gas particles is small in comparison to the scales of all fluid
motions. However, this assumption can be far from valid in many accreting systems.
For instance, in radiatively inefficient accretion flows onto supermassive black holes
(RIAFs; see Narayan, Mahadevan & Quataert 1998; Hawley & Balbus 2002; Quataert
2003; Yuan & Narayan 2014), a large portion of the gravitational potential energy of
the infalling gas is converted directly into thermal energy, suggesting ion temperatures
Ti ∼ 1012 K with corresponding ion collisional mean free paths that are orders of
magnitude larger than the system size.

As shown by Quataert, Dorland & Hammett (2002) (hereafter Q02), Sharma,
Hammett & Quataert (2003) and Balbus (2004), the linear magnetorotational instability
still exists in collisionless and weakly collisional plasmas. This kinetic MRI (KMRI)
has seen subsequent theoretical attention. As well as extensions to the original linear
analyses using either fully kinetic treatments (Sharma et al. 2003; Heinemann &
Quataert 2014; Quataert, Heinemann & Spitkovsky 2015) or fluid models (Ferraro
2007; Rosin & Mestel 2012), various works have explored turbulent transport in
the fully nonlinear regime, generally finding behaviour that bears a strong similarity
to that seen in standard resistive MHD. Sharma et al. (2006) (hereafter S06) was
the first to study MRI turbulence in this regime using a kinetically motivated fluid
closure, an approach that has been followed in a variety of works since (e.g. Sharma
et al. 2007; Chandra et al. 2015; Foucart et al. 2015). Recently, it has become
possible to study the MRI using truly kinetic particle-in-cell (PIC) methods, both in
two dimensions (Riquelme et al. 2012; Hoshino 2013; Kunz, Stone & Bai 2014b)
and three dimensions (Hoshino 2015; Kunz, Stone & Quataert 2016). Most notably,
in Kunz et al. (2016), a fully collisionless plasma was seen to develop into MRI
turbulence with strong similarities to that seen in comparable MHD calculations (or,
even more so, similarities to the model of S06), providing a fascinating example of
a fully collisionless plasma behaving as a collisional fluid.

In this paper, we explore the regime between fully nonlinear turbulence and the
linear KMRI. Our purpose is to move towards understanding the nonlinear saturation
of the KMRI, in particular the similarities with, and differences to, the standard
MRI. Our philosophy is to examine the simplest (and, hopefully, the most significant)
modifications to MHD. With this in mind, we consider both the kinetically motivated
Landau-fluid (LF) model used by S06 and ‘Braginskii’ MHD (Braginskii 1965), which
is valid in the weakly collisional regime. We study two interlinked effects, each of
which could have a strong influence on how the KMRI saturates into turbulence. The
first effect is the pressure anisotropy (1p) driven by growing KMRI modes. This can
nonlinearly affect the modes’ evolution (even in one dimension) at amplitudes far
smaller – by a factor ∼β, the ratio of thermal to magnetic pressure – than occurs
in a standard compressible gas with isotropic pressure. It is important to understand
the effect of this nonlinearity, because it is these anisotropy-modified KMRI modes
that will be disrupted at large amplitudes and excite turbulence. The second effect
that we study is the nonlinear disruption of KMRI modes by parasitic modes, which
are thought to govern the transition into strong turbulence (Goodman & Xu 1994;
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Latter, Lesaffre & Balbus 2009; Pessah & Goodman 2009; Latter, Fromang & Gressel
2010; Longaretti & Lesur 2010). MHD parasitic modes are Kelvin–Helmholtz and
tearing modes that feed off strong gradients in the large-amplitude MRI ‘channel’
mode.1 A significant difference in parasitic-mode growth rates in a collisionless
plasma (compared to MHD) would suggest that the saturation of the KMRI into
turbulence would also be significantly modified, perhaps with important implications
for KMRI-driven turbulence.

Our main results are twofold. First, once the KMRI channel mode amplitude δB
surpasses the strength of the background field B0, its evolution always reverts to
MHD-like behaviour. In particular, because of the pressure-anisotropy-limiting effects
of kinetic microinstabilities (Schekochihin et al. 2008; Kunz et al. 2015) and the
specific form of MRI modes, the pressure anisotropy has very little effect on mode
evolution once δB & B0. The MRI modes are then approximate nonlinear solutions
of the Landau-fluid or Braginskii models until they reach very large amplitudes.
However, at moderate mode amplitudes δB . B0, the effect of pressure anisotropy
can be significant; for example, it causes strong modifications to the KMRI in the
presence of a background azimuthal field2 at amplitudes well below where it would
saturate into turbulence. Our second result is that there is not a strong difference in
parasitic-mode growth rates between the kinetic and MHD models, which indicates
that modes can grow to similar amplitudes before being disrupted in collisionless and
collisional systems. Together these conclusions suggest that the saturation of MRI
modes into turbulence in high-β collisionless and weakly collisional regimes will be
similar to what occurs in a collisional (MHD) plasma. This appears to be the case
in the simulations that have been run up to now, including those that do not rely on
fluid closure schemes (Riquelme et al. 2012; Hoshino 2013, 2015; Kunz et al. 2016).

In some ways, the results of this work will primarily be of interest for understanding
and designing future three-dimensional (3-D) fully kinetic simulations of MRI
turbulence. Such simulations are the only clear method available to explore the
collisionless accretion flows without ad hoc assumptions, but are very demanding
computationally. The primary difficulty arises from the enormous scale separation in
RIAFs between the ion gyrofrequency Ωi (which must be resolved in a kinetic code)
and the disk rotation frequency Ω . Simulations are necessarily limited to modest
values of Ωi/Ω , and it is thus crucial to understand some of the basic differences
between the MRI and KMRI in designing and analysing simulations, so as to ensure
that observed effects are not an artefact of limited scale separation. To add to these
difficulties, our understanding of the processes governing even the simplest MHD
MRI turbulence remains somewhat limited (e.g. see Fromang et al. 2007; Lesur
& Longaretti 2007; Fromang & Stone 2009; Blackman 2012; Simon, Beckwith &
Armitage 2012; Meheut et al. 2015; Squire & Bhattacharjee 2016).

The remainder of the paper is organized as follows. In § 2 we introduce the models
used throughout our work and the numerical methods used to solve them (§ 2.2).
Because the effects that arise due to pressure anisotropy may be unfamiliar to many
readers, we provide a brief account in § 2.3 of the primary differences between
each model and MHD. One-dimensional nonlinearities arising due to self-generated
pressure anisotropies are then treated in § 3, starting with an overview of the linear
physics, and then treating the pure-vertical-field KMRI (§ 3.2) and azimuthal-field
KMRI (§ 3.3) separately. An overview of these results is given in § 3.4. We then

1The azimuthally and radially constant MRI modes are often termed ‘channel modes’ because they are
able to survive unmodified to very large amplitudes.

2This is sometimes termed the magnetoviscous instability (MVI), following Balbus (2004).
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consider the evolution of parasitic modes in § 4, starting with linear calculations on
sinusoidal background profiles (§ 4.1) and then showing fully nonlinear calculations
using the ZEUS code used by S06 (§ 4.2). This section is deliberately kept brief, due
to the null result that nonlinear saturation is not strongly affected by the pressure
anisotropy. A discussion of kinetic effects neglected in our model is given in § 5. We
then combine our results with those from previous kinetics simulations of mirror and
magnetorotational instabilities to provide guidance for the design of future simulations
of KMRI turbulence (§ 6). Finally, we conclude with a summary in § 7.

2. Governing equations: the effects of pressure anisotropy
Our philosophy throughout this work is to consider the simplest and most

general modifications to MRI evolution on the largest (MHD) scales due to kinetic
physics. We anticipate (but cannot prove) that these are the most important kinetic
modifications to the MRI. We thus focus on the development of a gyrotropic pressure
anisotropy – i.e. a pressure tensor that differs in the directions parallel (p‖) and
perpendicular (p⊥) to the magnetic-field lines, but that is unchanged by rotations
about the field line. This pressure anisotropy, 1p ≡ p⊥ − p‖, causes an additional
stress in the momentum equation, which can nonlinearly affect the MRI modes at
much lower amplitudes than occurs in standard MHD. The gyrotropic approximation
is generally valid when the magnetic field varies on spatial and temporal scales much
larger than the ion gyroradius and inverse gyrofrequency.

2.1. Basic equations and closure models
Our equations are obtained as follows. A small patch of an accretion disc, co-orbiting
with a fiducial point R0 in the mid-plane of the unperturbed disc at an angular
velocity Ω =Ω ẑ, is represented in Cartesian coordinates with the x and y directions
corresponding to the radial and azimuthal directions, respectively. Differential rotation
is accounted for by including the Coriolis force and by imposing a background linear
shear flow, U0 =−Sxŷ, where S≡−dΩ/d ln R0 > 0 is the shear frequency; Keplerian
rotation yields S= (3/2)Ω . The evolutionary equations for the first three moments of
the plasma distribution function are then (Chew, Goldberger & Low 1956; Kulsrud
1983; Schekochihin et al. 2010),

dρ
dt
=−ρ∇ · u, (2.1)

ρ

(
du
dt
+ 2Ω ẑ× u− 2SΩxx̂

)
=−∇

(
p⊥ + B2

8π

)
+∇ ·

[
b̂b̂
(

B2

4π
+1p

)]
, (2.2)

dB
dt
=B · ∇u−B∇ · u, (2.3)

dp⊥
dt
=−∇ · (q⊥b̂)− q⊥∇ · b̂+ p⊥b̂b̂ : ∇u− 2p⊥∇ · u− νc1p, (2.4)

dp‖
dt
=−∇ · (q‖b̂)+ 2q⊥∇ · b̂− 2p‖b̂b̂ : ∇u− p‖∇ · u+ 2νc1p, (2.5)

where d/dt ≡ ∂/∂t + u · ∇ is the convective derivative. The velocity u in (2.1)–(2.5)
includes both the background shear flow U0 and perturbations on top of this δu (e.g.
the MRI). The other symbols have their usual meanings: ρ is the mass density, B is
the magnetic field, νc is the particle collision frequency, while B≡ |B| and b̂≡ B/B
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denote the magnetic-field strength and direction (note that ∇ · (b̂b̂B2) is simply B ·∇B).
The pressures perpendicular and parallel to b̂ are p⊥ and p‖ respectively, while q⊥
and q‖ denote the fluxes of perpendicular and parallel heat in the direction parallel
to b̂. Note that p⊥ and p‖ in (2.2) should in principle be summed over both particle
species (with separate pressures for each species), while ρ and u in (2.1)–(2.3) are
the ion density and flow velocity. For simplicity, in this work we solve only the ion
pressure equations (i.e. p⊥ = p⊥,i, p‖ = p‖,i), which is justified in the limit of cold
electrons (as expected in RIAFs, e.g. Sharma et al. 2007). We have also neglected
non-ideal corrections to the induction equation (2.3) (e.g. the Hall term), which is
appropriate given our neglect of finite Larmor radius (FLR) effects in (2.2) (we will,
however, include a hyper-resistivity term in equation (2.3) for numerical reasons; see
§ 2.2). For convenience, we define the dimensionless anisotropy ∆ ≡ 1p/p0, where
p0 = (p⊥ + 2p‖)/3 is the total thermal pressure, as well as the ratio of thermal to
magnetic pressure β ≡ 8πp0/B2, the Alfvén speed vA=B/

√
4πρ and its ẑ component

vAz=Bz/
√

4πρ, the sound speed cs=√p0/ρ and the parallel sound speed cs‖=
√

p‖/ρ.
The double-dot notation used in (2.4)–(2.5) and throughout this work is b̂b̂ : ∇u ≡∑

i,j bibj∂iuj.
In their present form, equations (2.1)–(2.5) are not closed, due to the presence of

the unspecified heat fluxes, q⊥ and q‖. These must be either specified using a closure
scheme, neglected or solved for using the full kinetic equations. In this work we
consider three closures for q⊥ and q‖ (or equivalently, three approximations to (2.4)–
(2.5)). These will be seen to lead to quite different behaviour in solutions of (2.1)–
(2.5). They are:

Collisionless Landau-fluid closure. Landau-fluid (LF) closures have been used
extensively in the fusion community (Hammett & Perkins 1990; Hammett, Dorland
& Perkins 1992; Snyder, Hammett & Dorland 1997) and, to a lesser degree, for
astrophysical applications (S06; Sharma et al. 2007). They are particularly well suited
for modelling collisionless (νc = 0) plasmas. In the LF closure, the heat fluxes,

q⊥ =−
2c2

s‖√
2πcs‖|k‖| + νc

[
ρ∇‖

(
p⊥
ρ

)
− p⊥

(
1− p⊥

p‖

)
∇‖B

B

]
, (2.6)

q‖ =−
8c2

s‖√
8πcs‖|k‖| + (3π− 8)νc

ρ∇‖

(
p‖
ρ

)
, (2.7)

are constructed to replicate the effects of linear Landau damping. Here ∇‖ ≡ b̂ · ∇
denotes the gradient parallel to the field and |k‖| denotes the wavenumber parallel
to the field, which must be considered as an operator because it appears in the
denominator of (2.6)–(2.7). The forms of the heat fluxes in (2.6)–(2.7) accurately
reproduce the true kinetic growth rates and frequencies for a variety of large-scale
(MHD) modes, including the MRI (Q02; Sharma et al. 2003). We refer the reader to
Snyder et al. (1997) and S06 for more information.

Weakly collisional ‘Braginskii’ closure. In the Braginskii regime, |∇u|� νc (Braginskii
1965), the pressure anisotropy is strongly influenced by collisional relaxation. We thus
neglect dtp⊥ and dtp‖ in (2.4)–(2.5) and balance the double-adiabatic production of
pressure anisotropy (the b̂b̂ : ∇u and ∇ · u terms) against its collisional relaxation
(the νc1p terms) to find

∆≈ 1
νc

(
b̂b̂ : ∇u− 1

3
∇ · u

)
= 1
νc

d
dt

ln
B
ρ2/3

, (2.8)
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where we have also used the fact that νc/|∇u|� 1 implies 1p� p0. (For β� 1, the
∇ · u term can also be neglected.) When inserted into the momentum equation (2.2),
equation (2.8) has the form of an anisotropic viscous stress, and is thus referred to
as ‘Braginskii viscosity’ (or Braginskii MHD for the full set of equations). Note that
we have neglected heat fluxes in arriving at (2.8), a simplification that is rigorously
obtained if νc/|∇u| � β1/2 (the ‘high-collisionality’ regime). On the other hand, if
νc/|∇u| � β1/2 (the ‘moderate-collisionality’ regime), the heat fluxes are strong over
the time scales of the motion (Mikhailovskii & Tsypin 1971), and their contribution
to the (ion) pressure anisotropy must be retained. (See § B.4 for further discussion.)
In this case, there is no simple closure that can be devised (e.g. see appendix B of
Squire, Schekochihin & Quataert 2017) and it is usually easier to consider the full LF
system.

Double-adiabatic closure. The double-adiabatic, or Chew–Goldberger–Low (CGL),
closure (Chew et al. 1956) simply involves setting q⊥ = q‖ = 0. This approximation
is far from justified for subsonic motions in the high-β plasmas considered here;
however, the closure is useful for comparison with the LF closure by virtue of its
relative simplicity. It has also been employed in a variety of previous computational
studies (e.g. S06; Kowal, Falceta-Gonçalves & Lazarian 2011, Santos-Lima et al.
2014), and so it is worthwhile to diagnose the model’s successes and limitations.

