ON CERTAIN CYCLES IN GRAPHS

by DOUGLAS D. GRANT

(Received 26th June 1979)

1. Introduction

We show that every simple graph of order $2 r$ and minimum degree $\geqq 4 r / 3$ has the property that for any partition of its vertex set into 2 -subsets, there is a cycle which contains exactly one vertex from each 2 -subset. We show that the bound $4 r / 3$ cannot be lowered to r, but conjecture that it can be lowered to $r+1$.

2. Definitions

Throughout this paper n will denote a positive integer and r an integer $\geqq 3$. Given a real number $x,\lceil x\rceil$ will denote the least integer $\geqq x$. Our basic graph-theoretic terminology and notation is that of Bondy and Murty (2), save that we use the word "graph" to mean "simple graph".

We shall require the following notation. Let G be a graph, let $\xi, \eta \in V(G)$, let $W \subset V(G)$ and let $H \subset G$. Then \tilde{W} denotes $V(G) \backslash W, \tilde{H}$ denotes $G[V(G) \backslash V(H)]$, $e(\xi, W)$ denotes the number of edges incident with ξ whose other end lies in $W, e(\xi, \eta)$ denotes $e(\xi,\{\eta\})$ and $W \delta$ denotes the set of edges exactly one of whose ends lies in W. If $\xi \in V(H)$, then the H-degree of ξ is the degree of ξ in the graph H.

Let G be a graph of order $n r$ and let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ be a partition of $V(G)$ into n-subsets. We say that Π is an n-partition of G. If H is a cycle of G such that $\left|V(H) \cap V_{i}\right|=1$ for $i=1,2, \ldots, r$, then we say that H is a Π-cycle of G. If there exists a Π-cycle of G, then we say that G is Π-round. If G is Π-round for all n-partitions Π of G, then we say that G is n-round.

Our aim is to seek bounds for the least integer $p=h(n, r)$ so that if $|V(G)|=n r$ and $\delta(G) \geqq p$, then G is n-round. Most of our attention will be devoted to the case $n=2$.

Since a graph is 1 -round if and only if it has a hamiltonian cycle, a well-known theorem of Dirac (4) determines that $h(1, r)=\lceil r / 2\rceil$. An unpublished result of Graver (see (1)) implies that $h(n, 3)=2 n$. In the next section we shall consider the function $h(2, r)$.

3. 2-round graphs

The theorem of Dirac mentioned in Section 2 implies that $h(2, r) \leqq\lceil 3 r / 2\rceil$; if $|V(G)|=2 r$ and $\delta(G) \geqq 3 r / 2$, then any r vertices of G induce a subgraph with minimum degree $\geqq r / 2$, which has, by Dirac's Theorem, a hamiltonian cycle. If G_{r} is the union of two complete graphs of order $r+1$ which share just two vertices ξ and η, then G_{r} is not
Π-round for any 2-partition Π of G_{r} which contains $\{\xi, \eta\}$. Since $\delta\left(G_{r}\right)=r$, this implies $h(2, r) \geqq r+1$. We conjecture that in fact $h(2, r)=r+1$. In the remainder of this section we prove that $h(2, r) \leqq\lceil 4 r / 3\rceil$.

Theorem 1. If $|V(G)|=2 r$, Π is a 2-partition of G and $d(\xi)+d(\eta) \geqq(8 r-1) / 3$ whenever $\{\xi, \eta\} \in \Pi$, then G is Π-round.

Proof. For each $\xi \in V(G)$, let ξ^{\prime} denote the other vertex of G in the same cell of Π as ξ. Let W be a transversal of Π such that $|W \delta|$ is as small as possible and let $H=G[W]$. Let $\xi \in W$. By the minimality of $|W \delta|$,

$$
\begin{aligned}
0 & \leqq\left|\left[(W \backslash\{\xi\}) \cup\left\{\xi^{\prime}\right\}\right] \delta\right|-|W \delta| \\
& =\left[e(\xi, W)+e\left(\xi^{\prime}, \tilde{W}\right)+e\left(\xi, \xi^{\prime}\right)\right]-\left[e(\xi, \tilde{W})+e\left(\xi^{\prime}, W\right)-e\left(\xi, \xi^{\prime}\right)\right] \\
& =e(\xi, W)+e\left(\xi^{\prime}, \tilde{W}\right)+2 e\left(\xi, \xi^{\prime}\right)-\left[d(\xi)-e(\xi, W)+d\left(\xi^{\prime}\right)-e\left(\xi^{\prime}, \tilde{W}\right)\right] \\
& =2\left[e(\xi, W)+e\left(\xi^{\prime}, \tilde{W}\right)+e\left(\xi, \xi^{\prime}\right)\right]-\left[d(\xi)+d\left(\xi^{\prime}\right)\right] \\
& \leqq 2\left[e(\xi, W)+e\left(\xi^{\prime}, \tilde{W}\right)+e\left(\xi, \xi^{\prime}\right)\right]-(8 r-1) / 3
\end{aligned}
$$

and so

$$
e(\xi, W)+e\left(\xi^{\prime}, \tilde{W}\right) \geqq(8 r-1) / 6-e\left(\xi, \xi^{\prime}\right) \geqq(8 r-7) / 6
$$

