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Abstract
Growth in the complexity of advanced systems is mirrored by a growth in the number of
engineering requirements and related upstream and downstream tasks. These requirements
are typically expressed in natural language and require human expertise to manage. Natural
language processing (NLP) technology has long been seen as promising to increase require-
ments engineering (RE) productivity but has yet to demonstrate substantive benefits. The
recent addition of large language models (LLMs) to the NLP toolbox is now generating
renewed enthusiasm in the hope that it will overcome past shortcomings. This article
scrutinizes this claim by reviewing the application of LLMs for engineering requirements
tasks. We survey the success of applying LLMs and the scale to which they have been used.
We also identify groups of challenges shared across different engineering requirement tasks.
These challenges show how this technology has been applied to RE tasks that need
reassessment. We finalize by drawing a parallel to other engineering fields with similar
challenges and how they have been overcome in the past – and suggest these as future
directions to be investigated.

Keywords: Requirements engineering (RE); Systems engineering; Large language models;
Natural language processing (NLP); NLP4RE1

1. Introduction
The shift to ever more complex and coupled engineered cyber-physical systems
comes with an increase in the volume of the requirements associated with the
system (Norheim et al. 2022). Complex engineered systems such as commercial
aircraftmay have tens or even hundreds of thousands of requirements representing
a wide range of requirements types. As the functionality and complexity of these
systems increase over time, especially as additional needs concerning stakeholders,
society, or sustainability are added, the burden associated with requirements
engineering (RE) will grow correspondingly. Requirements aremost often encoded
in natural language (NL) – the lingua franca of requirements (Zhao et al. 2021).
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This is particularly the case with legacy requirements for long-lived systems. As a
result, increasing the number of requirements to be managed has often meant a
growing demand for human experts to manage them. It has been well established
that many of the challenges in the later stages of the product or system develop-
ment cycle can be traced back to requirements-related problems (Aurum &
Wohlin 2005). Although this claim has been mainly studied for software engin-
eering, it also holds for hardware systems (Laplante &Kassab 2022, INCOSE 2015).
The most commonly cited challenges relate to properties of requirements: cor-
rectness, consistency, and completeness (Rajan & Wahl 2013, Diamantopoulos
et al. 2017). However, challenges also stem from eliciting and generating require-
ments and the downstream tasks thatmight lead tomisinterpretation, oversight, or
loss of traceability between design artifacts and requirements. To address the
growing volume of requirements and their corresponding burden on engineering
resources, natural language processing (NLP) has been considered a potential tool
to help with RE tasks. Although NLP techniques long lagged in their capabilities to
carry out tasks of evenminor complexity, recent developments in the field have led
to a renewed interest and hope in the ability of NLP to tackle the many challenges
that previously would have been received with skepticism (Berry et al. 2012,
Dalpiaz et al. 2018). Although some of the recent renewed interest can be attributed
to easier access to general-purpose NLP software, like the NL Toolkit – an openly
and freely distributed available repository of Python-based libraries, much comes
from a different direction. Significant advances in domain-independent methods
in NLP and machine learning (ML) since the inception of transformer-based
languagemodels (also known as large languagemodels, or LLMs) like Bidirectional
Encoder Representations from Transformers (BERT; Devlin et al. 2018) and the
multidomain capabilities of these new tools have translated to adoption in domains
such as BioMedicine and Law. As a result, a recent stream of RE research has
focused on applying LLMs to various RE tasks. Comprehensive literature review
efforts have been conducted on using NLP in RE by Zhao et al. (2021) and even
more recently by Sonbol et al. (2022). However, none of these have explicitly
focused on LLM-based efforts. Although this literature constitutes a subset of the
reviews, LLMs come with inherent challenges in their adaptation to RE, and we
believe this point has received too little attention so far. One notable exception is
the work of Deshpande et al. (2021), which focuses on one particular challenge of
applying LLMs. In this article, we seek to understand better the broader inherent
challenges of applying LLMs in the RE field. Some of these are specific to the
technology of LLMs, while others are inherent to the field of NLP.