An important caveat for each of these approximations to (2.4)–(2.5) relates to
plasma microinstabilities. For our purposes, given the focus of this work on the
high-β regime, the most significant of these are the firehose instability (Rosenbluth
1956; Chandrasekhar, Kaufman & Watson 1958; Parker 1958; Yoon, Wu & de Assis
1993), which is excited if

∆.− 2
β
, (2.9)

and the mirror instability (Hasegawa 1969; Southwood & Kivelson 1993; Hellinger
2007), which is excited if

∆&
1
β
. (2.10)

(There are corrections to these β-dependent thresholds that arise from particle
resonances and depend on the specific form of the distribution function; see, e.g.
Klein & Howes 2015.) Important aspects of these instabilities (e.g. their regularization
at small scales or particle scattering in their nonlinear evolution) are not captured
by the closures we employ here, and kinetic calculations are needed to correctly
understand their saturation. There have been a variety of recent works in this vein
(Hellinger & Trávníček 2008; Schekochihin et al. 2008; Rosin et al. 2011; Kunz,
Schekochihin & Stone 2014a; Hellinger et al. 2015; Rincon, Schekochihin & Cowley
2015; Riquelme, Quataert & Verscharen 2015; Sironi & Narayan 2015; Melville,
Schekochihin & Kunz 2016; Riquelme, Quataert & Verscharen 2016), which have
shown that these microinstabilities generally act to pin the pressure anisotropy at
the marginal stability limits. Interestingly, when ∆ is driven beyond the stability
boundaries, the microinstabilities achieve this in two stages: first, while the microscale
fluctuations are growing secularly, by increasing (if dtB< 0) or decreasing (if dtB> 0)
the magnetic-field strength B (in other words, the small-scale fluctuations contribute
to B); second, as the instabilities saturate, by enhancing the scattering of particles
and thus increasing νc in (2.4)–(2.5). While the time for the firehose instability at
moderate β to saturate is essentially set by gyro-scale physics, and so might be
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considered as instantaneous in a fluid model, the mirror instability saturates on a
time scales comparable to the turnover time of the large-scale motions driving the
anisotropy (see § 6.3 and Kunz et al. 2014a, Rincon et al. 2015, Riquelme et al.
2015, Melville et al. 2016). We also note that there are also various other kinetic
instabilities that could be important, for instance, the ion-cyclotron instability, or
electron instabilities. We do not consider these in detail because the mirror and
firehose instabilities are thought to be the most relevant to the high-β, ion-dominated
regime that is the focus of this work (see § 5 for further discussion).

In practice, because the primary effect in both the secular and scattering regimes is
to limit ∆ at the threshold boundaries, we model these effects as a ‘hard-wall’ limit on
∆, following prior work (S06; Sharma et al. 2007, Santos-Lima et al. 2014, Chandra
et al. 2015, Foucart et al. 2015). This simply limits ∆ to 1/β or −2/β if the dynamics
drives ∆ across these boundaries.3 One should, however, be careful with this simple
‘limiter’ method not to inadvertently remove interesting physics from the model. For
instance, the parallel firehose instability is destabilized at the same point ∆=−2/β
as where the magnetic tension is nullified by 1p (indeed, this is the cause of the
instability), which can have a strong influence on the largest scales (Squire, Quataert
& Schekochihin 2016; Squire et al. 2017) and is captured in even our simplest 1-D
models. For this reason, in considering azimuthal-field KMRI modes, we have run
calculations both with and without a firehose limiter, seeing very similar dynamics
in each case. Finally, we note that with finite scale separations between Ωi and S,
as is the case in numerical simulations (Riquelme et al. 2012; Hoshino 2015; Kunz
et al. 2016), there can be significant overshoot of the pressure anisotropy beyond the
limits (2.9) and (2.10) (Kunz et al. 2014a). This overshoot may be important for the
large-scale evolution (see § 3) but is probably not representative of what happens in
real systems, which usually have a very large dynamic range between Ωi and S. These
effects are discussed in detail in § 6.

2.2. Computational methods
A number of different numerical methods are used to solve (2.1)–(2.7). For
investigating the 1-D evolution of a channel mode, we use a pseudo-spectral method,
with standard dealiasing and hyper-diffusion operators used to remove the energy just
above the grid scale. A very similar numerical method, albeit on a 3-D Fourier grid,
is used for the studies of parasitic modes. For studies of the fully nonlinear 3-D
evolution, we use a modified version of the finite-difference code ZEUS, as described
in S06. For simulations in the weakly collisional regime, we solve the full LF system
(2.1)–(2.7), so as to correctly capture the effects of the heat fluxes in the moderate-
and high-collisionality regimes (see § B.4).

A few words are needed regarding the numerical treatment of heat fluxes in the LF
model (2.6)–(2.7). In particular, the 1/|k‖| operator is numerically awkward, because
it is not diagonal in either Fourier space or real space. We thus use the prescription of
S06 and replace this by a pre-chosen kL for the ZEUS implementation and the parasitic-
mode studies, while for the 1-D collisionless calculations we use 1/|k‖| = 1/|kz| (once
the mode reaches larger amplitude this may somewhat underestimate the heat fluxes,

3Within the context of the LF closure (2.1)–(2.7), the only obvious place where the difference between
saturation via unresolved small-scale fields and saturation via particle scattering may be important is in the heat
fluxes. These are significantly reduced at high collisionality (see (2.6) and (2.7)), and likely also modified by
microscale mirror or firehose fluctuations (Komarov et al. 2016; Riquelme et al. 2016; Riquelme, Quataert &
Verscharen 2017). We have experimented with either including νc in q⊥,‖ at the mirror and firehose boundaries
or not, and this difference does not appear to strongly affect the results presented herein.

https://doi.org/10.1017/S0022377817000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000940


8 J. Squire, E. Quataert and M. W. Kunz

since k‖ < kz if the field lines are not straight). Following S06, we have checked that
varying the choice of kL within a reasonable range, or using the choice |k‖|= |kz|, does
not significantly affect the dynamics.

We use the methods detailed in appendix A3 of S06 to limit the pressure anisotropy:
νc is instantaneously increased in (2.4)–(2.5) whenever ∆ passes the limits (2.9) or
(2.10). We do not make any distinction between the ‘secular growth’ and ‘particle
scattering’ phases of microinstability evolution with this method (see discussion above,
around (2.10), and § 6.3), and more study is needed to better understand the successes
and limitations of this simple limiter approach.

2.3. General comparison of kinetic models
Before commencing with our analysis of the KMRI, we highlight in this section some
of the key similarities and differences between the LF, Braginskii and CGL models,
as well as that of standard MHD.

First, irrespective of the closure details, the general effect of pressure anisotropy
is to modify the Lorentz force, either by enhancing (1p > 0) or reducing (1p < 0)
the effective magnetic tension (see (2.2)). The same relative pressure anisotropy ∆=
1p/p0 will thus have a greater dynamical effect as β increases, because p0 increases
compared to B. In contrast, the generation of ∆ in a changing magnetic field,

d∆
dt
∼ b̂b̂ : ∇u∼ d ln B

dt
(2.11)

(or ∆ ∼ ν−1
c b̂b̂ : ∇u for Braginskii), does not depend on β. Thus, the dynamics of

higher-β plasmas is in general more strongly influenced by self-generated pressure
anisotropies than is the dynamics of lower-β plasmas.

Secondly, the spatial form of 1p generated in a given time-dependent B differs
significantly between the LF, CGL and Braginskii models. This 1p is important for
the nonlinear behaviour of the collisionless MRI. The influence of a spatially constant
∆ can be considered from an essentially linear standpoint: it simply acts to enhance
or reduce the Lorentz force by the factor (1 + β∆/2). In contrast, when the spatial
variation in ∆ is similar to its magnitude, its effect is inherently nonlinear. For the
same reason, detailed conclusions about the expected change in the spatial shape
of an MRI mode due to pressure anisotropy do depend on the regime of interest
(and model) – for example, collisionless versus Braginskii (Squire et al. 2016), or
low versus high β – rather than being generic consequences of any self-generated
pressure anisotropy. For our purposes, one can consider high-collisionality Braginskii
MHD (equation (2.8)) as the limiting model that develops large spatial variation
in ∆ (since ∆ is tied directly to dtB), while the high-β limit of the LF model is
the opposite, developing large ∆ with very little spatial variation.4 This is because
collisions generically act to reduce the magnitude of ∆ without affecting the spatial
variation in p⊥ and p‖, whereas heat fluxes act to reduce spatial variation in p⊥ and
p‖ without affecting the spatial average of ∆.

This last statement warrants further explanation, given the complexity of (2.4)–(2.7).
The effect of the LF heat fluxes (2.6)–(2.7) can be clarified if we assume νc = 0 and
1p� p0 (the latter is always valid at high β), so that

q‖ ≈−
√

8
π
ρcs
∇‖
|k‖|

(
p‖
ρ

)
, q⊥ ≈−

√
2
π
ρcs
∇‖
|k‖|

(
p⊥
ρ

)
. (2.12a,b)

4The double-adiabatic model and moderate-collisionality Braginskii regime lie somewhere between these
limits; see (B 12).
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Then, assuming b̂ · ∇q⊥,‖ � q⊥,‖∇ · b̂, which is valid when the perturbation to the
background field is small (i.e. when the field lines are nearly straight), the contribution
to the p⊥ and p‖ evolution equations has the form ∂tp⊥ ∼−ρcs|k‖|(p⊥/ρ) and ∂tp‖ ∼
−ρcs|k‖|(p‖/ρ), respectively. These terms, which model the effect of Landau damping
(Snyder et al. 1997), act as a ‘scale-independent’ diffusion of p⊥ and p‖, damping
inhomogeneities5 over the sound-wave time scale |k‖|cs. This is important because
|k‖|cs ∼ β1/2γMRI (where γMRI is the MRI growth rate), showing that for β � 1, the
heat fluxes will rapidly erase spatial variation in 1p on the time scale that the MRI
grows. As a result, the spatial variation in 1p will be dwarfed by its mean; i.e. 1p
will be nearly spatially constant. A more thorough discussion of these ideas is given
in appendix B, where we solve explicitly for the 1p that arises in an exponentially
growing, spatially varying magnetic perturbation. This shows that the double-adiabatic
model for p⊥,‖ generates a 1p with spatial variation of the order of its mean, while
the addition of LF heat fluxes decreases the spatial variation of 1p by a factor β1/2

while leaving the mean 1p unchanged.

3. One-dimensional evolution

In this section, we discuss various nonlinear effects that occur due to the pressure
anisotropy that develops in a growing KMRI mode. These effects are one-dimensional
(i.e. unrelated to ‘parasitic’ modes and turbulence, which is discussed in § 4) and
occur at very low mode amplitudes: when δB∼ β−1/2B0 in a purely vertical field, or
when δBy ∼ β−2/3B0 and δBx ∼ β−1/3B0 with an azimuthal field (where δB denotes
the mode amplitude). This provides an interesting counterpoint to MHD MRI channel
modes, which are nonlinear solutions of the incompressible MHD equations (Goodman
& Xu 1994), and only exhibit notable nonlinear modifications as the mode amplitude
approaches the sound speed, δB∼ β1/2B0. However, we will also see that despite this
early (low-amplitude) nonlinear modification, once a KMRI mode’s amplitude starts
to dominate over the background field (δB & B0), it reverts to being an approximate
nonlinear solution, because of the pressure-anisotropy-limiting behaviour of the mirror
instability. Thus a KMRI mode behaves very similarly to an MHD channel mode as
δB approaches β1/2B0.

We begin by outlining the basic linear physics of the KMRI (§ 3.1), which will be
relevant to its nonlinear evolution. We then examine various stages in the evolution
of a 1-D collisionless KMRI mode in vertical (§ 3.2) or mixed-azimuthal–vertical
(§ 3.3) background magnetic fields, before the mode saturates into turbulence. We
also discuss how these stages are modified in the weakly collisional (Braginskii)
regime (§§ 3.2.2, 3.3.2). Throughout this section we denote the MRI perturbation
velocity and magnetic field as δu and δB respectively (their magnitudes are δu
and δB), the background magnetic field as B0 = B0yŷ + B0zẑ, and β0 = 8πp0/B2

0 is
defined with respect to the background field (we also use β0z = 8πp0/B2

0z). For the
reader interested in a general overview of results, the summary in § 3.4 should be
understandable without a careful reading of §§ 3.1–3.3.

5The heat-flux-induced damping is technically of p⊥/ρ = T⊥ and p‖/ρ = T‖, rather than of p⊥ and p‖
themselves. Because the spatial variation in ρ will generally be similar to that of p⊥,‖, the effective damping
is less than what it would be if the variation in ρ were ignored (see § B.3, equations (B 22)–(B 23)). However,
this variation in ρ can never completely cancel the variation in p⊥,‖ and preclude damping: there is always
some T⊥,‖ variation induced by the changing magnetic-field strength.
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10 J. Squire, E. Quataert and M. W. Kunz

FIGURE 1. Dimensionless linear growth rate γ /Ω of the KMRI at β0z = 8πp0/B2
0z = 400

and S/Ω = 3/2, plotted as a function of dimensionless vertical wavenumber kzvAz/Ω (with
kx = ky = 0). The solid blue curve shows the case with a purely vertical B0 and no
background pressure anisotropy ∆0, for which the dispersion relation is identical to the
standard MRI. The orange dashed line shows the case with B0y= 0 and ∆0= 1/β0, which
is approximately the anisotropy at which the mirror limit is first reached in the growing
mode. Finally, the green dotted line shows the growth rate in the case with an azimuthal
field B0y = B0z (with β0z = 400, β0 = 200), where the growth rate is strongly enhanced
compared to the MHD MRI (which is unaffected by the azimuthal field for kx = ky = 0).

3.1. Linear KMRI
Before discussing any nonlinear effects, it is helpful to first review aspects of the
linear KMRI. We consider only the simplest case of purely vertical wavenumbers
kz 6=0, kx= ky=0; i.e. (k‖B‖Ω). This choice is motivated by the stabilizing influence
of a non-zero radial wavenumber kx (see discussion in § 4 of Q02), meaning that
kx = 0 modes should dominate if growing from small amplitudes, while treating
ky 6= 0 modes requires a global and/or time-dependent method (Balbus & Hawley
1992; Johnson 2007; Squire & Bhattacharjee 2014a). We also neglect the possibility
of a radial background magnetic field since this leads to a time-dependent background
azimuthal field. More thorough discussion and detailed derivations can be found in
Q02; Sharma et al. (2003), Balbus (2004), Rosin & Mestel (2012), Heinemann &
Quataert (2014), Quataert et al. (2015), as well in appendix A, where we derive
properties of the KMRI in a mixed-vertical–azimuthal field.

We linearize (2.1)–(2.7) with νc = 0 and S/Ω = 3/2, then insert the Fourier ansatz
δf (z, t) = δf eikz−iωt for each variable ( f = ρ, u, B etc.). Solution of the resulting
polynomial equation for ω yields the linear KMRI growth rates, γ /Ω = Im(ω)/Ω ,
as shown in figure 1 for several relevant cases. For the case of purely vertical field
and no background pressure anisotropy (solid line), the KMRI dispersion relation is
identical to the collisional MRI. This occurs because when B0 = B0ẑ the MRI does
not linearly perturb the pressure (because ∂z(B0 · δB)= 0), and thus is ignorant of the
equation of state. With a non-zero radial wavenumber kx 6= 0, this is no longer the
case (since then δBz 6= 0), and the growth rate is lower than for the standard MRI.

The addition of a background positive pressure anisotropy, ∆0 > 0, shifts the MRI
to larger wavelengths (smaller k; dashed curve in figure 1). This is because the
anisotropic-pressure stress in the momentum equation has a form identical to that of
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the Lorentz force (see (2.2)). Thus the only difference in comparison to the standard
MRI dispersion relation is the replacement of kvA with kvA(1 + β0∆0/2)1/2, which
decreases the wavenumber that maximizes γ from ∼Ωv−1

A to ∼Ωv−1
A (1+β0∆0/2)−1/2,

while keeping the maximum itself constant. This is relevant to the nonlinear behaviour
of the KMRI, since the mode generates a pressure anisotropy as it evolves.