Hence

$$
\begin{equation*}
d_{H}(\xi)+d_{\tilde{H}}\left(\xi^{\prime}\right) \geqq(8 r-7) / 6 \tag{1}
\end{equation*}
$$

Since ξ was an arbitrary vertex in W, it follows that there are either $\geqq r / 2$ vertices of H-degree $\geqq(8 r-7) / 12$ or $\geqq r / 2$ vertices of \tilde{H}-degree $\geqq(8 r-7) / 12$. In addition, from (1) it follows that $\delta(H) \geqq(2 r-1) / 6$ and $\delta(\tilde{H}) \geqq(2 r-1) / 6$. By a theorem of Chvátal (3) it follows that either H or \tilde{H} has a hamiltonian cycle, which is a Π-cycle of G. Hence G is Π-round.

Corollary 2. $h(2, r) \leqq\lceil 4 r / 3\rceil$.
We now know that $r+1 \leqq h(2, r) \leqq\lceil 4 r / 3\rceil$. The upper and lower bounds coincide for $r=3$. We can show that $h(2,4)=5$ and $h(2,5)=6$, confirming our conjecture and improving on Corollary 2 in the cases $r=4$ and 5 .

4. Application to polar graphs

In a series of papers (5), (6), (7), (8) Zelinka introduced to the literature the concepts of polar graphs and polarised graphs first defined by F. Zitek. The results of Section 3 can be interpreted in the context of hamiltonian homopolar cycles in polar graphs. The definitions relevant to the present section can be found in the papers of Zelinka.

Let $\theta(r)$ be the least integer y so that if P is a polar graph of order r each of whose poles has degree (see (8)) $\geqq y$, then P has a hamiltonian homopolar (see (6)) cycle.

Proposition 3. $\theta(r)=h(2, r)-1$.
Sketch of proof. Given a graph G of order $2 r$ with a 2 -partition $\Pi=\left\{\left\{\xi_{1}, \eta_{1}\right\}\right.$, $\left.\left\{\xi_{2}, \eta_{2}\right\}, \ldots,\left\{\xi_{r}, \eta_{r}\right\}\right\}$, form a polar graph $P(G, \Pi)$ by merging each ξ_{i} and η_{i} into one
vertex ζ_{i} of $P(G, \Pi)$, assigning incidences of edges with ξ_{i} to one pole of ζ_{i} and incidences with η_{i} to the other pole of ζ_{i}. This construction can be reversed, to produce from a polar graph P a graph $G(P)$ together with a 2-partition $\Pi(P)$ of $G(P)$, where for the purposes of the present investigation we insist on the vertices in a cell of $\Pi(P)$ being adjacent.

A Π-cycle of G corresponds to a hamiltonian homopolar cycle in $P(G, \Pi)$, and a hamiltonian homopolar cycle in P corresponds to a $\Pi(P)$-cycle in $G(P)$. By means of this correspondence it follows that $\theta(r)=h(2, r)-1$.

Corollary 4. $r \leqq \theta(r) \leqq[4 r / 3]-1$.
To close we remark that the conjecture of Section 3 is equivalent to $\theta(r)=r$.
Acknowledgement. I would like to thank Professor C. St. J. A. Nash-Williams, University of Reading, who supervised my Ph.D. Thesis, in which the material of this paper appears.

REFERENCES

(1) B. Bollobás, P. Erdös and E. Széneredi, On Complete Subgraphs of r-chromatic Graphs, Discrete Math. 13 (1975), 97-107.
(2) J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, (Macmillan, London and Basingstoke, 1976).
(3) V. Chvátal, On Hamilton's Ideals, J. Combinatorial Theory 12B (1972), 163-168.
(4) G. A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952), 69-81.
(5) B. Zelinka, Isomorphisms of Polar and Polarised Graphs, Czech. Math. J. 26 (1976), 339-351.
(6) B. Zelinka, Analoga of Menger's Theorem for Polar and Polarised Graphs, Czech. Math. J. 26 (1976), 352-360.
(7) B. Zelinka, Eulerian Polar Graphs, Czech. Math. J. 26 (1976), 361-364.
(8) B. Zelinka, Self-derived Polar Graphs, Czech. Math. J. 26 (1976), 365-370.

Napier College
Edinburgh

