J. Austral. Math. Soc. 22 (Series A) (1976), 442-445.

ON THE ZEROS OF HILBERT SPACES OF ANALYTIC FUNCTIONS

S. H. KON

(Received 9 June 1975; revised 9 September 1975)

Abstract

An attempt is made to characterise the zeros of some Hilbert spaces of analytic functions means of their kernel functions. Results on the zeros of functions in D_{\bullet} and their uniqueness s are included, in particular we give an affirmative answer to a question of Shapiro and Shield

1. Introduction

Let U be the open unit disc and H(U) the set of all analytic functions in Let $\phi(z) = \sum c_n z^n \in H(U)$, with $c_0 = 1$, $c_n > 0$ and

(1) $C_n^2 \leq C_{n-1}C_{n+1}$.

For $f(z) = \sum a_n z^n \in H(U)$, define

$$||f||^2 = \sum \frac{1}{c_n} |a_n|^2$$

and let $D_{\phi} = \{f \in H(U) : ||f||^2 < \infty\}$. Then D_{ϕ} is a Hilbert space under the inn product

$$(f,g) = \sum \frac{1}{c_n} a_n \bar{b_n}$$

where $g(z) = \sum b_n z^n$.

Let

$$D = \{f \in H(U) : f(0) = 0, \quad \frac{1}{\pi} \int \int_{U} |f'(z)|^2 dx dy = \sum n |a_n|^2 < \infty \}.$$

Then D is also a Hilbert space under the inner product $(f, g) = \sum na_n \overline{b}_n$.

The reproducing kernel for D_{ϕ} is $K_{\xi}(z) = \phi(\overline{\xi}z), \ \xi \in U$. That is, for a $\xi \in U$,

 $f(\xi) = (f, K_{\xi})$ for all $f \in D_{\phi}$.

The reproducing kernel for D is $K_{\xi}(z) = -\log(1-\overline{\xi}z)$. For simplicity we write K_n for K_{ξ} when $\xi = z_n$.

A set $\{z_n\}$ in U is called a set of uniqueness for a subspace \mathscr{F} of H(U) if $f \in \mathscr{F}$ and $f(z_n) = 0$ for all n imply $f \equiv 0$.

The following two results are due to Shapiro & Shields (1962).

THEOREM 1. If $\{z_n\}$ is any sequence of points in U for which

(2)
$$\sum \frac{1}{K_n(z_n)} < \infty$$

then there is an $f(\neq 0) \in D_{\phi}$ vanishing at all these points (with a similar result for D).

THEOREM 2. Let h(t) be any continuous function with h(0) = 0, h(t) > 0(t > 0). Then there exists a set of uniqueness $\{z_n\}$ for D satisfying the condition

$$\sum \frac{1}{-\log(1-|z_n|)} h(1-|z_n|) < \infty.$$

Shapiro & Shields (1962, page 224) observed that Theorem 2 holds for D_{ϕ} when $\phi(z) = (1-z)^{\alpha-1}$ for $0 \leq \alpha < 1$. They raised the question whether this is true for all D_{ϕ} . We give this an affirmative answer in section 2. Examples of D_{ϕ} with zero sets violating (2) are also given.

2. Uniqueness sets and zeros of functions in D_{ϕ}

If (1) holds and $\phi(z) \in H(U)$ then as shown by Shapiro and Shields (1962, Lemma 6),

 $1 = c_0 \ge c_1 \ge c_2 \ge \cdots$

The first lemma gives an estimate on the norm of a function with specified zeros.

LEMMA 1. Let $z_1, z_2, \dots z_n$ be n equally spaced points on the circle |z| = r, 0 < r < 1. If $f \in D_{\phi}$ with $f(z_i) = 0$ $(i \le n)$ and f(0) = 1 then

$$\|f\|^2 \geq n/\phi(r^2).$$

PROOF. Without loss of generality take $z_1 = r$. Define h(z) by $h = 1/n (K_1 + K_2 + \cdots + K_n)$. Then (f, h) = 0 and so

$$1 = (f, 1) = (f, 1 - h) \leq ||f|| ||1 - h||.$$

Further

$$\|1-h\|^2 = \sum_{m=1}^{\infty} c_{nm} r^{2nm} \leq \frac{1}{n} \phi(r^2)$$

since c_k and r^{2k} decreases as k increases.