Finally, the addition of a background azimuthal field causes the KMRI dispersion
relation to differ significantly from that of the standard MRI (Q02; Balbus 2004;
dotted curve in figure 1), increasing the growth rate and moving the instability to
larger wavelengths. This differs from the standard (MHD) MRI, which is unaffected
by B0y 6= 0 when ky = 0. Due to the different physical processes that lead to the
large growth rates at low k, this instability is also known as the magnetoviscous
instability (MVI; Balbus 2004). Unlike the standard MRI, the growth mechanism
relies on the azimuthal pressure force b̂0b̂0δ1p, which is destabilizing and dominates
over the magnetic tension by a factor of β1/2

0 (see Q02). As shown in appendix A,
for β0� 1 the KMRI growth rate approaches γ = (2SΩ)1/2, with a maximum growth
rate at wavenumber kmaxvAz/Ω ≈ 1.8β−1/6

0z when B0y≈ B0z and S/Ω = 3/2 (see (A 2)).
In this fastest-growing mode, the relative amplitudes of the various components
are β

−2/3
0 δBx/B0 ∼ β−1/3

0 δBy/B0 ∼ β−5/6
0 δux/vA ∼ β−5/6

0 δuy/vA ∼ δp⊥,‖/p0 (unlike the
standard MRI, where δBx/B0 ∼ δBy/B0 ∼ δux/vA ∼ δuy/vA). While we shall use these
scalings below in our discussion of the nonlinear behaviour of MRI modes, we
caution that they only apply at rather high β0, a problem that is exacerbated if
B0y/B0z 6= 1. At more moderate β0, as feasible for simulations, kmax tends towards
its value for the standard MRI, kmaxvAz/Ω ≈ 1 (see figure 7). It is also worth noting
that the dispersion relation, γ (k), varies only slowly around k= kmax (see e.g. dotted
curve in figure 1). This implies that, if starting from random initial conditions, a
long time would be required before the fastest-growing mode dominates, suggesting
that when nonlinear effects become important there will likely still be several modes
of similar amplitudes. With these caveats duly noted, in our discussion of nonlinear
effects below (§ 3.3), we will consider only the fastest-growing KMRI mode (i.e. set
k= kmax) and use the above scalings, rather than keep k arbitrary.

3.2. Nonlinear KMRI: vertical magnetic field
In this section, we consider the nonlinear evolution of the MRI in a vertical
background field. In this case the linear dispersion relation is identical to that obtained
in ideal MHD. However, we shall show that the modes are (modestly) nonlinearly
modified by the pressure anisotropy at low amplitudes δB ∼ β−1/2B0. To do so, we
first describe the evolution of a truly collisionless mode using the LF closure with
νc = 0 (§ 3.2.1), and then examine the weakly collisional Braginskii case in § 3.2.2.

3.2.1. Collisionless (LF) regime
A maximally unstable MRI mode satisfies

δux = δuy =−
√

3
5
δB0√
4πρ

eγ t sin(kz), (3.1a)

−δBx = δBy = δB0eγ t cos(kz), (3.1b)

where γ = S/2 is the growth rate and δB0 is the initial mode amplitude. Because of
the opposing signs between δBxδux and δByδuy in the mode, only −Sb̂xb̂y contributes
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FIGURE 2. The structure of a kinetic MRI mode evolving in a vertical background field
B0z in various regimes, as computed from the 1-D LF model (with νc 6= 0 in panel c). We
take β0 = 337 in a domain with ΩLz/cs = 1, such that the peak of the MRI dispersion
relation (i.e. the maximum γ ) is at k= 2× 2π/Lz (each panel shows only half of a scale
height). Each plot illustrates δBx (blue solid line), δBy (red dashed line), δux (yellow dot-
dashed line) and δuy (purple dotted line). The various panels show: (a) the linear KMRI
mode (this is the initial conditions for each simulation), which is identical in structure to
an MHD MRI mode at these parameters; (b) the collisionless MRI mode when 1p reaches
the mirror limit (δB∼β−1/2B0z≈ 0.015), which remains very nearly sinusoidal because the
heat fluxes make 1p spatially uniform; (c) a mode in the high-collisionality Braginskii
regime (with νc/S= β3/4

0 ) when 1p reaches the mirror limit (at δB∼ (νc/S)1/2β−1/2B0z ≈
0.13), which is non-sinusoidal because of the O(1) spatial variation in 1p; (d) the MRI
mode at very large amplitudes, when compressibility becomes important. The structure of
this final compressible stage of evolution is the same across all models, including standard
(collisional) MHD.

to b̂b̂ : ∇u≈−SδBxδBy/B2
0z. As shown in § B.3, at high β in a collisionless plasma

(using the LF closure), the mean of the pressure anisotropy dominates over its spatial
variation by a factor of β1/2 (see (B 21)–(B 24)), and ∆ is approximately spatially
constant:

∆∼ 3
2
δB2

0

B2
0z

e2γ t. (3.2)

The mirror threshold is reached at ∆ = 1/β, when δB/B0z ∼ β−1/2
0 . As discussed in

§ 3.1, a positive pressure anisotropy modifies the MRI mode by effectively increasing
the magnetic tension, and the mode will be stabilized if kvA

√
1+1(t)β0/2 >

√
2SΩ .

Fortunately, for a mode near the peak growth rate, kvA = √S(Ω − S/4), this
stabilization does not occur, because the fast-growing mirror fluctuations limit√

1+1(t)β0/2 to values at or below
√

3/2. As shown in figure 2(b), this pressure
anisotropy causes a rather minor modification to the shape of the MRI mode because
1p is almost spatially constant, decreasing ux and By relative to uy and Bx in the
same way as for an MHD MRI mode that is not at the fastest-growing wavelength.6

6Note that if there is insufficient scale separation between the gyrofrequency and the MRI growth rate,
the pressure anisotropy may grow far enough beyond the mirror limit to stabilize the mode, which occurs if
∆> 2β−1

0 [2SΩ/(kvA)
2 − 1]. In this case, the mode can move to longer wavelengths and continue to grow if

there is sufficient space in the box. This occurs in the simulations of S06, where the chosen mirror limit
‘hard wall’ is ∆= 3.5/β, large enough that pressure anisotropy would stabilize the fastest-growing MRI mode
before ∆ is artificially limited; see §§ 4 and 6 for further discussion.
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As the mode continues to evolve to larger amplitudes δB/B0z & β
−1/2
0 , the pressure

anisotropy remains limited by mirror fluctuations. Leaving aside, for the moment,
questions related to how the mode disrupts and becomes turbulent, there are two
other amplitudes of interest: (i) when the mode amplitude surpasses the background
field at δB/B0z∼ 1, and (ii) when compressibility becomes important at δB/B0z∼ β1/2

0
(δu ∼ cs). Interestingly, if the pressure anisotropy is efficiently limited by mirror
fluctuations, 1p= B2/8π, then the pressure anisotropy nonlinearity has little effect:

∇ · (1pb̂b̂)= ∇ · (B
2b̂b̂)

8π
= B · ∇B

8π
= B0 · ∇δB+ δB · ∇δB

8π
= B0 · ∇δB

8π
, (3.3)

since δB · ∇δB ≈ 0 for an MRI channel mode (Goodman & Xu 1994). Thus, once
δBx∼ δBy &B0, the effect of the pressure-anisotropy nonlinearity on the mode remains
identical to when δBx ∼ δBy . B0, even though the pressure anisotropy has a large
(1p∼ δB2) variation in space (i.e. the change is simply a modified magnetic tension,
as shown in figure 2b). In other words, because 1p∝B2, there is no significant change
to the mode as the mode amplitude surpasses the background field strength.

The final phase of evolution, once δB∼ β1/2B0 (i.e. δu∼ cs), is then very similar to
standard MHD, and the mode develops a rather distinctive shape, which we illustrate
in figure 2(d). Because the nonlinearity is dominated at this point in the evolution
by inhomogeneities in the density, this mode shape appears generically in all of the
models studied here (including compressible MHD) across a wide range of parameters
(cf. Latter et al. 2009).

3.2.2. Weakly collisional (Braginskii) regime
In the Braginskii regime, which is valid for νc≡ νc/S∼ νc/γ � 1 and is relevant (i.e.

represents a potentially significant correction to standard MHD) when νc� β0, there
are two subregimes. In the moderate-collisionality regime, νc� β

1/2
0 , the heat fluxes

play a very significant role and smooth the pressure anisotropy spatially, as occurs in
the collisionless case described in § 3.2.1. In the high-collisionality regime, νc� β

1/2
0 ,

the heat fluxes are sub-dominant and do not play a significant dynamical role, leading
to 1p profiles that vary significantly in space. For more information, see § B.4 and
appendix B of Squire et al. (2017).

In the moderate-collisionality regime, up to νc . β
1/2
0 , the behaviour of the mode

at amplitudes δB. (β0/νc)
1/2B0 (see below) is effectively identical to the collisionless

regime discussed in § 3.2.1. In particular, the pressure anisotropy that develops from
the growing mode with δB� B0 is

∆≈ 1
νc
〈b̂b̂ : ∇u〉 ∼ S

νc

δB2
0

B2
0z

e2γ t = 1
νc

δB2
0

B2
0z

e2γ t, (3.4)

because the heat fluxes are smoothing 1p faster than it is being created (by some
factor between β

1/2
0 and 1, depending on νc β

−1/2
0 ; see Squire et al. 2017). Thus, by

the time that 1p reaches the mirror limit (i.e. when δB ∼ (νc/β0)
1/2B0), it is nearly

smooth in space, implying that the same conclusions reached in the collisionless limit
also apply here. The same is then true as the mode continues growing to δB&B0 (but
δB. (β0/νc)

1/2B0); it forces 1p to the mirror limit everywhere in space, implying the
mode is not strongly affected by the pressure-anisotropy nonlinearity (see (3.3)).

In the high-collisionality regime, νc � β
1/2
0 , the heat fluxes do not significantly

smooth spatial variation in 1p and we must modify various aspects of the conclusions
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from the previous section. The pressure anisotropy that develops from the growing
mode (for δB� B0) is now spatially inhomogeneous:

∆= 1
νc

b̂b̂ : ∇u∼ 1
νc

δB2
0

B2
0z

e2γ t cos2(kz). (3.5)

This implies that, as the pressure anisotropy first reaches the mirror limit in some
regions of space (near the antinodes of the mode, where dtln B is largest), it also
changes the shape of the mode, viz., it couples different Fourier components of δB and
δu. This causes minor modifications to the shape of the mode, which are shown in
figure 2(c) for νc=β3/4

0 (i.e. in the middle of the high-collisionality regime; the shape
changes at other νc and β0 are generally similar to this). As the mode grows further,
1p becomes limited by the mirror instability (1p∝B2

0+ δB2) across a larger region of
space, implying (by the arguments above) that the mode regains its sinusoidal shape
(albeit briefly, see next paragraph).

There is one final effect, not included in the collisionless discussion, which
occurs in both the moderate-collisionality and high-collisionality Braginskii regimes
at large mode amplitudes, δB & (β0/νc)

1/2B0. The difference compared to the
collisionless case arises because, in the Braginskii regime, 1p is proportional to
the current value of b̂b̂ : ∇u rather than to its time history. Once δB& B0, this value
b̂b̂ : ∇u ≈ −SδBxδBy/δB2 becomes constant in time, despite the fact that B2 ≈ δB2

is growing. Thus, 1p moves back below the mirror limit when δB2 & p0/νc, viz.,
when δB & (β0/νc)

1/2B0. This occurs before compressibility affects the mode (at
δB ∼ β1/2

0 B0), and causes the pressure anisotropy to vary in space, which in turn
modifies the shape of the mode. These modifications are very minor, even at very
high β0 ∼ 105 and high νc (not shown), and so it seems unlikely that they should
modify mode saturation in three dimensions in any significant way. As the amplitude
approaches δB∼ β1/2

0 B0, the mode is affected by compressibility in exactly the same
way as is the collisionless (or MHD) MRI (see figure 2d).

3.3. Nonlinear KMRI: azimuthal–vertical magnetic field
In this section, we consider the effect of an additional background azimuthal magnetic
field. We focus mainly on the collisionless KMRI (LF model; § 3.3.1), briefly
mentioning the Braginskii version (for which the conclusions are similar) in § 3.3.2.
As shown in figure 1, the MRI (or MVI) under such conditions is significantly
different from the vertical background field case, growing fastest at long wavelengths
kmaxvAz/Ω � 1 with growth rates exceeding S/2. This situation is arguably more
relevant astrophysically than is the pure vertical-field case: at high β0, even small
azimuthal fields significantly modify the dispersion relation (see appendix A).

3.3.1. Collisionless (LF) regime
As with the vertical-field KMRI, nonlinear effects become important in the

collisionless case at very low amplitudes, specifically when δBy ∼ β−2/3
0 B0 (or when

δBx ∼ β−1/3
0 B0, see (A 4)–(A 7)). Once the perturbed field becomes larger than the

background field, the magnetic field is dominated by the mode itself and the instability
again becomes similar to the MHD MRI (or, equivalently, the vertical-field KMRI at
large amplitudes).
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FIGURE 3. (a) Energy evolution of each component of the growing KMRI mode in a
mixed-azimuthal–vertical field with B0y = B0z, at β0 = 5000 (β0z = 10 000) in a domain
such that ΩLz/cs = 1. We show δBx (solid purple line; EMRI =

∫
dz δB2

x/8π),δBy (solid
green line; EMRI=

∫
dz δB2

y/8π),δux (dashed blue line; EMRI=
∫

dz ρδu2
x/2), and δuy (dashed

red line; EMRI =
∫

dz ρδu2
y/2). The calculation, which uses the 1-D LF model (2.1)–(2.7)

with νc = 0, is initialized with random Fourier amplitudes, scaled by k−2 (initial phase
of evolution not shown for clarity). For comparison, we also show the thermal energy
(yellow dot-dashed line) and the energy of the background magnetic field (grey dot-dashed
line). Following the linear phase with large growth rate (Region 1), the linearly perturbed
pressure anisotropy reaches the mirror and firehose limits when δBy ∼ β−2/3

0 B0y, δBx ∼
β
−1/3
0 B0y. There follows a transition phase (Region 2) in which the perturbed pressure

anisotropy can no longer contribute to the instability and the mode moves to the much
shorter wavelengths characteristic of the standard MRI. Then, once δBy > B0y, the mode
grows similarly to the vertical-field KMRI (Region 3) with ∆ at the mirror limit, until
finally it is affected by compressibility in the same way as illustrated in figure 2(d)
(Region 4). (b) Spatial structure of the azimuthal-field KMRI mode at a variety of times
corresponding to ‘×’ markers in panel (a), which are chosen to illustrate the different
phases of evolution. At each time, offset on the vertical axis for clarity with times listed
in units of �−1, we show δBx/max(δB) with solid lines, δBy/max(δB) with dashed lines,
and 1p/ max(|1p|) with dotted lines (the grey lines show 0 to more clearly separate
each curve). The mode transitions (around t ≈ 16 �−1) from structures characteristic of
the azimuthal-field KMRI with 1p both positive and negative, to those characteristic of
the MHD-like vertical-field MRI, with the pressure anisotropy everywhere positive and at
the mirror limit. Although less clean than the single-mode case studied in figure 2, the
structures at very late times (t = 24) are again affected by compressibility in the same
way (cf., δBx and δBy with those shown in figure 2d).