The article is structured as follows. Section 2 gives additional background onRE
as a standalone process, applyingNLP to requirements, and the newfound hopes of
LLMs. Section 3 summarizes studies of using NLP for RE and explores how the
approaches correspond to typical RE tasks. We address the approaches of these
studies: the scale of the requirements, the dataset to which the NLP methods were
applied, the validation of studies, and how much the task reflects a real-world task
required by practitioners, such as RE.We introduce five categories of RE tasks and
investigates potential LLM applications within each task. Section 4 summarizes the
challenges identified in the studies from Section 3. Section 5 discusses the insights
gained from this review of the prior studies and potential gaps between published
research and the requirements of engineering tasks. It gives recommendations for
future research to overcome these challenges, inspired by fields where the
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application of LLMs has matured. In the conclusion, we summarize our findings,
provide limitations and highlight additional opportunities for future research.

2. Background
Writing requirements constitutes an essential part of the engineering process:
“Effective requirements engineering lies at the heart of an organization’s ability
[…] to keep pace with the rising tide of complexity” (Hull et al. 2005). They are
captured at different stages of the maturation of the design, from stakeholder
analysis and high-level system requirements down to detailed component speci-
fications (Hirshorn et al. 2017). This encompassing/central role of requirements
has made them the focus of RE processes that detail how to generate requirements,
how tomanage requirements once they have been created, and how to link artifacts
resulting from a large set of downstream tasks, including design, validation, and
verification, back to the requirements.

Requirements can be encoded through textual or graphical supports (Bruel et
al. 2021). Textual requirements lie on a spectrum from informal to semi-formal to
formal. Informal requirements are written in NL with minor constraints (e.g.,
using certain modal verbs like shall). Semi-formal requirements are typically
structured through boilerplates and templates (Mavin et al. 2009, Dick & Llorens
2012, Rupp 2014, Hall et al. 2020), or patterns (Rajan & Wahl 2013). Formal
requirements like temporal logics are specified by a formal context-free grammar
with mathematical semantics. Graphical requirements are typically defined
through different types of diagrams that also range in formality, from sketches
capturing the intention of the requirements to visual modeling languages like
universal modeling language (UML) and systems modeling language (SysML).

Because of the ubiquity of informal and semi-formal natural language-based
requirements, NLP has been viewed as a fitting technology for many engineering
processes that link to requirements. As early as the 1990s, Ryan (1993) proposed
using NLP for RE (for information systems) but with a limited scope of application
from the perspective of the time. The two applications envisioned were related to
scanning support documents to assist with the requirements definition process and
traceability maintenance “to guard against their [the requirements] being lost.”
Since then, a more extensive set of applications have been proposed (Kof 2005)
with a fuzzy distinction between applications driven by domain-independent NLP
use cases versus challenges trickled down from the RE domain.

Typical domain-independent NLP applications have included sentence classi-
fication (a common use case being sentiment classification – for example, of user
reviews and comments), question-answering, named entity recognition (NER),
text summary, and next sentence prediction (for example, for applications such as
chatbots). In a RE context, some of these applications, notably text classification
and applications that resemble NER and that might go under different names, such
as concept recognition (Berquand et al. 2021), have primarily been driven by the
inspiration of the function and perceived potential of these more general NLP
techniques. On the other hand, techniques such as concept extraction and trace-
ability detection have typically been driven by a need fromRE to potentially benefit
from using existing NLP technologies.

In addition to a large body of research on NLP of engineering requirements,
these past efforts have recently been surveyed by Zhao et al. (2021) and by Sonbol et
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al. (2022). In their work, they created a classification of NLP applications. They
noted recent trends, particularly the steady increase of research attention directed
toward NLP applied to RE tasks, and coined the acronym NLP4RE. Beyond
classifying the applications by RE task, these surveys also classify the applications
based on the NLP technique employed. These methods can broadly be divided into
rule-based (predominant at the inception of NLP) or machine-learning-based
methods.

Transformer-based LLMs dominate the current state-of-the-art in NLP (Man-
ning 2022) and belong to the machine-learning-based class of methods. As the
name suggests, LLMs can achieve such results based on themassive amount of data
they were trained on, albeit coupled with high computational costs. The evolution
of these LLMs has been rapid. The concept of transformer-based LLMswas initially
proposed by Vaswani et al. (2017) and materialized with the first widely adopted
pre-trained LLM: the BERT language representation model introduced in 2018 by
Google (Devlin et al. 2018). OpenAI released the pre-trained LLM generative pre-
trained transformer (GPT) in the same year (Radford et al. 2018). OpenAI’s GPT-2
followed in 2019, GPT-3 in 2020, GPT-3.5 in 2022 and GPT-4 in 2023. Each of
these new LLMswere released based on an order ofmagnitude (or greater) increase
in the number of parameters in the model used to perform linguistic tasks with
increasing accuracy, recall, and capability. The rapid increase in LLMs’ capabilities
has stoked interest in their application to tasks such as RE. However, their rapid
and recent development has meant that research and publications have struggled
to keep up and are relatively few to date.