LEMMA 2. For any sequence r_k , $0 < r_k < 1$ there is a sequence of integers n such that

$$\frac{2}{k} > \frac{\phi(r_k^2)}{n_k} \geq \frac{1}{k}.$$

PROOF. Let $N_k = \{n : \phi(r_k^2) \ge n/k, n \text{ integer}\}$. Since $\phi(r_k^2) > 1$, the set N_k is non-empty and is obviously bounded. Let $n_k = \max N_k$, then

$$\frac{\phi(r_k^2)}{n_k} \geq \frac{1}{k} > \frac{\phi(r_k^2)}{n_k+1} \geq \frac{\phi(r_k^2)}{2n_k}$$

COROLLARY. If h(t) is continuous and h(0) = 0, h(t) > 0, then there is a sequence r_n , $0 < r_n < 1$ such that

$$\sum \frac{1}{\phi(r_n^2)} = \infty$$
 while $\sum \frac{1}{\phi(r_n^2)} \cdot h(1-r_n) < \infty$.

PROOF. For each k, choose s_k , $0 < s_k < 1$ such that $h(1 - s_k) < \frac{1}{k^3}$. For this sequence choose a sequence of integers $\{n_k\}$ as in Lemma 2. Let $\{r_n\}$ be the sequence obtained by repeating n_k times each s_k .

We can now prove the following:

THEOREM 3. Let h(t) be any continuous function with h(0) = 0, h(t) > 0(t > 0). Then there exists a set of uniqueness $\{z_n\}$ for D_{ϕ} satisfying the condition

$$\sum \frac{1}{K_n(z_n)} \cdot h(1-|z_n|) \equiv \sum \frac{1}{\phi(|z_n|^2)} \cdot h(1-|z_n|) < \infty.$$

PROOF. Choose r_k , $0 < r_k < 1$ such that $h(1 - r_k) < 1/k^3$ and then n_k as in Lemma 2. Now set

$$\{z_n\} = \bigcup_{k=1}^{\infty} \{z = r_k e^{2\pi m i/n_k} : m = 0, 1, \dots, n_k - 1\}.$$

Then

$$\sum_{n} \frac{h(1-|z_{n}|)}{\phi(|z_{n}|^{2})} = \sum_{k} \frac{n_{k}h(1-r_{k})}{\phi(r_{k}^{2})} \leq \sum_{k} \frac{1}{k^{2}} < \infty.$$

If $f(\neq 0) \in D_{\phi}$ with $f(z_n) = 0$, for all *n*, we can suppose for our purpose that f(0) = 1. Then by Lemma 1

$$||f||^2 \leq n_k/\phi(r_k^2) > k/2, \qquad k = 1, 2, 3, \cdots.$$

Hence $\{z_n\}$ is a uniqueness set for D_{ϕ} .

For $\phi(z) = \sum z^n$, D_{ϕ} is just merely the Hardy space H^2 and $1/K_n(z_n) < \infty$ is then equivalent to the Blaschke condition which is necessary and sufficient for $\{z_n\}$ to be a zero set of H^2 . Apart from this case, it is easy to show that for $\phi(z)$

444

with radius of convergence R > 1, $D_{\phi} \subseteq H(\overline{U})$ the class of functions analytic in a neighbourhood of the closed unit disc \overline{U} . Obviously here the non-trivial zero sets are just the finite subsets of U. As against that we have the following situation.

THEOREM 4. If the Taylor coefficients c_n of ϕ satisfy $1/c_n = 0(n^k)$ for some positive integer k and $c_n \rightarrow 0$, then there exists an $f(\neq 0) \in D_{\phi}$, whose zeros $\{z_n\}$ satisfy

$$\sum \frac{1}{K_n(z_n)} = \infty$$

PROOF. The function $h(t) = t\phi((1-t)^2) \rightarrow 0$ as $t \rightarrow 0$. To see this observe that N can be chosen for each n such that $nc_k < \frac{1}{2}$ for $k \ge N$. Then

$$n\phi(r^2) \leq n(c_0 + \cdots + c_{N-1}r^{2(N-1)}) + \frac{1}{2}r^{2N} \cdot \frac{1}{1-r^2} \leq \frac{1}{1-r^2}$$

for r close to 1. The Corollary to Lemma 2 now applies to give $\{z_n\}$ on the unit interval such that

$$\sum (1-z_n) < \infty$$
 and $\sum \frac{1}{\phi(z_n^2)} = \infty$

By a result of Caughran (1969, Theorem 2) there exists an $f \neq 0 \in H(U)$ with bounded $f^{(k)}$ and vanishing at all the points z_n . Note that

$$\sum_{n} n^{k} |a_{n}| < \infty \qquad \text{if} \qquad \int \int_{U} |f^{(k)}(z)|^{2} dx dy < \infty$$

and since $1/c_n = 0(n^k)$, this implies that $f \in D_{\phi}$.

References

- J. G. Caughran (1969), 'Two results concerning the zeros of functions with finite Dirichlet integrals', Canad. J. Math. 21, 312-316.
- H. S. Shapiro and A. L. Shields (1962), 'On the zeros of functions with finite Dirichlet integral and some related function spaces', Math. Z. 80, 217-229.

Department of Mathematics, University of Malaya, Kuala Lumpur 22–11, Malaysia.