We now describe how such a mode transitions through four distinct stages in its
nonlinear evolution, which is illustrated schematically in figure 3. Let us consider each
stage of evolution separately, assuming B0y ≈ B0z = B0/

√
2 for the sake of simplicity:

(1) Linear evolution. Unlike in the vertical-field case, the KMRI mode linearly
produces a pressure anisotropy,

∆≈√2π
1

csk
∂tδBy

B0
≈√2π

γ

csk
δBy

B0
, (3.6)
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because δB · B0 = δByB0y 6= 0 (here we have set B0y ≈ B0z; see Q02 and appendix A).
This implies that, as the mode evolves, it pushes the plasma towards both the mirror
limit, in regions where δB ·B0 > 0 (i.e. δByB0y > 0), and the firehose limit, in regions
where δB · B0 < 0 (δByB0y < 0). Note that the factor γ /(csk)−1 ∼ β−1/2

0 (vAk/γ )−1 in
(3.6) arises due to the smoothing effect of the heat fluxes and reduces ∆ significantly
(for example, in the CGL model where q⊥ = q‖ = 0, ∆ ≈ 3δBy/B0 is much larger
than (3.6)). The linear phase ends as ∆ approaches the microinstability limits |∆| ∼
β−1 and becomes flattened by growing mirror and firehose fluctuations. Assuming the
mode grows at the scale that maximizes the growth rate, kmaxvA/Ω ∼ β−1/6

0 (see (A 2)
and figure 7), these limits are reached when δBy ∼ β−2/3B0, or when δBx ∼ β−1/3B0

(since δBx ∼ β1/3
0 δBy for these fastest-growing modes; see (A 4)–(A 7)). At this point,

the perturbation of B due to δBx is similar to that due to δBy, meaning that both
components contribute to the pressure anisotropy.7

(2) Pressure anisotropy limited, with δBy < B0y. In the limit that the mirror and
firehose fluctuations efficiently constrain the growing |∆|, the pressure profile will
develop a step function profile in space between the mirror limit, ∆≈ 1/β, and the
firehose limit ∆≈−2/β (see figure 3b at t= 12.5 �−1). A key effect of these limits
is that they suppress the influence of the δp⊥ and δp‖ perturbations on the mode
evolution. Without such pressure perturbations, the MRI reverts back to standard,
MHD-like behaviour characteristic of the vertical-field MRI (this can be seen, for
example, by artificially suppressing δp⊥,‖ perturbations in a calculation of the B0y 6= 0
KMRI dispersion relation). Specifically, the growth rate approaches zero for kvA .Ω
and peaks at smaller scales kvA ∼ Ω . Thus, the long-wavelength linear modes are
significantly stabilized (i.e. γ at low k is small) and the mode moves to shorter
wavelengths. Such behaviour is expected intuitively because the azimuthal pressure
force, which is the cause of the enhanced low-k linear growth rate (Q02; Balbus
2004), is limited by the mirror and firehose fluctuations. Because the standard MRI
grows with the perturbed energies in approximate equipartition, δBy must ‘catch up’
to δBx, and both of these must catch up to the velocity perturbations (which grow
linearly with δux ∼ δuy ∼ β1/2

0 δBy) during this phase of evolution (in other words, δu
grows more slowly than δB). This picture is confirmed by 1-D numerical calculations,
with the growth of δu decreasing significantly as shorter wavelengths take over; see
figure 3(a), Region 2. We also see smaller-scale perturbations growing on top of the
longer-wavelength mode in figure 3(b) at tΩ = 12.5 (e.g. around z= 0.2 and z= 0.85),
particularly in those regions at the firehose limit where the MRI preferentially grows
at smaller scales because 1p< 0. Note that the mode cannot be stabilized completely
during this phase because the MRI growth rate on a background 1p, though small,
is non-zero as k→ 0.

3. δBy > B0y. As the amplitude of δB grows larger than the background B0y field,
the mode enters a second phase of nonlinear evolution. With the field-line direction
dominated by the perturbation, the presence of a background B0y loses its dynamical

7There is a minor ambiguity here because, while the perturbation to B due to δBy perturbs 1p in both the
positive (mirror) and negative (firehose) directions, that due to δBx perturbs 1p only in the positive direction
(it is proportional to δB2

x ). A priori, it is thus unclear whether the system will always reach the firehose
limit, or whether the decrease in By can be offset by the increase in Bx. However, it seems that once the
nonlinearity starts becoming important, the rate of change of δBy increases sufficiently fast (while that of δBx
slows; see figure 3a around tΩ ≈ 12) so as to cause the contribution from δBy to dominate and 1p to reach
the firehose. Various tests, similar to that shown in figure 3 but with different β0 and B0y/B0z, have confirmed
that this picture holds so long as β0 is sufficiently large.
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importance and the mode behaves similarly to the vertical-field case, growing at
kvA ∼ Ω . In addition, because the magnitude of the magnetic field is now growing
everywhere in space, ∆ becomes everywhere positive and will be limited only by
the mirror instability; see figure 3(b) at t = 21 �−1. As with the vertical-field MRI,
when the perturbation amplitude dominates the total B, the pressure anisotropy
1p ≈ (δB2

x + δB2
y)/8π does not cause significant nonlinear modifications, because

δB · ∇δB= 0 for an MRI channel mode.

4. Compressibility effects. There is no 1-D mechanism to halt the growth of the mode
until δu approaches the sound speed (δBx ∼ δBy ∼ β1/2B0). Thus, the mode behaves
similarly to the vertical-field MRI, with large variations in ρ. The profiles that develop
have the same characteristic shape as those seen in figure 2(d) (cf., figure 3b at tΩ =
24).

Each of the four stages discussed above can be seen in the mode energy evolution,
shown in figure 3(a). In contrast to the calculation of the vertical-field MRI evolution
(figure 2), we begin from random large-scale initial conditions at much higher
β0 = 5000 (with B0y = B0z), so as to clearly distinguish between the different
regions of evolution and allow the smaller scale modes to grow after ∆ reaches
the microinstability limits. While the details of the process described above will be
modified depending on a variety of factors – e.g. the mode wavelength in comparison
to the domain, the spectrum of the initial conditions, and the value of B0y/B0z – the
basic concepts and phases of evolution should be generally applicable. It is also worth
noting that, at the large values of β for which our arguments are most applicable,
the mode will likely collapse into turbulence before the final nonlinear stage where
compressibility is important (see § 4).

3.3.2. Weakly collisional (Braginskii) regime
As with the vertical-field MRI in the Braginskii regime (§ 3.2.2), there are two

different Braginskii sub-regimes: (i) if νc ≡ νc/S � β1/2, the instability grows at a
similar rate to the collisionless instability (and the heat fluxes play an important
dynamical role), or (ii) if νc � β1/2, the growth rate of the MVI is reduced, reaching
the collisional (standard MHD) regime when νc ∼ β (see figures 1–3 of Sharma
et al. 2003). To understand this latter point – that the Braginskii MRI becomes
MHD-like when νc & β – we compare the Lorentz force, B0 · ∇δB=∇ · (B0δB), to
the pressure-anisotropy force ∇ · (b̂b̂1p) that arises from the (linear) 1p induced by
the KMRI mode,

1p∼ p0

νc

1
B

dB
dt
∼ p0

νc

1
B0

dδB
dt
∼ β

νc
γB0δB(t), (3.7)

where B2
0 = B2

0y + B2
0z and we have assumed B0y ∼ B0z. Note that we have neglected

the heat fluxes in (3.7), which act to reduce 1p (see (3.6)), as is appropriate for the
high-collisionality regime (see § B.4). We see from (3.7) that the pressure-anisotropy
stress is larger than the Lorentz force (and thus important for the mode’s evolution)
only if νc . β, as expected (Sharma et al. 2003).

Numerical experiments (not shown) have revealed that, in the moderate-collisionality
regime νc≡ νc/S�β1/2, the Braginskii KMRI behaves similarly to a truly collisionless
mode (this should be expected based on the arguments above and in § 3.2.2). As
described in § 3.2.2, at very large amplitudes, δB>B0 (Region 3), the evolution differs
from a collisionless mode once δB & (β0/νc)

1/2B0 (the growing mode can no longer
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sustain 1p at the mirror limit). In the high-collisionality regime, νc & β1/2, the linear
mode itself transitions back to the standard MHD MRI, and much of the discussion
above loses its relevance. In particular, the most-unstable mode moves to larger scales
as νc increases (see figure 2b of Sharma et al. 2003). This implies that the sudden
reduction in the scale of the mode when 1p∼B2 (see figure 3b between t≈ 12.5 and
t≈ 21) is much less relevant. The mode causes 1p to reach the mirror and firehose
limit at some amplitude δB . B0 (with the exact point depending on νc/β) and then
transition to the behaviour discussed in § 3.2.2 once δB & B0.

3.4. General discussion of 1-D nonlinearities
With the diverse assortment of nonlinear effects outlined in the previous sections,
it seems prudent to conclude with a discussion of some overarching ideas. As is
generally the case in high-β collisionless plasma dynamics (e.g. Schekochihin &
Cowley 2006; Squire et al. 2016), nonlinearity can be important for perturbation
amplitudes far below what one might naively expect. For the MRI in the collisionless
regime, this occurs a factor of ∼β0 (or ∼β7/6

0 for δBy with B0y 6= 0) below where
nonlinear effects become important in standard MHD. However, we have also seen
that, in all cases considered, the KMRI (or MVI) always reverts to MHD-like
evolution at large amplitudes due to the anisotropy-limiting response of the mirror
and firehose instabilities (e.g. Kunz et al. 2014a). This behaviour has also been seen
in fully kinetic 2-D simulations (Riquelme et al. 2012). More specifically, this arises
because of the form of the pressure anisotropy, viz. 1p= B2/8π, when it is limited
at the mirror threshold. If B is dominated by the mode itself (B2 ≈ δB2), then the
anisotropic stress in the momentum equation (2.2),

∇ · (1pb̂b̂)= 1
8π
∇ · (B2b̂b̂)≈ 1

8π
δB · ∇δB, (3.8)

acts like an additional Lorentz force, which is zero for the MRI channel mode
(Goodman & Xu 1994). This implies that the pressure-anisotropy effects that are
critical to the difference between the KMRI and the MRI in linear theory become
unimportant once δB&B0. Due to this, a large-amplitude collisionless KMRI channel
mode is an approximate nonlinear solution (of the LF equations), as in MHD, until its
amplitude approaches the sound speed (there is a minor complication in the Braginskii
regime; see § 3.2.2). Thus, the effect of compressibility on the large-amplitude mode
structure – if this occurs before breakdown into turbulence – looks nearly identical
in the MHD and kinetic models, with either a Braginskii or LF closure, and with or
without azimuthal fields (this structure is shown in figure 2d). Very similar structures
are also seen at large amplitudes in fully kinetic simulations (Kunz et al. 2014b).

In contrast, the effect of the nonlinearity at intermediate amplitudes δB . B0
differs between plasma regimes (collisionless and Braginskii) and background field
configurations. For modes growing in a purely vertical background field, the nonlinear
modification of the mode is modest, so long as the mirror fluctuations limit ∆ to
be close to 1/β. However, even moderate overshoot past the mirror limit – for
example, as might occur in numerical simulations due to insufficient scale separation
between Ωi and Ω , see § 6 – can cause quite strong modifications and/or cause the
mode to move to longer wavelengths. Modes evolving in a mixed-vertical–azimuthal
background field behave very differently, because the pressure perturbation participates
directly in the linear instability (Q02). Upon reaching the mirror and firehose
microinstability limits, the pressure perturbation can no longer contribute to the
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linear growth and the mode moves towards the smaller scales characteristic of the
standard MRI once δBy & β−2/3B0 (or δBx & β−1/3B0). This transition is illustrated
graphically in figure 3.

4. Saturation into turbulence
In the previous section we have argued that kinetic physics does not offer alternate

routes for the saturation of MRI modes in one dimension. In particular, in all cases
considered – purely vertical or mixed-vertical–azimuthal field, in both the Braginskii
and collisionless limits – the final stages of mode evolution are similar to those seen in
standard MHD, with the growing mode becoming close to a nonlinear solution (aside
from the effects of compressibility). We must therefore consider alternate means for
the saturation of the MRI, in particular 3-D turbulence. This conclusion is supported
by the fully kinetic simulations of Riquelme et al. (2012) and Kunz et al. (2014b), in
which the 2-D KMRI was seen to grow to very large amplitudes.

In this section, we are concerned with how a growing mode breaks up at large
amplitudes into 3-D turbulence. This problem is somewhat separate from the study
of the turbulent state itself (which we do not consider here), and has been studied by
a variety of authors in terms of ‘parasitic modes’ (e.g. Goodman & Xu 1994, Latter
et al. 2009, Pessah & Goodman 2009). These are 3-D secondary instabilities that
feed off the large gradients in the growing MRI channel mode, acting to disrupt the
mode and seed its transition into turbulence. While the relevance of parasitic modes
to transport in the turbulent saturated state has been controversial (e.g. Bodo et al.
2008, Latter et al. 2009, Pessah & Goodman 2009, Longaretti & Lesur 2010), they
are nevertheless a helpful theoretical tool for understanding the initial saturation phase.

The question we address here is whether one should expect any striking differences
(compared to MHD) in this initial saturation phase of the KMRI because of
differences in the behaviour of parasitic modes brought about by pressure anisotropy.
Our conclusion – within the limitations of the LF model (§ 2) – is that there are not
significant differences. We also argue that the observations of larger transient channel
amplitudes in S06 are explained through the modes’ increase in wavelength at large
amplitudes due to 1-D pressure-anisotropy nonlinearities (see § 3.2).

Because of this null result, and given the simplifications inherent to our fluid-based
model, we keep our discussion brief. We do, however, reach these conclusions through
two separate methods: (i) a study of the effect of a mean 1p on linear parasitic-
mode growth rates in a sinusoidal channel mode, and (ii) 3-D nonlinear simulations
using the modified version of the ZEUS code from S06. We thus feel that the general
conclusions reached here are relatively robust. That being said, due to the variety of
other effects that may be present in a true collisionless kinetic plasma, as well as the
strong dependence of MHD MRI turbulence on microphysics (e.g. magnetic Prandtl
number; Fromang et al. 2007, Meheut et al. 2015), we do not necessarily claim that
the initial stages of 3-D KMRI saturation should be similar to its MHD counterpart.
Rather, our conclusion is more modest: there are no significant differences due to
pressure anisotropy and heat fluxes (i.e. those kinetic effects contained within the LF
model).

4.1. Linear parasitic-mode growth rates
In this section we directly calculate parasitic-mode growth rates for MRI and KMRI
channel modes in a vertical background magnetic field. We do not consider a
mixed-azimuthal–vertical background field configuration here primarily because the
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1-D results of § 3.3 suggested that such modes are always relatively disordered when
they reach large amplitudes anyway, due to their strong nonlinear disruption (from
long wavelengths to short wavelengths) when δBy ∼ By (see, e.g. figure 3b). Thus
the very idealized linear problem, based on purely sinusoidal background profiles,
is presumably much less relevant for this case (we rectify this omission in the 3-D
simulations below; see figure 6b).

Motivated by previous MHD studies (Goodman & Xu 1994; Latter et al.
2009, 2010; Pessah & Goodman 2009), we consider 3-D linear perturbations,
f (x) = fkxky(z) exp(ikxx + ikyy) for f = {u′, B′, ρ ′, p′⊥,‖}, evolving on top of a
channel-mode background (δu and δB from (3.1), with δB0 a free parameter). That
is, we decompose the fields as

u=−Sxŷ−
√

3
5
δB0√
4πρ

sin(kz)(x̂+ ŷ)+ u′,

B= B0ẑ− δB0 cos(kz)(x̂− ŷ)+B′,
ρ = ρ0 + 0+ ρ ′,

p⊥ = p0 + δp⊥0 + p′⊥,
p‖ = p0 + δp‖0 + p′‖,


(4.1)

with k = 2π/Lz, and linearize (2.1)–(2.7) in u′, B′, ρ ′ and p′⊥,‖. (For simplicity, we
ignore spatial variation in δp⊥,‖0; see discussion below.) The resulting equations are
solved numerically in a box with dimensions8(Lx, Ly, Lz)= (4, 4, 1), on a 16× 16 grid
of Fourier modes in the homogeneous x and y directions, and with a pseudospectral
method and 64 modes in the inhomogeneous z direction. Hyperviscous damping is
used to remove energy just above the grid scale. We initialize with random noise in
all variables, and evolve in time until t = 10�−1 (by which time the most-unstable
parasitic eigenmode mostly dominates). Fitting an exponential to the energy evolution
at later times yields the growth rate γ of the least-stable parasitic mode. Intuitively,
a large parasitic-mode growth rate should be associated with rapid collapse of the
channel mode into MRI turbulence, because the parasitic modes will quickly ‘overtake’
the mode itself, with their 3-D structure acting as a seed for the turbulence. Further, as
the MRI mode grows (i.e. as δB0 increases) the parasitic growth rates should increase,
since there are stronger gradients of δu and δB to feed the instabilities.