A significant advantage of LLMs is that once created, they can be tailored to
specific applications, allowing reuse of their general capabilities and avoiding the
considerable expense of recreating them. To allow the reuse of these models for
particular applications, the processes of pre-training and fine-tuning for language
models were introduced (Howard & Ruder 2018). It is helpful to split these tasks
into four steps: general pre-training, domain-adaptive pretraining (DAPT), task-
adaptive pre-training (TAPT), and fine-tuning. In the pre-training step, a model is
trained on a general-domain corpus dataset (e.g., BERTwas trained on the order of
109 words) to capture the general features of the language in the different model
layers. While this stage is the most resource-intensive, it must only be performed
once. In the following step, DAPT, the model is adapted to the desired domain
using domain-specific data (e.g., SciBERT, a modified version of BERT further
trained on a corpus of scientific publications with 108 words). In the TAPT step, the
same process is carried out with task-specific data (e.g., ReqSciBERT based on
about 104 words from a corpus of system requirements statements (Lim 2022)).
None of the steps so far requires any labeled data. Subsequently, transfer learning is
applied in the fine-tuning step, where the pre-trained model is fine-tuned on
labeled task data (e.g., 103 words from about 100 sentences from a labeled
requirements statements dataset), hence capturing the specific details of the task
(Gururangan et al. 2020). Fine-tuning requires a human expert (preferably mul-
tiple human experts to reduce bias) to label a dataset and supervise the training.
Throughout the steps from general pre-training to fine-tuning, the required
training data decreases steadily, and so does the computational cost. Thus, with
each further step, the overall effort needed for adapting the LLM to new tasks
(primarily computational resources) decreases, while the human-based proportion
of that effort generally increases.
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The tradeoff for this increasing level of effort is that the trained and tuned
model exhibits higher performance than a general model measured by NLP
metrics, such as the F1 score. The F1 score computes the unweighted average of
the model’s precision and recall at specific NLP tasks. Precision measures the
degree to which amodel overpredicts a data class (based on true and false positives)
as a proportion of the total predictions. Recall measures the degree to which a
model underpredicts a data class (based on true positives and false negatives) as a
proportion of the total predictions. Amodel with perfect precision and recall would
have an F1 score of 1.0. This score is often used to measure the effectiveness of
models developed for specific purposes, including examples of tailoring LLMs for
RE tasks.

3. Requirements engineering tasks and large language
models

This section reviews existing studies to identify candidate RE tasks thatmay benefit
from using NLP and LLMs. Note that these categories do not necessarily reflect
specific use cases for NLPmethods requested by RE practitioners but rather reflect
the tasks that have been explored andmay be of potential benefit. This summary of
RE tasks is based primarily on the comprehensive reviews by Zhao et al. (2021) and
Sonbol et al. (2022). Each review identified different RE task categories based on
their survey of the literature: Zhao et al. (2021) divided RE tasks into six categories,
four derived from Berry et al. (2012): detection, modeling, tracing and relating,
extraction, and two additional ones: classification, and search and retrieval. Sonbol
et al. (2022) derived five categories instead: analysis, quality, extraction, modeling
and management.

This article proposes a modified classification illustrated in Figure 1 and
summarized in Table 1. The categories are based on a synthesis of the categories
identified by Zhao et al. (2021) and Sonbol et al. (2022), while framing them in the
context of the RE process based on Hickey and Davis (2004) and van Lamsweerde
(2009). The connection between the artifacts and the different tasks is explicitly
given in Figure 1. The task description is aligned with the generative perspective of
LLMs: detailing text is given as an input and what text is generated as an output.

