ON CERTAIN CYCLES IN GRAPHS

by DOUGLAS D. GRANT

(Received 26th June 1979)

1. Introduction

We show that every simple graph of order 2r and minimum degree $\geq 4r/3$ has the property that for any partition of its vertex set into 2-subsets, there is a cycle which contains exactly one vertex from each 2-subset. We show that the bound 4r/3 cannot be lowered to r, but conjecture that it can be lowered to r+1.

2. Definitions

Throughout this paper *n* will denote a positive integer and *r* an integer ≥ 3 . Given a real number *x*, $\lceil x \rceil$ will denote the least integer $\ge x$. Our basic graph-theoretic terminology and notation is that of Bondy and Murty (2), save that we use the word "graph" to mean "simple graph".

We shall require the following notation. Let G be a graph, let $\xi, \eta \in V(G)$, let $W \subset V(G)$ and let $H \subset G$. Then \tilde{W} denotes $V(G) \setminus W$, \tilde{H} denotes $G[V(G) \setminus V(H)]$, $e(\xi, W)$ denotes the number of edges incident with ξ whose other end lies in W, $e(\xi, \eta)$ denotes $e(\xi, \{\eta\})$ and W δ denotes the set of edges exactly one of whose ends lies in W. If $\xi \in V(H)$, then the H-degree of ξ is the degree of ξ in the graph H.

Let G be a graph of order nr and let $\Pi = \{V_1, V_2, \ldots, V_r\}$ be a partition of V(G) into n-subsets. We say that Π is an n-partition of G. If H is a cycle of G such that $|V(H) \cap V_i| = 1$ for $i = 1, 2, \ldots, r$, then we say that H is a Π -cycle of G. If there exists a Π -cycle of G, then we say that G is Π -round. If G is Π -round for all n-partitions Π of G, then we say that G is n-round.

Our aim is to seek bounds for the least integer p = h(n, r) so that if |V(G)| = nr and $\delta(G) \ge p$, then G is n-round. Most of our attention will be devoted to the case n = 2.

Since a graph is 1-round if and only if it has a hamiltonian cycle, a well-known theorem of Dirac (4) determines that $h(1, r) = \lceil r/2 \rceil$. An unpublished result of Graver (see (1)) implies that h(n, 3) = 2n. In the next section we shall consider the function h(2, r).

3. 2-round graphs

The theorem of Dirac mentioned in Section 2 implies that $h(2, r) \leq \lceil 3r/2 \rceil$; if |V(G)| = 2r and $\delta(G) \geq 3r/2$, then any r vertices of G induce a subgraph with minimum degree $\geq r/2$, which has, by Dirac's Theorem, a hamiltonian cycle. If G, is the union of two complete graphs of order r+1 which share just two vertices ξ and η , then G_r is not

15

II-round for any 2-partition II of G_r which contains $\{\xi, \eta\}$. Since $\delta(G_r) = r$, this implies $h(2, r) \ge r+1$. We conjecture that in fact h(2, r) = r+1. In the remainder of this section we prove that $h(2, r) \le \lceil 4r/3 \rceil$.

Theorem 1. If |V(G)| = 2r, Π is a 2-partition of G and $d(\xi) + d(\eta) \ge (8r-1)/3$ whenever $\{\xi, \eta\} \in \Pi$, then G is Π -round.

Proof. For each $\xi \in V(G)$, let ξ' denote the other vertex of G in the same cell of Π as ξ . Let W be a transversal of Π such that $|W\delta|$ is as small as possible and let H = G[W]. Let $\xi \in W$. By the minimality of $|W\delta|$,

$$0 \leq \left| \left[(W \setminus \{\xi\}) \cup \{\xi'\} \right] \delta \right| - |W\delta| \\ = \left[e(\xi, W) + e(\xi', \tilde{W}) + e(\xi, \xi') \right] - \left[e(\xi, \tilde{W}) + e(\xi', W) - e(\xi, \xi') \right] \\ = e(\xi, W) + e(\xi', \tilde{W}) + 2e(\xi, \xi') - \left[d(\xi) - e(\xi, W) + d(\xi') - e(\xi', \tilde{W}) \right] \\ = 2\left[e(\xi, W) + e(\xi', \tilde{W}) + e(\xi, \xi') \right] - \left[d(\xi) + d(\xi') \right] \\ \leq 2\left[e(\xi, W) + e(\xi', \tilde{W}) + e(\xi, \xi') \right] - \left[(8r - 1)/3 \right]$$

and so

$$e(\xi, W) + e(\xi', \tilde{W}) \ge (8r-1)/6 - e(\xi, \xi') \ge (8r-7)/6.$$

Hence

$$d_{H}(\xi) + d_{\tilde{H}}(\xi') \ge (8r - 7)/6.$$
(1)