To assess the impact of the pressure anisotropy, we apply a spatially constant
background pressure anisotropy 1p0 = δp⊥0 − δp‖0 in the KMHD models and
calculate the resulting change in the maximum parasitic growth rate with 1p0.
A strong variation in growth rate with 1p0 would indicate that the saturation into
turbulence is likely to depend sensitively on the self-generated pressure anisotropy,
and thus differ strongly between collisional and collisionless plasmas. Of course, as
discussed in § 3, there will be spatial variation in 1p at large δB0, so the study here
should be considered an approximation to the full problem, considering only the
simplest effects. Similarly, we neglect the influence of the background shear on the
parasitic modes (this is common in previous MHD analyses), because without this
simplification the resulting time dependence of ky implies that an analysis in terms of
eigenmodes is incorrect (one should consider transient, or non-modal, growth; Schmid
2007, Squire & Bhattacharjee 2014a,b). This assumption is not truly valid except
at very large mode amplitudes when δu dominates strongly over the mean shear,
although we expect to capture the correct qualitative trends when the parasitic growth

8The fastest-growing parasitic modes generally have a wavelength several times that of the channel,
necessitating a wide box (Bodo et al. 2008; Pessah & Goodman 2009).
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FIGURE 4. Maximum parasitic growth rates γ /Ω as a function of ∆= (δp⊥0 − δp‖0)/p0

for β0 ≈ 90 (B0z/
√

4πρ0 = 0.15cs) for (a) δB0/
√

4πρ0 = 0.5cs ≈ 3.3B0z, (b) δB0/
√

4πρ0 =
cs ≈ 6.7B0z, (c) δB0/

√
4πρ0 = 2cs ≈ 13.3B0z. Note that ∆ = 0.1 would correspond to

a plasma fixed at the mirror limit in a constant background field B0 ≈ √8π1p0 ≈
0.45cs

√
4πρ0 (but note that the channel-mode field varies sinusoidally). In each figure the

yellow stars illustrate the growth rate in KMHD without heat fluxes (i.e. CGL, q⊥= q‖=
0), while purple crosses illustrate KMHD growth rates including the simple model (2.12)
for the heat fluxes. For comparison, the dashed blue line shows the incompressible MHD
result and the dash-dotted red line shows the isothermal compressible MHD result (each at
∆= 0). The dotted black line is the MRI channel-mode growth rate γ /Ω = 3/4. Evidently,
the variation of γ with ∆ is modest, and is probably too small to be of much consequence
to MRI saturation.

FIGURE 5. As in figure 4 but with a background field β0 ≈ 800 (B0z/
√

4πρ0 = 0.05cs).
Although a growing MRI mode would have a shorter wavelength at this B0z, which will
make the parasitic modes more unstable at a given amplitude due to the larger gradients,
we choose to keep the same k= 2π/Lz as figure 4 to provide a direct comparison (recall
also from § 3 that the mode wavelength can increase during evolution).

rate is larger than the shearing rate. As mentioned above, given that the pressure
anisotropy appears to cause little change to growth rates, we deliberately keep this
section brief, postponing to possible future work the detailed study of the mode
structure and morphology (e.g. Kelvin–Helmholtz versus tearing-mode instability) or
the variation of growth rates with kx and ky (Goodman & Xu 1994; Latter et al.
2009; Prajapati & Chhajlani 2010).

Figures 4 and 5 illustrate representative examples of γ as a function of ∆= (δp⊥0−
δp‖0)/p0 and δB0. In each case the chosen mode energy is of order the thermal energy
δB0/
√

4πρ0∼ cs and is larger than the background B0z field. Because of this large δB0,
the parasitic growth rates are mostly larger than the MRI-mode growth rate (dotted
line), as required for a parasite to cause the channel mode to break up into turbulence.
The maximum of ∆ plotted (∆= 0.1) corresponds to a plasma that is everywhere at
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the mirror limit in a constant field of B0 ≈√8π1p0 ≈ 0.45cs
√

4πρ0, which is larger
than the background B0z in each case (but smaller than the maximum δB0 studied).
The first feature that is evident in figures 4 and 5 is the suppression in parasitic-mode
growth rates in the kinetic models (solid lines) and compressible fluids (red dash-
dotted line), in comparison to incompressible fluids (blue dashed line). This property
was also noted for compressible MHD in Latter et al. (2009).9 Aside from this, we
see that the differences between the kinetic models (both with and without heat fluxes)
and MHD are relatively modest.10 While there is there is a slight tendency for γ
to decrease with 1p at large mode amplitudes, changes in γ of this magnitude are
unlikely to make any notable differences in a nonlinear simulation. Furthermore, there
does not appear to be any significant change in behaviour at even higher δB0 (not
shown), which leads us to conclude that parasitic modes are broadly unaffected by
the kinetic effects contained within the CGL and LF models.

Obviously, the results shown in figures 4 and 5 cover only a small portion of
parameter space in a rather idealized setting. In addition to the results shown, we
have calculated growth rates across a much wider parameter space in B0z, p0, δB0, ∆,
k (the channel mode wavelength), small-scale dissipation coefficients (hyper-viscosity,
hyper-resistivity and their ratio) and box dimensions. In addition, we have varied the
ratio of δu and δB away from that of the fastest-growing channel mode (i.e. differently
from (3.1)), as might be caused, for example, by the effects of the self-generated
pressure anisotropy on the mode. Finally, we have also considered parasitic-mode
evolution on more angular compressible profiles, similar to those shown in figure 2(d)
(Latter et al. 2009). In all cases, we have failed to find any significant difference
between standard compressible MHD and the CGL or LF models, and so we refrain
from presenting these results in any detail here. Of course, these studies have all
assumed a spatially constant ∆ and ρ0 profile, which will certainly change results
quantitatively in some regimes. It is also possible that there are modes in other
regimes (e.g. much longer or shorter wavelength than the KMRI mode), that have not
been captured by these studies. Nevertheless, we feel that the general conclusion that
the parasitic modes are mostly insensitive to background pressure anisotropy should
be robust, given the wide range of parameter space for which this conclusion appears
to hold.

4.2. Nonlinear simulation
Our second method for probing parasitic-mode behaviour is to simply observe the
evolution of a nonlinear KMRI channel mode in three dimensions. The maximum
amplitude that such a mode reaches before breaking up into turbulence should give
a simple indication of the effectiveness of the parasitic modes. We use the modified
version of the ZEUS code described in S06, which solves (2.1)–(2.5) with the LF
closure (2.6)–(2.7) and pressure-anisotropy limiters.

9Although this might be expected to lead to larger saturation amplitudes in compressible MHD in comparison
to incompressible MHD, the difference is offset by the more angular channel-mode profiles that develop in
compressible MHD. Because these have larger gradients (see figure 2d), this increases the parasitic growth rate
and approximately cancels in the decrease in growth rate due to compressibility, leading to similar saturation
behaviour. See the appendix of Latter et al. (2009) for more details.

10The apparent scatter at lower δB0 is caused by the random initial conditions and relatively small time
(t= 10) at which we calculate the growth rate. There can be several modes with similar growth rates (particularly
(kx = 1, ky = 0) and (kx = 2, ky = 0) in figure 5b), which contribute varying amounts depending on the initial
conditions, and thus lead to some scatter in the measured γ . This goes away at higher δB0 because the much
faster growth rates lead to stronger dominance of a single mode by later times.
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This method is complementary to that described in the previous section: although it
cannot provide detailed information on individual modes or variation with parameters,
it is free from some of the caveats of the linear parasitic-mode study (for example, the
assumption of spatially homogeneous background density profiles). It also allows us to
consider the mixed-azimuthal–vertical field KMRI in a moderately realistic settling (as
mentioned above, the stronger effects of 1-D nonlinearities in this case suggest that an
idealized parasitic-mode study is not very worthwhile for the azimuthal-field KMRI).
Most importantly, 3-D simulations directly address the issue we most care about: is
the nonlinear saturation significantly different between the kinetic and MHD models?
In S06 the authors noted that there was a significant difference, with MRI modes in
kinetic models growing to significantly larger amplitudes before being disrupted, even
though the turbulence itself maintained a similar level of angular-momentum transport.
While this may appear to be at odds with our findings from the previous section, here
we argue that this difference is primarily a consequence of the 1-D effects described
in § 3. Specifically, the positive pressure anisotropy can increase the wavelength of
the mode well before it reaches saturation amplitudes. This effect was caused by the
choice of ∆≈7/β for the mirror instability limit in S06, which allows the anisotropies
to have a strong dynamical effect before the mirror limit is enforced. For a given mode
amplitude, these longer-wavelength modes are attacked more slowly by the parasites,
due to the smaller gradients of δu and δB (Goodman & Xu 1994), thus leading to a
larger transient amplitude before the transition into turbulence.

Our studies have deliberately used a set-up that is similar to S06. We initialize with
random noise in all variables and a background magnetic field with β0= 400 in a box
of dimension (Lx,Ly,Lz)= (1, 2π, 1). We take kL≈ 14, which corresponds to capturing
Landau damping correctly (k‖ ≈ kL) for low-amplitude modes with a wavelength of
approximately half of the size of the box, and limit the positive pressure anisotropy
at p⊥/p‖− 1< ξMir/β⊥ (this is ∆< ξMir/β for 1p� p0). With either a purely vertical
background field, or a mixed-azimuthal–vertical background field (B0y = B0z), we
compare the mode saturation between MHD, the LF model with ξMir= 7, and the LF
model with ξMir = 1. The vertical-field LF model runs are identical to runs Zl4 and
Zl5 of S06.

Our findings are illustrated in figure 6, which plots the modes’ energy evolution
in both LF cases and standard MHD, with a purely vertical field (left-hand panel a)
and with a mixed-azimuthal–vertical field (right-hand panel b). The key result of this
figure is the larger (∼factor 10) overshoot of the vertical-field KMRI mode (panel a)
with ξMir= 7 (compared to MHD), which disappears at ξMir= 1 (i.e. there is effectively
no difference between MHD and the LF model with the ξMir = 1 mirror limiter). As
mentioned above, this leads us to attribute the differences between MHD and the
LF model saturation to the difference in the large-amplitude wavelength of the MRI
modes. Specifically, the strength of the vertical magnetic field for β0 = 400 is such
that modes with kz= 4π/Lz dominate during the linear phase, but, with the artificially
high mirror boundary ξMir= 7, ∆ becomes large enough to cause the KMRI mode to
increase in scale to the largest in the box by later times (see insets). This does not
occur with the standard mirror limit ξMir = 1. While not unexpected, these results do
show that there are not inherent differences in the parasitic modes’ properties between
the kinetic (LF) model and MHD for the vertical-field MRI. Examination of mode
evolution at a variety of other values for β0 and ξMir (not shown) has produced results
that are generally consistent with this idea.

In figure 6(b), showing a mixed-azimuthal–vertical background field configuration,
we see that the saturation amplitudes of all three cases (the MHD model, and the
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FIGURE 6. Energy of the MRI perturbation, EMRI=
∫

dz (ρ δu2/2+ δB2/8π), as a function
of time for a set of 3-D ZEUS simulations at β0 = 400. We compare the evolution
of the LF model (2.1)–(2.7) with mirror limiter ∆ = 7/β as used in S06 (blue solid
lines), the LF model with mirror limiter ∆= 1/β (red dashed lines) and standard MHD
(black dotted lines). The insets show the vertical mode structure (δBx, blue; δBy, red)
at the times indicated by the circles. Panel (a) shows the case with a purely vertical
background magnetic field (B0y = 0). This illustrates how an artificially high mirror limit
(∆= 7/β; blue solid line) causes the mode to move to longer wavelengths after it reaches
the mirror limit at t ≈ 17, which subsequently causes the mode to reach a very large
amplitude before saturation. Panel (b) shows simulations with an azimuthal background
magnetic field (B0y = B0z; the dotted line shows the energy of B0y); in this case, all three
modes saturate into turbulence at similar amplitudes. Given the relatively disordered mode
structure in the kinetic runs (the insets compare the late-time structures of all three cases,
as labelled), this behaviour is consistent with the idea that there are not major differences
between the parasitic modes’ properties in the kinetic (LF) model and MHD (see text
for further discussion). Note that the time scale of the MHD case in panel (b) has been
shifted to the left, so that all three modes reach saturation amplitudes at a similar time
(the linear growth of the KMRI mode is faster, see figure 1).

ξMir = 1 and ξMir = 7 LF models) are similar. This seems to be because even at large
amplitudes, the KMRI modes are relatively disordered and each have both k= 2π/Lz

and k= 4π/Lz components, while the MHD mode is nearly a pure k= 4π/Lz mode.
This more disordered KMRI state is expected based on the 1-D analysis of § 3.3: the
mode is strongly disrupted as δBy surpasses B0y, and has not had time to ‘pick out’
the fastest-growing mode (see also figure 3b). Thus although the MHD mode might
be more easily attacked by the parasitic modes (given its smaller scale), the more
disordered KMRI modes are further from being nonlinear solutions, and thus more
easily evolve into turbulence. The net result is that they all saturate at approximately
the same amplitude. As further evidence for this scenario, we see that the k= 2π/Lz

component of the ξMir= 7 mode is larger than that of the ξMir= 1 mode (as expected
because 1p is larger, increasing the effective magnetic tension), explaining its slightly
higher saturation amplitude. Thus, these mixed-azimuthal–vertical field KMRI results
also suggest that there is little difference between the parasitic-mode properties in the
kinetic (LF) model and MHD. Again, we have examined mode evolution at various
other values for β0 and ξMir (not shown) and seen similar results; however, to truly
study this case in detail would require much higher resolution simulations (so as to
allow higher β0; see figure 3), which are beyond the scope of this work.
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Overall, we see that all of our calculations – both of linear parasitic-mode growth
rates in idealized settings and 3-D studies using the full nonlinear LF model – are
consistent with the idea that parasitic modes are not strongly affected by the kinetic
effects contained within the fluid models considered in this work. This seems to
be the case for both the vertical-field KMRI and the mixed-azimuthal–vertical field
KMRI (although we did not study the parasitic modes directly for the mixed-field
case). An obvious caveat of this conclusion is that we have considered only the LF
model in this work, and future studies with fully kinetic methods (in particular, those
that can correctly capture plasma microinstability saturation) are needed to shed light
on whether our conclusions also hold for truly collisionless plasmas.

5. Kinetic effects not included in our models

Our approach throughout this paper has been to consider only the simplest kinetic
effects, in particular those arising from a self-generated gyrotropic 1p. Further, the
Landau-fluid models used for much of the kinetic modelling do not correctly capture
the all-important firehose and mirror microinstabilities, and we have resorted to
applying phenomenological hard-wall limits as commonly used in previous works
(S06; Sharma et al. 2007, Santos-Lima et al. 2014). In this section we briefly outline
some physical effects that are not included in our model, most of which must be
examined, in one way or another, through fully kinetic simulations (e.g. Kunz et al.
2016).

Mirror and firehose evolution. Recent kinetic simulations and analytical calculations
(Kunz et al. 2014a; Hellinger et al. 2015; Rincon et al. 2015; Melville et al. 2016)
paint an interesting picture of how the firehose and mirror instabilities saturate, with
each going through a regime where fluctuations grow secularly with little particle
scattering, followed by a saturated regime in which the microinstabilities strongly
scatter particles due to sharp small-scale irregularities in the magnetic field. The
mirror instability is particularly interesting, both because it is more important than
the firehose for MRI dynamics (since dB/dt > 0 quite generally), and because it
grows secularly over macroscopic time scales (i.e. for t ∼ |∇u|−1) before saturating
and scattering particles (Kunz et al. 2014a; Rincon et al. 2015; Riquelme et al.
2015; Melville et al. 2016). This may add another time scale and nonlinear feature
into the 1-D MRI evolution described in § 3, whereby the effective collisionality is
strongly enhanced some time t∼Ω−1 after 1p initially reaches the mirror limit. It is
unclear if there will be a significant change in macroscopic behaviour with the onset
of particle scattering, and fully kinetic MRI simulations with large scale separations
Ω/Ωi� 1 are needed to address this issue (see § 6 for further discussion).

Other kinetic instabilities. There are a variety of other pressure-anisotropy-induced
kinetic instabilities that we have ignored throughout this work. For the ion dynamics,
the most important of these is likely the ion-cyclotron instability (see, e.g. Gary,
McKean & Winske 1993). While general theoretical analysis (Gary et al. 1997; S06)
and solar-wind observations/theory (Kasper, Lazarus & Gary 2002; Bale et al. 2009;
Verscharen et al. 2016) suggest that the ion-cyclotron instability is less important
than the mirror instability when Te ∼ Ti and β0 & 1, it may become more important
at lower Te/Ti (as expected in low-luminosity accretion flows). In particular, the
works of Sironi (2015) and Sironi & Narayan (2015) suggest that there is a transition
around Te/Ti . 0.2 (or somewhat lower when βi & 30) below which the ion-cyclotron
instability dominates over the mirror instability in regulating pressure anisotropy (this
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behaviour is at least partially accounted for by the linear effects of electron pressure
anisotropy; see Pokhotelov et al. 2000, Remya et al. 2013). At least for lower βi
plasmas, this will modify the threshold at which the pressure anisotropy is nonlinearly
regulated (see §2.3 of S06) and change the microphysical mechanism through which
this regulation occurs (Sironi & Narayan 2015).