3.1. Generation

In the context of LLMs, generating requirements is the task that given NL text as an
input results in proposed requirements for the system to be designed. We broaden
this category to include uses of LLMs that help formulate the requirements and
assist in elicitation. Following the model from Hickey and Davis (2004), this
includes any form of LLM that assists in generating situational information,
including characteristics of the problem, solution, and project domain, that results
in the generation, either by a stakeholder, engineer or LLM of additional require-
ments. The input information to the LLM could consist of stakeholder needs
captured in textual form, user reviews, and requirements and specifications from
past or current projects when the goal of reusability is targeted. In this category, we
also include refining past or existing requirements into textual forms that would
result in new requirements. This includes generating requirement templates or
core requirements that might be shared across product lines with variability in the
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sense discussed by Reinhartz-Berger and Kemelman (2020). In this sense, gener-
ation is meant to be more general than the extraction category proposed by Sonbol
et al. (2022) and overlaps with the search & retrieval category by Zhao et al. (2021).
According to Sonbol et al. (2022), one-sixth (16%) of existing NLP RE research
covered this use case. Still, the applications of LLMs, more specifically, remain
limited. For instance, de Araújo and Marcacini (2021) aimed to automate the
identification of software requirements based on user reviews. This effort devel-
oped RE-BERT (Requirements Engineering using Bidirectional Encoder Repre-
sentations from Transformers) by fine-tuning BERT with a token classification
model that classified every part of a sentence in a review as referring to an existing
software product functionality or not. Reviews referring to existing functionality
could then lead to future performance requirements. The data set was generated
based on online user reviews of eight mobile phone applications and included 1000
requirements. LLMs open the unexplored possibility of elicitation through the

Figure 1.Requirements engineering tasks and their connection to key inputs and outputs from amodel-based
systems engineering (MBSE) point of view.

Table 1. Requirements engineering tasks classification from a large language model perspective

RE task Task description

Generation Generate requirements, either in natural language or any structured form (including
formal requirements), based on input text from which a requirement can be derived
or extracted.

Translation Take a requirement and produce an equivalent form, e.g., in a formal language, a semi–
structured form (i.e., conforming to boilerplates, templates, and patterns), or a
requirements modeling language.

Quality
assessment

Find common quality problems with requirements.

Analysis Derive non–requirement information useful for downstream engineering tasks based
on input requirements.

Design Propose designs that satisfy one or multiple requirements.
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fine-tuning of assistants (Rastogi et al. 2020) that employ interactive chats to guide
a stakeholder to discover new requirements. This could leverage existing elicitation
techniques, for example, user stories (Lucassen et al. 2016), or many other
techniques (Hickey & Davis 2004). Recent research has been carried out in this
direction: Arora et al. (2023) used a pre-trained LLM based on GPT-4 without
further tuning and through zero-shot prompt strategies alone.

3.2. Quality assessment

This category maps to the detection task from Zhao et al. and the quality task from
Sonbol et al. Quality assessment can be addressed at the individual requirement
level: ambiguity and conformance to requirement writing guidelines or syntactic
structures defined by boilerplates, templates, and patterns. Quality assessment can
also be addressed at the requirement document level, aiming to find missing
requirements (addressing incompleteness) and finding redundant, unnecessary,
or conflicting requirements (addressing consistency). According to Sonbol et al.
(2022), one-sixth of existing NLP RE research covers finding quality issues in
requirements. Recentmethods (Draeger 2023,Malik et al. 2022) have proposed the
application of LLMs’ inherent capability for detecting semantic similarity between
words and sentences to find similar requirements that might either point toward a
conflict or a redundancy. Luitel et al. (2023) proposed using LLM unsupervised
training mechanisms to address the completeness of individual requirements.
They carried out the training based onmasked language model techniques (Devlin
et al. 2018), which consist of training the language model to predict missing words
(filling in the blank) based on context. For training and testing, they used a subset of
the PURE dataset, and since the method was unsupervised, no annotations were
created.

3.3. Analysis

Requirement analysis addresses any derived information that could be used in
aiding with a task downstream of the creation of the requirement or in con-
necting a new requirement to already existing information. This includes
analyses specific to NLP methods, such as NER, which is not specifically an
RE task but can produce information that can be used in RE analyses. This
definition is similar to that given by Sonbol et al. (2022) and includes the tasks of
traceability – which is important in the context of validation and verification
tasks and requirement classification. We differ from Sonbol et al. (2022) by
including in this category the task of information extraction (IE), which includes
semantic role labeling tasks like NER. This category overlaps with the modeling
category from Zhao et al. (2021) and Sonbol et al. (2022) for derived modeling
information (i.e., generating Use Case models in UML/SysML). Analysis is the
task area that has received the most attention from LLMs so far. Most applica-
tions have focused on requirement classification, assigning requirements to a
predefined set of classes conventionally defined in RE. Traceability, the task of
finding connections between a requirement and other requirements or design
artifacts, is also an application that has attracted LLM research, especially due to
the key element of LLMs encoding semantic information. In addition, we are
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also starting to see more information extraction applications like NER and
relation extraction.