Since ξ was an arbitrary vertex in W, it follows that there are either $\geq r/2$ vertices of H-degree $\geq (8r-7)/12$ or $\geq r/2$ vertices of \tilde{H} -degree $\geq (8r-7)/12$. In addition, from (1) it follows that $\delta(H) \geq (2r-1)/6$ and $\delta(\tilde{H}) \geq (2r-1)/6$. By a theorem of Chvátal (3) it follows that either H or \tilde{H} has a hamiltonian cycle, which is a Π -cycle of G. Hence G is Π -round.

Corollary 2. $h(2, r) \leq [4r/3]$.

We now know that $r+1 \le h(2, r) \le \lfloor 4r/3 \rfloor$. The upper and lower bounds coincide for r=3. We can show that h(2, 4) = 5 and h(2, 5) = 6, confirming our conjecture and improving on Corollary 2 in the cases r=4 and 5.

4. Application to polar graphs

In a series of papers (5), (6), (7), (8) Zelinka introduced to the literature the concepts of polar graphs and polarised graphs first defined by F. Zitek. The results of Section 3 can be interpreted in the context of hamiltonian homopolar cycles in polar graphs. The definitions relevant to the present section can be found in the papers of Zelinka.

Let $\theta(r)$ be the least integer y so that if P is a polar graph of order r each of whose poles has degree (see (8)) $\geq y$, then P has a hamiltonian homopolar (see (6)) cycle.

Proposition 3. $\theta(r) = h(2, r) - 1$.

Sketch of proof. Given a graph G of order 2r with a 2-partition $\Pi = \{\{\xi_1, \eta_1\}, \{\xi_2, \eta_2\}, \ldots, \{\xi_r, \eta_r\}\}$, form a polar graph $P(G, \Pi)$ by merging each ξ_i and η_i into one

vertex ζ_i of $P(G, \Pi)$, assigning incidences of edges with ξ_i to one pole of ζ_i and incidences with η_i to the other pole of ζ_i . This construction can be reversed, to produce from a polar graph P a graph G(P) together with a 2-partition $\Pi(P)$ of G(P), where for the purposes of the present investigation we insist on the vertices in a cell of $\Pi(P)$ being adjacent.

A Π -cycle of G corresponds to a hamiltonian homopolar cycle in $P(G, \Pi)$, and a hamiltonian homopolar cycle in P corresponds to a $\Pi(P)$ -cycle in G(P). By means of this correspondence it follows that $\theta(r) = h(2, r) - 1$.

Corollary 4. $r \leq \theta(r) \leq \lfloor 4r/3 \rfloor - 1$.

To close we remark that the conjecture of Section 3 is equivalent to $\theta(r) = r$.

Acknowledgement. I would like to thank Professor C. St. J. A. Nash-Williams, University of Reading, who supervised my Ph.D. Thesis, in which the material of this paper appears.

REFERENCES

(1) B. BOLLOBÁS, P. ERDÖS and E. SZÉMEREDI, On Complete Subgraphs of r-chromatic Graphs, Discrete Math. 13 (1975), 97-107.

(2) J. A. BONDY and U. S. R. MURTY, Graph Theory with Applications, (Macmillan, London and Basingstoke, 1976).

(3) V. CHVÁTAL, On Hamilton's Ideals, J. Combinatorial Theory 12B (1972), 163-168.

(4) G. A. DIRAC, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952), 69-81.

(5) B. ZELINKA, Isomorphisms of Polar and Polarised Graphs, Czech. Math. J. 26 (1976), 339-351.

(6) B. ZELINKA, Analoga of Menger's Theorem for Polar and Polarised Graphs, Czech. Math. J. 26 (1976), 352-360.

(7) B. ZELINKA, Eulerian Polar Graphs, Czech. Math. J. 26 (1976), 361-364.

(8) B. ZELINKA, Self-derived Polar Graphs, Czech. Math. J. 26 (1976), 365-370.

Napier College Edinburgh