Non-thermal distributions. Having focused on fluid models, we cannot address the
many interesting questions surrounding non-thermal particle distributions that might
develop. Strong non-thermal distributions have been seen in a variety of kinetic
simulations (Riquelme et al. 2012; Hoshino 2015; Kunz et al. 2016), perhaps due to
magnetic reconnection.

Electrons. We have completely neglected any discussion of electron dynamics
throughout this work. This can be loosely justified either when the electrons
are (significantly) colder than ions, or in a weakly collisional regime, when ions
dominate the anisotropic stress in the momentum equation due to the higher electron
collisionality. However, even in such regimes, where the anisotropic stress due to
elections is nominally subdominant to that of the ions, there may be additional
subtleties induced by their thermodynamics. For example, the ion-cyclotron instability
increases in importance compared to the mirror instability when Te� Ti (see above,
Sironi & Narayan 2015). Further, the induced electron-pressure-anisotropy stress will
presumably not be efficiently regulated by ion-scale instabilities, potentially allowing
the anisotropic electron stress to grow to dynamically important values even if Te�Ti,
and/or exciting electron instabilities (e.g. the electron whistler instability; Kim et al.
2017; Riquelme, Osorio & Quataert 2017). In addition to the possible influence of
electron-anisotropy instabilities and stresses, there are a variety of important questions
to explore related to the proportion of viscous heating imparted to ions and electrons
in RIAFs (e.g. see Sharma et al. 2007, Ressler et al. 2015, Sironi 2015, Riquelme
et al. 2017).

Non-gyrotropic effects. As the temporal and spatial scales of the MRI approach the
gyro-scale, the approximation of gyrotropy – that the pressure tensor is symmetric
about the magnetic-field lines – breaks down. In this case, either more complex fluid
models (Passot, Sulem & Hunana 2012) or fully kinetic treatments are needed to
understand any key differences due to non-gyrotropic effects. While such effects are
unlikely to be astrophysically important in current-epoch disks (where the separation
between macroscopic scales and the gyro-scale is often ∼1010 or more), they may
be important for understanding the amplification of very weak (β &Ωi/Ω) fields in
the high-redshift universe (Heinemann & Quataert 2014; Quataert et al. 2015). In
addition, numerical simulations will always have limited scale separations (in order
to resolve both the macroscopic scales and the gyroradius), and knowledge of such
effects could be important for the complex task of characterizing the limitations of
kinetic simulations (see § 6.4).

6. Implications for the design of kinetic MRI turbulence simulations
In light of the above caveats concerning detailed kinetic effects absent in our

models, it is clear that continued efforts to more rigorously simulate KMRI turbulence
are needed. In this section, we leverage the results of this paper, as well as those
from existing kinetic simulations of the KMRI and of Larmor-scale velocity-space
instabilities, to provide some guidance for such efforts. Driving the discussion is
a recognition that achieving a healthy scale separation in a kinetic simulation of
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magnetorotational turbulence is numerically expensive, perhaps prohibitively so. We
thus focus primarily on non-asymptotic behaviour that might occur when Ω/Ωi is not
sufficiently small, and provide some estimates for what Ω/Ωi must be smaller than
in order to capture the effects predicted in this paper. We stress that the asymptotic
regime focused on in this paper is likely the most astrophysically relevant one, even
if it is difficult to realize in fully kinetic simulations.

6.1. Pressure-anisotropy overshoot due to finite scale separation
First, in order for the mirror instability to effectively regulate the positive pressure
anisotropy during the growth of KMRI, the growth of the mirrors must deplete the
anisotropy faster than it is being adiabatically replenished by the KMRI. This requires
γm/γkmri > 1, where γm and γkmri are the growth rates of the mirror instability and
KMRI, respectively. The maximum growth rate of the mirror instability is given
by γm ∼ ΩiΛ

2
m, where Λm

.= ∆ − 1/β⊥ is positive when the plasma is mirror
unstable (Hellinger 2007). Thus, we require Λm > (γkmri/Ωi)

1/2 for the mirror
instability to outpace the KMRI-driven production of positive pressure anisotropy.
For the vertical-field case, γkmri = S/2 at maximum growth, and so we require
Λm>(S/2Ωi)

1/2.11 When there is an azimuthal magnetic field present, γkmri≈ (2SΩ)1/2
at maximum growth, and so we require Λm > (S/Ωi)

1/2 (2Ω/S)1/4 ≈ (S/Ωi)
1/2. Of

course, in this case we must also contend with the firehose instability in regions where
∆∝ δBy < 0 (see (3.6)), for which the instability criterion is Λf

.=∆+ 2/β‖< 0. With
γf ∼Ωi|Λf |1/2 as the growth rate for the fastest-growing oblique firehose (Yoon et al.
1993; Hellinger & Matsumoto 2000), we require |Λf |> (S/Ωi)

2 (2Ω/S)' (S/Ωi)
2 for

the firehose instability to outpace the KMRI-driven production of negative pressure
anisotropy. The parallel-propagating firehose has γf =Ωi|Λf | as its maximum growth
rate (e.g. Davidson & Völk 1968; Rosin et al. 2011), and thus grows slower than its
oblique counterpart for |Λf |. 1.

We now determine whether these criteria place prohibitive constraints on kinetic
simulations. For the vertical-field KMRI, ∆∼ (δB/B0)

2 (see (3.2)), and so the mirror
instability will grow fast enough to deplete the pressure anisotropy Λm→ 0+ when(

δB
B0

)2

&
1
β0
+
(

S
Ωi

)1/2

, (6.1)

beyond which the plasma is kept marginally mirror stable (and the results of this paper
then follow). The asymptotic limit (S/Ωi)β

2
0 → 0 was taken throughout this paper

to obtain (δB/B0)
2 ∼ 1/β0 at the mirror instability threshold. The additional factor

of (S/Ωi)
1/2 due to overshoot beyond this threshold may be quite appreciable in a

contemporary kinetic simulation of the MRI, perhaps ∼0.1 (e.g. Kunz et al. 2016) or
even more (e.g. Riquelme et al. 2012; Hoshino 2015), and thus might be comparable
to, if not larger than, 1/β0. The situation will, of course, improve as the amplification
of the magnetic-field strength by the KMRI increases Ωi and decreases β. Thus, in
the final, turbulent saturated state, the effect of finite scale separation will presumably

11See the inset of figure 6 in Kunz et al. (2014a) for a numerical demonstration of the scaling max(Λm)∝
(S/Ωi)

1/2, where S is the shear rate at which pressure anisotropy is driven. See also Kunz et al. (2016,
figure 1c) for a demonstration that Λm '∆' 0.12≈ (S/2Ωi)

1/2 when the mirror modes begin to first deplete
the pressure anisotropy driven by the vertical-field KMRI. (Note that our definition for ∆ is actually twice
as large as the quantity (p⊥ − p‖)/p0 plotted in Kunz et al. (2016, figure 1(c)), which temporarily peaks at
'0.07 before the mirrors are able to drive the pressure anisotropy towards marginal mirror stability. The factor
of 2 difference is because of the additional thermal pressure in p0 from the electrons.)
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be less severe than during the early, weakly nonlinear phases that have been the focus
of this work; nonetheless, one should at least be aware of the impact of insufficient
scale separation on the early phase of the KMRI.

In a mixed-azimuthal–vertical guide field, the KMRI-driven pressure anisotropy is
linear in the mode amplitude (see (3.6)). Because, in this case, it is the pressure
anisotropy which provides the azimuthal torque to transport angular momentum and
drive the instability (rather than the magnetic tension), it matters all the more how
efficiently the pressure anisotropy is regulated. If the lack of scale separation allows
the pressure anisotropy to grow much beyond the mirror threshold, the instability’s
behaviour once δBy & β

−2/3
0 B0y may be completely different. Let us be quantitative,

assuming B0y≈B0z and that β0 is sufficiently high (β0z & 103 at least) that the scalings
derived in appendix A hold. Then, the maximum growth rate of the azimuthal KMRI,
γ ≈ (2S�)1/2, occurs at wavenumbers satisfying |k|vAz/Ω ≈ 2β−1/6

0 (see (A 2)), and the
driven pressure anisotropy (3.6) is

∆≈
√

πS
Ω
β
−1/3
0

δBy(t)
B0

(
2β−1/6

0 Ω

vAz|k|

)
, (6.2)

where the final term in parentheses is order unity. Thus, the mirror instability will
grow fast enough to deplete the excess positive pressure anisotropy when(

δBy

B0

)2

&
Ω

πS

(
1

β
2/3
0

+ S1/2β
1/3
0

Ω
1/2
i

)2

, (6.3)

which may be readily compared to (6.1). The asymptotic limit (S/Ωi)β
2
0 → 0 was

taken throughout this paper to obtain δBy/B0∼β−2/3
0 at the mirror instability threshold.

The additional factor of (S/Ωi)
1/2β

1/3
0 is due to the necessary overshoot beyond this

threshold, which, again, may not be all that small in a contemporary kinetic simulation.
For the firehose, the negative pressure anisotropy will be efficiently depleted when(

δBy

B0

)2

&
4Ω
πS

(
1

β
2/3
0

+ S2β
1/3
0

2Ω2
i

)2

, (6.4)

which will occur after the mirror criterion (6.3) is satisfied because of its more
forgiving threshold (as long as (S/Ωi)

1/2 is small compared to 1/β0).

6.2. The impact of pressure-anisotropy overshoot on the KMRI
One notable impact of these pressure-anisotropy overshoots is on the fastest-growing
KMRI-mode wavelength. For the vertical-field case, this wavelength will increase due
to the nonlinear pressure anisotropy by an amount ≈(3/2 + βΛm/2)1/2. With Λm &
(S/Ωi)

1/2 required for the mirrors to outpace the production of anisotropy, this could
easily be a factor of several increase unless adequate scale separation is used. For
example, having β= 400 and S/Ωi= 0.01 would result in a pressure-anisotropy-driven
increase in the KMRI wavelength by a factor of ≈5. In a computational box with
vertical extent Lz ≡ cs/Ω , this means that a maximally growing mode with kvA 'Ω
and γ ' S/2 would shift from having λ/Lz≈ 2π(2/β)1/2≈ 0.4 to λ/Lz≈ 2, bigger than
the box. The mode’s wavelength would, of course, stop increasing once λ/Lz= 1. But
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if, at that point, Λm > (S/Ω)/2π2− 3/β, then all the KMRI modes in the box would
be stabilized by the effectively increased magnetic tension. Since Λm must grow to
∼(S/Ωi)

1/2 before the mirrors can efficiently relax the pressure anisotropy and thereby
remove some of this excess tension, we find that values of S/Ωi > [(S/Ω)/2π2 −
3/β]2 will ultimately stabilize the KMRI.12 It is, however, likely that this stabilization
would be transient: even if the KMRI stops growing, the mirrors will continue relaxing
1p (albeit rather slowly), and at some point 1p would be sufficiently low so as to
render the KMRI unstable again. Finally, we note that if the box does continue to
support unstable KMRI modes on the largest scales λ/Lz = 1, one must ensure that
the horizontal extent of the box is large enough to fit the parasitic modes (§ 4.1).

In the azimuthal–vertical-field case, the fastest-growing mode occurs on scales
satisfying kvAz/Ω ∼ β−1/6

0 , or λ/Lz ∼ β−1/3
0 . These scales are larger than those of the

standard MRI and the vertical-field KMRI. We have predicted that, as the mirror and
firehose instabilities kick in and regulate the pressure anisotropy, the influence of
the δp⊥ and δp‖ perturbations on the mode evolution is suppressed and the KMRI
reverts back to its standard, MHD-like behaviour. This involves a suppression of
long-wavelength MRI modes (i.e. γkmri decreases for kvA . 1) and a transition phase
in the nonlinear evolution (‘Region 2’ in figure 3a), in which the mode becomes more
MHD-like at smaller scales with the kinetic and magnetic energies in approximate
equipartition. If the mirror regularization is especially sluggish due to inadequate
scale separation, this phase might be skipped altogether and a λ/Lz = 1 mode will
take the place of what is instead seen in figure 3(b). It is also worth noting that the
large value of β0= 5000 used in § 3.3 to accentuate the different regions of evolution
would require an especially small value of S/Ωi in a kinetic simulation.

6.3. The microphysics of the firehose and mirror instabilities
A further constraint on the choice of S/Ωi concerns the means by which mirror/
firehose instabilities regulate the pressure anisotropy. In order for these instabilities
to efficiently keep the anisotropy near the instability thresholds via the anomalous
pitch-angle scattering of particles, the scattering rate must be ∼Sβ, and this number
must be smaller than Ωi.

In the case of the firehose instability, when S/Ωi � 1/β the firehose fluctuations
saturate at a mean level 〈|δB/B|2〉 ∼ (βS/Ωi)

1/2 in a time ∼[β/(SΩi)]1/2� S−1∼ γ −1
kmri

(Kunz et al. 2014a; Melville et al. 2016). This is achieved via pitch-angle scattering
of the particles off Larmor-scale firehose fluctuations, which precludes the adiabatic
production of pressure anisotropy. In this limit, since local shear in a macroscopic
plasma flow will change in time at the rate comparable to the shear itself, one can
safely consider the anomalous collisionality associated with the firehose fluctuations
to turn on instantaneously, in line with the macroscopic modelling assumption used
in this paper. At sufficiently high β and/or S such that β &Ωi/S, however, this is no
longer true and the firehose fluctuations saturate at an order-unity level independent of
either β or S, after growing secularly without scattering particles for one shear time
(Melville et al. 2016). Thus, for kinetic simulations of MRI turbulence to reliably
demonstrate the anomalous-scattering model of pressure-anisotropy regulation used
in this work and others (e.g. Sharma et al. 2006; Mogavero & Schekochihin 2014;
Santos-Lima et al. 2014; Chandra et al. 2015; Foucart et al. 2015), parameters must

12That is, unless β decreases (or Ωi increases) by an appreciable amount due to the KMRI-driven field
amplification by the time that λ reaches the box size. In this case, we would have δB/B0� 1 and other
nonlinear effects could become important also (e.g. compressibility).
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be chosen such that S/Ωi < 1/β, preferably by a decade or more. Again, satisfying
this inequality becomes easier as the KMRI grows the magnetic-field strength. But,
for the early phases of evolution, this cautions against setting β0 too high, because
this will impose stiff constraints on an acceptable value of S/Ωi0.

In the arguably more relevant case of the mirror instability, when S/Ωi� 1/β the
mirror fluctuations saturate at a mean level 〈(δB/B)2〉∼1 in a time ∼S−1∼γ −1

kmri (Kunz
et al. 2014a; Riquelme et al. 2015; Melville et al. 2016). While marginal stability
and mirror saturation is ultimately achieved via pitch-angle scattering of the particles
off Larmor-scale bends at the ends of the magnetic mirrors, there is a long (∼S−1)
phase in which the pressure anisotropy is held marginal without appreciable particle
scattering. This is achieved by corralling an ever increasing number of particles into
the deepening magnetic wells, in which these particles become trapped, approximately
conserve their µ as they bounce to and fro, and perceive no average change in B (and
thus no generation of net pressure anisotropy) along their bounce orbits. The increase
in the large-scale B is offset by the decrease in the intra-mirror B. During this phase
of evolution, the mirror fluctuations grow at the rate required to offset the production
of pressure anisotropy by the KMRI-driven growth in the large-scale magnetic-field
strength. A few things must be satisfied for kinetic simulations of KMRI growth to
produce results similar to those predicted in this paper. First, the hard-wall limiter
on the pressure anisotropy that we (and others) use must be an adequate (if not
complete) representation of the otherwise more complicated mirror-driven regulation.
This is particularly true during the µ-conserving phase of the mirror instability: does
it matter to the large (i.e. KMRI) scales that an ever-increasing population of trapped
particles are ignorant of the KMRI-driven magnetic-field growth during this phase?
If not, then fine; simply limit the pressure anisotropy at the mirror instability using
an enhanced collisionality, nothing more sophisticated being necessary. But, if so,
then an effort must be made in the kinetic simulation to ensure that its results, if
different from those predicted in this paper, are truly asymptotic. Namely, since the
µ-conserving phase of the mirror instability lasts just one shear time, whereas the
KMRI growth phase typically lasts several shear times, there must be enough scale
separation so that the mirrors can saturate before δB/B0 of the KMRI enters into the
nonlinear phases we predicted in § 3. Secondly, do the Larmor-scale mirror distortions
in the magnetic-field direction greatly affect the efficacy of the heat flow? An answer
in the affirmative is suggested by Komarov et al. (2016), Riquelme et al. (2016),
Riquelme et al. (2017). But, if the effect of these distortions is simply a reduction in
the magnitude of the heat flow, then the footnote in § 2.1 applies: our results are not
strongly affected. The reason is that, by the time the mirror instability is triggered,
the heat flows have already spatially smoothed the pressure anisotropy on the scale
of the KMRI mode, fulfilling their main role in influencing the mode evolution.

