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1. Introduction

We show that every simple graph of order 2r and minimum degree S4r/3 has the
property that for any partition of its vertex set into 2-subsets, there is a cycle which
contains exactly one vertex from each 2-subset. We show that the bound 4r/3 cannot be
lowered to r, but conjecture that it can be lowered to r + 1.

2. Definitions

Throughout this paper n will denote a positive integer and r an integer S3. Given a
real number x, fxl will denote the least integer §x. Our basic graph-theoretic
terminology and notation is that of Bondy and Murty (2), save that we use the word
"graph" to mean "simple graph".

We shall require the following notation. Let G be a graph, let £, V € V(G), let
WcV(G) and let H^G. Then W denotes V{G)\W, H denotes G[V(G)\V(H)],
«(£» W) denotes the number of edges incident with £ whose other end lies in W, e(f, TJ)
denotes e(£, {TJ}) and W8 denotes the set of edges exactly one of whose ends lies in W.
If £e V(H), then the H-degree of £ is the degree of £ in the graph H.

Let G be a graph of order nr and let II = {V1, V2, • • •, Vr} be a partition of V(G)
into n-subsets. We say that II is an n-partition of G. If H is a cycle of G such that
| V(H) n V,| = 1 for i = 1, 2 , . . . , r, then we say that H is a II-cyde of G. If there exists a
II-cycle of G, then we say that G is II- round. If G is II- round for all n-partitions II of
G, then we say that G is n-round.

Our aim is to seek bounds for the least integer p = h(n, r) so that if | V(G)| = nr and
S(G)gp, then G is n-round. Most of our attention will be devoted to the case n =2.

Since a graph is 1-round if and only if it has a hamiltonian cycle, a well-known
theorem of Dirac (4) determines that h(l, r) = |>/21. An unpublished result of Graver
(see (1)) implies that h(n,3) = 2n. In the next section we shall consider the function
H2,r).

3. 2-round graphs

The theorem of Dirac mentioned in Section 2 implies that h(2, r)Sf3r/2l; if
|V(G)| = 2r and 8(G)§3r/2, then any r vertices of G induce a subgraph with minimum
degree Sr/2, which has, by Dirac's Theorem, a hamiltonian cycle. If G, is the union of
two complete graphs of order r + 1 which share just two vertices £ and TJ, then Gr is not
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Il-round for any 2-partition II of Gr which contains {£, 17}. Since 8(Gr) = r, this implies
h(2, r ) g r + l . We conjecture that in fact h(2, r) = r +1. In the remainder of this section
we prove that h(2, r)^\4r/3l

Theorem 1. If |V(G)| = 2r, n is a 2-partition of G and d(£) + d(Tj)g(8r-l)/3
whenever {£, Tj}ell, then G is Il-round.

Proof. For each £e V(G), let £' denote the other vertex of G in the same cell of II
as £ Let W be a transversal of II such that \W8\ is as small as possible and let
H = G\_W]. Let £e W. By the minimality of |WS|,

a n d S° e(fc W)+ «(€', W)g(8r
Hence

dHU) + 4ft(f)^(8r-7)/6. (1)

Since ^ was an arbitrary vertex in W, it follows that there are either Sr/2 vertices of
H-degree S(8r-7)/12 or s r /2 vertices of H-degree g(8r-7)/12. In addition, from (1)
it follows that 8(H)S(2r- l ) /6 and 8(H)S(2r- l ) /6 . By a theorem of Chvatal (3) it
follows that either H or H has a hamiltonian cycle, which is a II-cycle of G. Hence
G is Il-round.

Corollary 2. h(2, r) S f4r/3"|.

We now know that r + l g h ( 2 , r)gf4r/3]. The upper and lower bounds coincide for
r = 3. We can show that h(2,4) = 5 and h(2, 5) = 6, confirming our conjecture and
improving on Corollary 2 in the cases r = 4 and 5.

4. Application to polar graphs

In a series of papers (5), (6), (7), (8) Zelinka introduced to the literature the concepts
of polar graphs and polarised graphs first denned by F. Zitek. The results of Section 3
can be interpreted in the context of hamiltonian homopolar cycles in polar graphs. The
definitions relevant to the present section can be found in the papers of Zelinka.

Let 0(r) be the least integer y so that if P is a polar graph of order r each of whose
poles has degree (see (8)) Sy, then P has a hamiltonian homopolar (see (6)) cycle.

Proposition 3. 0(r) = h(2, r) - 1 .

Sketch of proof. Given a graph G of order 2r with a 2-partition H = {{£i,rii},
{&. T/2}» • • •. i£r, Vr}}, form a polar graph P(G, II) by merging each § and rjj into one
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vertex £f of P(G, II), assigning incidences of edges with £ to one pole of & and
incidences with T}; to the other pole of £. This construction can be reversed, to produce
from a polar graph P a graph G(P) together with a 2-partition II(P) of G(P), where for
the purposes of the present investigation we insist on the vertices in a cell of I1(P) being
adjacent.

A II-cycle of G corresponds to a hamiltonian homopolar cycle in P(G, II), and a
hamiltonian homopolar cycle in P corresponds to a II(P)-cycle in G(P). By means of
this correspondence it follows that 6(r) = h(2, r) — 1 .

Corollary 4. r^0(r)^ \4r/3] - 1 .

To close we remark that the conjecture of Section 3 is equivalent to 0(r) = r.
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