6.4. Finite-Larmor-radius effects
There is additional physics that enters when S/Ωi is not sufficiently small, which
might complicate the evolution of the KMRI beyond that envisaged herein. First,
gyroviscous effects become important when β & 4Ωi/Ω (Ferraro 2007; Heinemann
& Quataert 2014). For such β, the polarity of the mean magnetic field influences
the stability and MRI growth rates. Without a good scale separation between Ω

and Ωi, finite-Larmor-radius effects might therefore artificially modify the KMRI,
even at modest β. Secondly, note that an equilibrium particle distribution function
in a strongly magnetized differentially rotating disc can be quite different than
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an equilibrium distribution function in an unmagnetized disc. In the latter, a tidal
anisotropy of the in-plane thermal motions of the particles is enforced by epicyclic
motion in the rotational supported plasma (see § 3.1 of Heinemann & Quataert
2014); this effect goes away in a strongly magnetized plasma, where gyrotropy of
the distribution function about the magnetic field is enforced. This is important
because, if the initial magnetic field is inclined with respect to the rotation axis
(i.e. by 6= 0, bz 6= 1) and S/Ωi is not sufficiently small, this tidal anisotropy can
function as a field-biased pressure anisotropy and potentially drive mirror fluctuations
in the equilibrium state. To wit, the equilibrium field-biased pressure anisotropy
is ∆ ≈ (3/2)(S/Ωi)(b2

y − 1/3)/bz to leading order in S/Ωi when bz 6= 0. A disc
with by = bz = 1/

√
2 would be mirror unstable from the tidal anisotropy alone if

S/Ωi & 2
√

2β−1. (A plasma with, say, β0= 400 and S/Ωi= 0.01 would thus be mirror
unstable, even without the KMRI-driven pressure anisotropy.) If the background field
is exactly azimuthal, then the field-biased pressure anisotropy ∆ = S/(2Ω) > 0, and
any large-β plasma would be trivially mirror unstable, no matter how strongly the
plasma is magnetized.

6.5. The saturated state
Finally, one must be cognizant of the physical constraints and computational demands
not only during the early stages of the KMRI, but also in the saturated state. In going,
say, from β0 ≈ 103 to β ≈ 4, as often seen in a typical magnetorotationally turbulent
saturated state (e.g. Pessah, Chan & Psaltis 2006), the ion Larmor radius might shrink
by a factor between ≈4 (if µ is somehow conserved during this process) and ≈16 (if
µ is not). Increased scale separation is, of course, a good thing, but only to a point. If
ρi decreases so much that it falls under the numerical grid, then the anomalous particle
scattering from ion-Larmor-scale magnetic structures that plays a regulatory role for
the pressure anisotropy will be attenuated, fundamentally changing the physics of the
mirror and firehose instabilities.

7. Conclusions
A persistent feature of high-β collisionless plasmas is the appearance of nonlinearity

due to pressure anisotropy in regimes where similar dynamics in a collisional (MHD)
plasma is linear (e.g. Schekochihin & Cowley 2006, Mogavero & Schekochihin
2014, Squire et al. 2016). Such behaviour generically arises because, for similar
values of the magnetic field, the mechanisms that generate a pressure anisotropy
are proportional to the total pressure (e.g. d1p/dt ∼ p0 d ln B/dt in the collisionless
case), while the momentum stresses induced by this anisotropy (i.e. its dynamical
effects) depend on 1p itself (i.e. not on 1p/p0). Thus a larger background pressure
leads to larger anisotropic stresses, which dominate the Lorentz force by a factor
∼β. This implies that nonlinear effects can become important for very small changes
in magnetic-field strength. However, as is well known, once the anisotropy grows
beyond 1p∼±B2, the firehose and mirror instabilities grow rapidly at ion gyro-scales
and limit any further growth in 1p. We are then left with the question of whether
the resulting dynamics on large scales is effectively MHD-like (as occurs if the
microinstability-limited 1p is dynamically unimportant), or whether there are strong
differences compared to MHD. In either case, we can expect that linear instabilities
will be nonlinearly modified for amplitudes well below where such modifications
occur in MHD.
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This work has considered the influence of this physics on the collisionless (kinetic)
and weakly collisional (Braginskii) magnetorotational instability (KMRI), focusing on
the characteristics of the instability at high β before its saturation into turbulence. Our
general motivations have been to:

(i) Understand if there are any alternate (pressure anisotropy related) means for the
linear KMRI to saturate in various regimes. Such a mechanism could significantly
alter expected angular-momentum transport properties of kinetic MRI turbulence.

(ii) Inform current and future kinetic numerical simulations of the KMRI – which
are complex, computationally expensive and difficult to analyse – on some key
differences and similarities as compared to well-known MHD results.

Our main finding is that the KMRI at large amplitudes behaves quite similarly
to the standard (MHD) MRI. In fact, in some cases – in particular, the MRI in
a mean azimuthal–vertical field (also known as the magnetoviscous instability) –
the MRI transitions from kinetic to MHD-like behaviour as its amplitude increases.
Furthermore, in all cases studied we have seen the channel mode (kx = ky = 0 MRI
mode) emerge as an approximate nonlinear solution of the kinetic equations at large
amplitudes, in the same way as occurs in MHD (Goodman & Xu 1994). This is
because the mirror-limited pressure anisotropy has the same form as the Lorentz
force (since 1p∝ B2), and this vanishes identically for an MRI channel mode. This
points to an interesting robustness of the channel-mode solution in collisionless
plasmas that had not been previously fully appreciated.

The similarity between the nonlinear physics of the KMRI and the MHD MRI is
certainly not a given; for example, the nonlinear dynamics of shear Alfvén waves,
which is related to the MRI (Balbus & Hawley 1998), differs very significantly
between collisional and kinetic plasmas (Squire et al. 2016, 2017). Further, there
remain a variety of 1-D nonlinear effects that cause modest differences when
compared to standard MHD, and these could be important for the difficult task
of designing and interpreting 3-D fully kinetic simulations. For example, depending
on the level of overshoot of the pressure anisotropy above the mirror instability
threshold (as would occur if there were insufficient scale separation between the
large-scale dynamics and the gyro-scale; see § 6), the MRI mode may migrate to
longer wavelengths at moderate amplitudes, or (in extreme cases) be completely
stabilized. A more detailed overview of the most relevant 1-D results is given in
§ 3.4.

Motivated by the finding that there are no viable 1-D mechanisms for halting the
growth of the kinetic MRI, as also found in previous numerical simulations (S06;
Sharma et al. 2007, Riquelme et al. 2012, Kunz et al. 2014b, Hoshino 2015), we
are left with the conclusion that 3-D effects must govern the collapse of a KMRI
channel mode into a turbulent-like state. Following previous MHD studies (Goodman
& Xu 1994; Latter et al. 2009; Pessah & Goodman 2009), we have considered 3-D
mechanisms for mode saturation in terms of parasitic modes, secondary instabilities
that feed off the large field and flow gradients of the channel mode, acting to disrupt
it and cause its collapse into turbulence. Using both linear studies of parasitic modes
and 3-D nonlinear simulations (with the modified ZEUS version of S06), we have
found very little difference between the behaviour of parasitic modes in kinetic and
MHD models. We have further shown that the observations of S06 of larger saturation
amplitudes in kinetic models as compared to MHD may be straightforwardly explained
by the migration of kinetic channel modes to longer wavelengths due to the mean
pressure anisotropy (i.e. 1-D effects). This suggests that MHD results may be used
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to give simple, zeroth-order estimates of the expected amplitude at which a KMRI
channel mode should saturate into turbulence. Similar conclusions have also been
found in global Braginskii MHD simulations of accretion disks (Foucart et al. 2017).

Although our results suggest that the breakdown into turbulence occurs in a similar
way in kinetic theory and MHD, this does not necessarily imply that the saturated
state of the turbulence is similar. Indeed, even following the pioneering 3-D nonlinear
kinetic MRI simulations of Hoshino (2015) and Kunz et al. (2016), many properties
of the saturated state of the KMRI – i.e. the turbulence – remain largely unknown.
The zero-net-flux simulation of Kunz et al. (2016) found a level of turbulence that
was comparable to high-Prandtl-number turbulence in MHD. However, there are some
notable differences; for instance, a greater prevalence of coherent flows, and the fact
that (in contrast to MHD) a large proportion of this transport arises from the pressure
anisotropy directly. Some similar results were found in S06, Sharma et al. (2007) and
Foucart et al. (2017) using fluid closures. However, these current results have explored
only small regions of parameter space (e.g. the case of zero net flux), and it remains
unknown how kinetic MRI turbulence relates (if at all) to MHD MRI turbulence. Both
the strength of kinetic MRI turbulence and the different heating processes involved (in
particular, the relative level of ion versus electron heating; Quataert 1998; Quataert
& Gruzinov 1999), remain crucial unknowns in constraining phenomenological disk
models.
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Appendix A. Linear properties of the KMRI with a background azimuthal–
vertical field

In this appendix, we derive various properties of the KMRI in the general case when
the background field has a mixed-azimuthal–vertical configuration. We focus on modes
with kx = ky = 0 as in § 3.1.

A.1. The fastest-growing wavenumber
An important input to the nonlinear arguments put forth in § 3.3 is the scaling of
the fastest-growing wavenumber (and growth rate) with β0. Our starting point is the
Landau-fluid dispersion relation, obtained through the characteristic polynomial of the
matrix resulting from the linearization of (2.1)–(2.7) (with S/Ω = 3/2 and νc= 0). We
wish to find kmax, the wavenumber that maximizes the growth rate γ = Im(ω), as a
function of β0z = 8πp0/B2

0z and α ≡ B0y/B0z, assuming β0z� 1 (because we consider
only vertical modes, it is most straightforward to work with β0z and vAz, as opposed
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FIGURE 7. Scaling of kmax, the wavenumber of the fastest-growing mode, as a function
of β0z = 8πp0/B2

0z for different choices of α ≡ B0y/B0z. Solid lines show results from the
numerical solution of the LF dispersion relation; dashed lines show the asymptotic result
kmaxvA/Ω ∼ β−1/6 (see (A 2)).

to quantities defined with B2
0 = B2

0y + B2
0z). Anticipating the scaling kmaxvAz/Ω ∼ β−1/6

0 ,
ω − i
√

3∼−β−1/3
0 we insert the ansatz β0z = ε−6β̄0z, k= εk0β̄

−1/6
0z , ω = i

√
3+ iε2γ (1)

and expand the resulting expression in ε. This yields the solution

γ

Ω
≈ i
√

3+ γ (1) ≈ i
√

3− α
2k3

0 + 12(1+ α2)3/2

6
√

πα2k0β
1/3
0z

, (A 1)

which is an approximate KMRI dispersion relation, valid at high β near the peak
growth rate. Maximizing (A 1) over k0, we find,

kmaxvAz

Ω
≈
(

12
πα

)1/6 ( 1
α
+ α

)1/2

β
−1/6
0z , (A 2)

and
γmax

Ω
≈ i
√

3− 35/6

(2πα)1/3

(
1
α
+ α

)
β
−1/3
0z , (A 3)

for the maximum growth rate, γmax = γ (kmax).
Unsurprisingly (given that we carried out an expansion in β

−1/6
0 ) the expressions

(A 2)–(A 3) are accurate only at very high β0, particularly when α 6= 1. A comparison
with the true kmax, obtained by numerically maximizing the numerically computed
dispersion relation, is illustrated in figure 7. We see that, very approximately, the
asymptotic result (A 2) is valid when it predicts kmaxvAz/Ω . 1 (as should be expected,
since kmaxvAz/Ω ∼ 1 is the fastest-growing wavelength of the standard MRI). This
suggests that the results (A 2) and (A 3) are applicable when β0z � (12/π)α−4 for
α� 1, or when β0z� (12/π)α2 for α� 1. For β0z lower than these estimates, kmax
is less than the prediction (A 2) (there are also minor deviations above the prediction
(A 2) when α > 1, see figure 7). It is also worth noting that the dispersion relation
around k≈ kmax is not very strongly peaked (see, e.g. figure 1 in the main text). This
implies that the fastest-growing mode grows only slightly faster than those with a
similar wavelength, and it is unlikely to completely dominate by the time it reaches
nonlinear amplitudes (see §§ 3.3 and 4.2).
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A.2. The fastest-growing mode
The structure of the fastest-growing KMRI mode is also relevant to the nonlinear
arguments of § 3.3. This can be found by inserting kmax and ω= γmax into the matrix
resulting from the linearization of (2.1)–(2.7), and solving for the amplitudes of each
component δux, δBx, etc., in terms of δp⊥. To lowest order in β−1

0z , this yields δp‖ ≈
−α2δp⊥, as well as the following relations for the fastest-growing KMRI mode:

δBx

B0z
≈−1

2

(
1

12π2

)1/6
α2 + 1
α1/3

β
2/3
0z
δp⊥
p0
, (A 4)

δBy

B0z
≈
(

1
12π2

)1/3
(α2 + 1)2

α5/3
β

1/3
0z
δp⊥
p0
, (A 5)

δux

vAz
≈ i

2

(
3

16π

)1/6

α1/3(α2 + 1)1/2β5/6
0z
δp⊥
p0
, (A 6)

δuy

vAz
≈ i

4

(
81

16π

)1/6

α1/3(α2 + 1)1/2β5/6
0z
δp⊥
p0
. (A 7)

We see that δBx/B0∼ β1/3
0 δBy/B0, viz., the mode is dominated by the radial magnetic

field.
A more intuitive way of understanding the structure of the KMRI mode is through

the relations δp⊥/p0 ≈ δρ/ρ0 − i
√

πξδB/B0, and δp‖/p0 ≈ δρ/ρ0 + i
√

πξδB/B0, where
ξ = ω/(√2b̂ · k cs) and δB/B0 = δByB0y/B2

0 is the perturbation to the field strength.
These relations are straightforwardly derived from the linear δp⊥ and δp‖ equations
by balancing the production of pressure anisotropy against the smoothing action of
the heat fluxes; see Q02. For α = B0y/B0z ≈ 1, these lead to (3.6), which is used in
§§ 3.3 and 6 to estimate the amplitude at which the KMRI mode reaches the firehose
and mirror limits (inserting kmax, one can also obtain (A 5)).

Appendix B. The form of the nonlinearity in growing KMRI modes

In this appendix, we derive, using asymptotic expansions, the form of the
nonlinearity in growing KMRI modes. The method used is almost identical to that in
the appendices of Squire et al. (2017), and the results are very similar, yielding few
surprises. However, the results do serve to more formally justify some of the claims
made in the main text, in particular those relating to the smoothing effects of the
heat fluxes in §§ 2.3 and 3.2. They also allow one to explicitly calculate the form of
the nonlinearity that causes the changes to KMRI-mode shape illustrated in figure 2.

We consider three cases – a double-adiabatic model, a collisionless LF model
and a Braginskii MHD model – each with a purely vertical field (see §§ 3.2–3.2.2
and figure 2). While the double-adiabatic model is not considered in the main text
(neglect of the heat fluxes is never a good approximation at high β), it provides a
nice illustration of the importance of heat fluxes for high-β KMRI dynamics. We treat
only the early nonlinear behaviour, that is, when pressure anisotropy first becomes
important at low mode amplitudes. We also do not treat the B0y 6= 0 KMRI (§ 3.3),
since such modes stay close to linear until 1p reaches the firehose and mirror limits,
at which point there are strong nonlinear modifications that cannot be captured with
this type of asymptotic method (see figure 3).
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B.1. Equations and method
Our method here is nearly identical to that used in Squire et al. (2017) to study
shear-Alfvén waves, with only minor modifications to the equations to account for the
rotation and shear flow. We consider a mode of wavelength 2π/k‖ in a background
plasma with density ρ0, thermal pressure p0, and vertical magnetic field B0 = B0ẑ.
For simplicity, we normalize length scales to k−1

‖ , velocities to vA0≡B0/
√

4πρ0, time
scales to ω−1

A ≡ (k‖vA0)
−1, densities to ρ0, pressures to p0 and magnetic fields to B0.

Splitting the velocity u into its equilibrium (U0 = −Sxŷ) and fluctuating (δu) parts,
equations (2.1)–(2.7) become, respectively,

dρ
dt
=−ρ∇ · δu, (B 1)

ρ

(
dδu
dt
+ 2Ω ẑ× δu− Sδux ŷ

)
=−∇

(
β0

2
p⊥ + B2

2

)
+∇ ·

[
b̂b̂
(
β0

2
∆+ B2

)]
,

(B 2)
dB
dt
+ SBx ŷ=B · ∇δu−B∇ · δu, (B 3)

dp⊥
dt
+ p⊥b̂xb̂yS=−β 1/2

0 [∇ · (q⊥b̂)+ q⊥∇ · b̂] + p⊥b̂b̂ : ∇δu− 2p⊥∇ · δu− νc∆,

(B 4)
dp‖
dt
− 2p‖b̂xb̂yS=−β 1/2

0 [∇ · (q‖b̂)− 2q⊥∇ · b̂] − 2p‖b̂b̂ : ∇δu− p‖∇ · δu+ 2νc∆,

(B 5)

q⊥ =−
√

p‖
πρ

1
|k‖| + νc(β0πp‖/ρ)−1/2

[
ρ∇‖

(
p⊥
ρ

)
− p⊥

(
1− p⊥

p‖

)
∇‖B

B

]
, (B 6)

q‖ =−2
√

p‖
πρ

1
|k‖| + (3π/2− 4)νc(β0πp‖/ρ)−1/2

ρ∇‖

(
p‖
ρ

)
, (B 7)

where νc≡ νc/ωA and Ω≡Ω/ωA. The heat fluxes q⊥,‖ are normalized using the sound
speed cs≡β1/2

0 vA0=√2p0/ρ0 (note that we have changed the definition of cs from the
main text here, so as to remove various inconvenient factors of 2 from (B 1)–(B 7)).
As in the main text, ∆≡ p⊥− p‖ denotes the dimensionless pressure anisotropy, β0≡
8πp0/B2

0, and
d
dt
= ∂

∂t
− Sx

∂

∂y
+ δu · ∇ (B 8)

is the convective derivative.
Following § 3.2, we focus on the nonlinear evolution of a 1-D (in z) channel mode.

This involves an asymptotic expansion of (B 1)–(B 7), which is constructed as follows.
Figure 1 shows that the k‖= kz KMRI mode grows fastest for k‖vA/Ω ∼ 1, and so we
order Ω ∼ 1. Following Squire et al. (2017), we order the (dimensionless) MRI-mode
amplitude δB⊥∼ δu⊥∼ ε� 1 and the equilibrium plasma beta parameter β0 such that
the effect of the pressure anisotropy ∆ is as important as that of the linear terms,
viz., β0∆∼ 1. Because the growth rate of the fastest-growing MRI mode is γ ∼Ω ∼
ωA, we order the (dimensionless) spatial and temporal derivatives to be ∼O(1). This
ordering captures nonlinear effects on the MRI mode just before it drives the pressure
anisotropy to the mirror limit β0∆≈ 1, in both the collisionless and weakly collisional
(Braginskii) cases.
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In what follows, we use 〈 f 〉 to denote a spatial (z) average of some function f and
f̃ ≡ f − 〈 f 〉 to denote the spatially varying part of f .

B.2. Collisionless limit: double-adiabatic closure
Because the pressure anisotropy is generated proportional to the change in B, in the
double-adiabatic case ∆ scales as ∼δB2

⊥. Thus we order β0∼ ε−2. The ordering of all
variables is then as follows (cf. Squire et al. 2017):

u⊥ =−Sxŷ+ ε δu⊥1 + ε2 δu⊥2 + · · · , (B 9a)
uz = 0+ 0+ ε2 δuz2 + ε3 δuz3 + · · · (B 9b)
B⊥ = 0+ ε δB⊥1 + ε2 δB⊥2 + · · · , (B 9c)
ρ = 1+ 0+ ε2 δρ2 + ε3 δρ3 + · · · , (B 9d)

p⊥ = 1+ 0+ ε2 δp⊥2 + ε3 δp⊥3 + · · · , (B 9e)
p‖ = 1+ 0+ ε2 δp‖2 + ε3 δp‖3 + · · · , (B 9f )

where the numerical subscripts denote the order in ε. Equations (B 9a)–(B 9f ) are
inserted into the MRI equations (B 1)–(B 5) with q⊥ = q‖ = 0 and the result is
examined order by order in ε.

Order ε0. Only the z component of (B 2) contributes at this order, giving ∂zδp‖2= 0
or δ̃p‖2 = 0. This condition expresses parallel pressure balance.

Order ε1. The parallel component of the momentum equation (B 2) gives δ̃p‖3 = 0.
The perpendicular components of the momentum and induction equations (B 2)–(B 3)
provide evolution equations for the linear MRI:

∂tδu⊥1 + 2Ω ẑ× δu⊥1 − Sδux1ŷ= ∂z

[
δB⊥1

(
1+ β0

2
∆2

)]
, (B 10)

∂tδB⊥1 + SδBx1ŷ= ∂zδu⊥1. (B 11)

To close this system, we require ∆2 = δp⊥2 − δp‖2 as a function of δu⊥2 and δB⊥2,
which is obtained at next order.

Order ε2. At this order, we require only the pressure equations (B 4)–(B 5) to obtain
∆2 for use in (B 10). Expanding b̂b̂ : ∇δu = b̂2

z∂zδuz + b̂b̂ : ∇δu⊥, equations (B 4)–
(B 5) become

∂tδp⊥2 + ∂zδuz2 = δB⊥1 · ∂zδu⊥1 − SδBx1δBy1 = 1
2∂tδB2

⊥1, (B 12)

∂tδp‖2 + 3∂zδuz2 =−2δB⊥1 · ∂zδu⊥1 + 2SδBx1δBy1 =−∂tδB2
⊥1, (B 13)

where δB2
⊥1 ≡ δB2

x1 + δB2
y1; the final equalities in these equations follow from (B 11).

We can then solve for ∂zδuz2 = ∂̃zδuz2 using (B 13) and insert this into (B 12) to find

∂t∆2 = 5
6∂tδB2

⊥1 + 2
3∂t〈δB2

⊥1〉. (B 14)

If we then assume that the mode starts growing from vanishingly small initial
conditions, equation (B 14) may be straightforwardly integrated to obtain

∆2 = 5
6δB

2
⊥1 + 2

3 〈δB2
⊥1〉. (B 15)
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This expression may be inserted into (B 10) to yield a simple nonlinear equation for
the growing MRI mode:

∂2
t δB⊥1 + 2Ω ẑ× ∂tδB⊥1 − 2SΩδBx1x̂

= ∂2
z

{
δB⊥1

[
1+ β0

2

(
5
6
δB2
⊥1 +

2
3
〈δB2

⊥1〉
)]}

, (B 16)

where we have grouped all nonlinear terms on the right-hand side.
This rather simple expression of ∆2 (B 15) arises because, while parallel pressure

balance enforces ∂zδp‖ ≈ 0 in the growing mode, there is no equivalent pressure
balance condition for δp⊥. The same result can also be obtained by projecting the
driving of 1p due to the MRI mode onto the eigenmodes of the double-adiabatic
equations; this agrees with 1-D nonlinear simulations (not shown). Because the
spatial variation in the anisotropy is comparable to its mean (i.e. 〈∆2〉 ∼ ∆̃2) the
double-adiabatic model will cause nonlinear modifications to the mode shape as it
approaches the mirror limit (similar to the Braginskii model; see figure 2(c) and
§ B.4).

B.3. Collisionless: Landau-fluid closure
In this section, we repeat the calculation detailed in § B.2 but include the heat fluxes
q⊥ (B 6) and q‖ (B 7) with νc = 0. In a high-β plasma with Alfvénic fluctuations,
such flows rapidly smooth pressure perturbations and, as a result, lead to a ∆2 that
is smooth, viz., ∆̃2= 0. The ordering is the same as that used in the double-adiabatic
case (§ B.2), but with the addition of the heat fluxes,

q⊥ = ε2 1√
π

∂z

|kz|(δp⊥2 − δρ2)+ ε3 1√
π

∂z

|kz|(δp⊥3 − δρ3)+O(ε4), (B 17)

q‖ = ε2 2√
π

∂z

|kz|(δp‖2 − δρ2)+ ε3 2√
π

∂z

|kz|(δp‖3 − δρ3)+O(ε4). (B 18)

The ∇ · (q⊥,‖b̂) contributions to the pressure equations (B 4)–(B 5) then simplify to
ε2∂zq⊥,‖2 + ε3∂zq⊥,‖3 +O(ε4), i.e. heat flows along B0 = ẑ to lowest order.

The equations up to order ε1 are identical to those found in § B.2, aside from
additional contributions from the ∇ · (q⊥,‖b̂) terms in the pressure equations (B 4)–
(B 5), namely,

π−1/2β
1/2
0 |kz|(δp⊥2 − δρ2)= 0, (B 19)

2π−1/2β
1/2
0 |kz|(δp‖2 − δρ2)= 0, (B 20)

where we have used ∂2
z /|kz| = −|kz| to simplify the non-local diffusion operators.

Combining (B 19)–(B 20) with the continuity equation (B 1) and parallel pressure
balance δp̃‖2 = 0, we obtain

δ̃p⊥2 = δ̃ρ2 = δ̃uz2 = ∆̃2 = 0. (B 21)

This formally justifies the statements in §§ 3.2 and 2.3 that ∆ is spatially constant to
lowest order.
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At order ε2, the pressure equations (B 4)–(B 5) are

∂tδp⊥2 + ∂zδuz2 +π−1/2β
1/2
0 |kz|(δp⊥3 − δρ3)= 1

2∂tδB2
⊥1, (B 22)

∂tδp‖2 + 3∂zδuz2 + 2π−1/2β
1/2
0 |kz|(δp‖3 − δρ3)=−∂tδB2

⊥1. (B 23)

Spatially averaging these equations, using δ̃p⊥2 = δ̃p‖2 = 0, and again assuming that
the mode growth starts from negligibly small amplitudes (i.e. δB2

⊥1(t = 0) = 0), we
find

∆2 = 3
2 〈δB2

⊥1〉. (B 24)

This can be inserted into (B 10)–(B 11) to obtain the following evolution equation for
δB⊥1:

∂2
t δB⊥1 + 2Ω ẑ× ∂tδB⊥1 − 2SΩ δBx1x̂= ∂2

z

[
δB⊥1

(
1+ 3β0

4
〈δB2

⊥1〉
)]

, (B 25)

which remains valid until ∆2 exceeds the mirror threshold (at which point its growth
should be limited by the unresolved mirror instability, as discussed in § 3.2).

As expected, the presence of such strong heat fluxes has rendered the KMRI
equations (B 10)–(B 11) much simpler than in the double-adiabatic case.13 Physically,
the spatial average inside the nonlinear term in (B 25) implies that, if a KMRI mode
is initially sinusoidal, it will remain so even as it becomes nonlinear (see figure 2b
for a demonstration of this property). We can then use (B 25) to write down an
ordinary differential equation for the amplitude evolution of a single MRI mode
δB⊥ = δB⊥(t)eik‖z, δu⊥ = δu⊥(t)eik‖z:

d2δB⊥1

dt2
+ 2Ω ẑ×

dδB⊥1

dt
− 2SΩ δBx1x̂=−k2

‖δB⊥1

(
1+ 3β0

8
δB2
⊥1

)
, (B 26)

δu⊥1 =− i
k‖

(
dδB⊥1

dt
+ SδBx1ŷ

)
, (B 27)

where we have used 〈sin2(k‖z)〉 = 1/2. Solutions to (B 26)–(B 27) correctly reproduce
the change in relative amplitudes of δB⊥ and δu⊥ as seen in figure 2(b) (e.g. the
relative increase in δuy and relative decrease of δux). Of course, if there is more than
one growing mode, the pressure-anisotropy nonlinearity (B 24) does couple the modes,
which could allow, for example, a larger-wavelength mode to ‘take over’ due to the
positive pressure anisotropy (see § 3.2).

If one were so inclined, a continuation of the expansion to O(ε3) would yield
equations for the spatial variation in ∆. However, because the expected effect on the
mode is very small for β0� 1, we do not do this here (see, e.g. appendix A.3.1 of
Squire et al. 2017).

B.4. Weakly collisional: Braginskii closure
In this section, we treat the weakly collisional, Braginskii MHD limit. As discussed
in §§ 2 and 3.2.2, 3.3.2, the Braginskii regime is relevant when νc≡ νc/ωA∼ νc/Ω�
1, with the corrections to the MRI due to pressure anisotropy becoming unimportant

13Interestingly, a similar saturation mechanism also arises for the standard (MHD) MRI in a non-periodic
system when it is near the marginal stability condition (Vasil 2015).
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when νc &β (see Sharma et al. 2003). Within the relevant range 1� νc�β, one may
obtain a variety of behaviours depending upon whether or not the heat fluxes play a
significant role in the evolution of 1p. If νc� β1/2, the heat fluxes are suppressed by
the collisionality and do not strongly influence 1p; if instead νc .β1/2, the heat fluxes
smooth 1p in space14 on a time scale shorter than that over which 1p is produced
by the changing B (see Squire et al. 2017 for further discussion). We present here
only the former limit (νc� β1/2), which leads to the closure used in the main text,
equation (2.8); in the νc� β1/2 limit, the heat fluxes smooth out 1p near the nodes
of δB and so 1p is almost spatially constant as the mirror limit is approach (see the
discussion in § 3.2.2). In the intermediate case νc ∼ β1/2, a valid closure for 1p has
been obtained by Squire et al. (2017) – see their equations (B12)–(B15).

The ordering introduced above, δB⊥ ∼ δu⊥ ∼ ε with β0∆ ∼ 1, coupled with the
Braginskii pressure anisotropy ∆ ∼ ν−1

c d ln B/dt, suggests that we order νc ∼ ε2β0.
The simultaneous requirement that νc�β1/2

0 for the ‘high-collisionality’ regime where
heat fluxes are collisionally suppressed then implies the ordering νc ∼ O(ε−4), β0 ∼
O(ε−6). For the other variables, we adopt the orderings p⊥ ∼ p‖ ∼ ρ ∼ 1+O(ε6) and
δuz ∼O(ε6). The O(1) and O(ε) equations are then almost the same as in § B.2: the
parallel momentum equation gives ∂zδp‖6 = 0, and the perpendicular momentum and
induction equations are identical to (B 10)–(B 11) but with ∆2 replaced by ∆6. At
O(ε2), the pressure equations (B 4) and (B 5) may be combined to give

νc∆6 = δB⊥1 · ∂zδu⊥1 − SδBx1δBy1 = 1
2∂tδB2

⊥1; (B 28)

the heat-flux terms appear at O(ε4). This is exactly as was anticipated (cf. (2.8)). The
nonlinear equation for the growing mode is then simply

∂2
t δB⊥1 + 2Ω ẑ× ∂tδB⊥1 − 2SΩ δBx1x̂= ∂2

z

[
δB⊥1

(
1+ β0

4νc
∂tδB2

⊥1

)]
. (B 29)

Because the nonlinearity in (B 29) depends on δB2
⊥1(z) (rather than 〈δB2

⊥1〉), it will
distort the shape of an initially sinusoidal mode, as discussed in § 3.2.2 and exhibited
in figure 2(c). Thus, we cannot reduce (B 29) to an ordinary differential equation for
a single mode, as in the collisionless (LF) derivation (see (B 26)).
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