Themost successful LLMapplication to RE so far has been classification tasks.
Hey et al. (2020) developedNoRBERT, a BERTmodel fine-tuned with a sequence
classification model based on the PROMISE dataset. They showed that LLMs
could outperform state-of-the-art methods results, like those from Kurtanović
and Maalej (2017). Kici et al. (2021) also fine-tuned a sequence classification
model based on eight different categories. The information extraction task has
mainly focused on NER to extract concepts belonging to abstract categories
relating to language construction (e.g., objects, functions, modifiers). This can
be formulated as a token classification task for LLMs, which requires only minor
modifications to the original BERT neural network architecture. Berquand et al.
(2021) adapted BERT to generate SpaceBERT, a domain-adaptive version of
BERT for space systems engineering. They then fine-tuned it to extract space
systems concepts from 18 categories from a requirement corpus. Ajagbe and
Zhao (2022) carried out multi-label classification for nine concept categories:
object, agent, container, instrument, conditional, temporal, location, goal and
dative. Tikayat Ray et al. (2023) developed aero-BERT-Classifier, and aero-
BERT-NER, together referred to as aero-BERT. These two models are fine-tuned
versions of BERT on requirement classification and NER. The NER task was
carried out for five categories, and the aero-BERT-Classifier was trained to assign
six requirement categories. Chami et al. (2019) carried out NER for six entity
categories derived from SysML. Bajaj et al. (2022) extracted UML cases based on
requirements using GPT-3.

Relations between requirements and other requirements, or derived artifacts
(design models, test procedures, etc.), have been an active area of research in RE.
Recently, LLM has been applied to this RE task as well. Deshpande et al. (2021)
developed RDC-BERT, a fine-tuned BERT model, on a binary classification task
to detect whether two requirements were linked. They show that the BERTmodel
outperforms alternative ML models like decision trees. However, the article
argues that the return on investment of the more expensive training and data-
hungry requirements for BERT only outperforms more conventional models
after a particular scale of the annotated dataset is achieved. Fischbach et al. (2021)
developed a simpler binary classification method to detect whether requirements
contained causal sentences. Lin et al. (2021) mapped traceability between code
issues (which could be interpreted as requirements) and implemented code.

3.4. Translation

Requirement translation is motivated by the underlying interpretation of NL
translation in the context of LLMs: a mapping from one set of words (or tokens)
to another set of words (or tokens). There might be some overlap between
translation as defined here and the modeling category proposed by Zhao et al.
(2021) and Sonbol et al. (2022). Translation is most commonly applied to trans-
lating requirements from one NL to another. It can also be applied to translation
from natural to artificial languages, such as a requirement modeling language. In
the extreme, the input to be translated might even be an informally formulated
requirement that is transformed into a derived requirement in a formal or semi-
formal language. Although existing NLP applications to RE tasks have not yet been
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categorized as translation, some of the non-LLM applications that have been
categorized as modeling would fall into this category, for example, the applications
explored by Deeptimahanti & Sanyal (2011) and Dawood & Sahraoui (2017). The
number of applications of LLM to this category of RE tasks remains small. One area
of application that has received recent attention is the translation of NL Linear
Temporal Logic (LTL) specifications to their formal counterpart. The NL require-
ments could be expressed in unstructured (Cosler et al. 2023) and structured (He
et al. 2022) forms. Methods applying LLMs range in methodologies. (Hahn et al.
2022) fine-tuned an LLM (T5, an encoder-decoder transformer) to translate NL
specifications of RegEx, First Order Logic, and LTL statements into their formal
counterpart. Cosler et al. (2023) used a few-shot approach with a GPT-3 variant,
with a step-by-step instruct approach. They tested the performance with 36 edge-
case specifications generated by five experts, achieving a best-case of correctly
translating 31 specifications.

3.5. Design

We refer to design as the task that outputs design artifacts, given validated
requirements as an input. This is a new category that traditionally would not be
included in NLP applications, but we include it as we expect this to become a
growing application enabled by LLMs. Although the derivation of design that
satisfies requirements would often be conceived as an exclusively human task, with
the advent of generative AI, we can now start envisioning LLMs deriving textual
descriptions of the design, either in NL or formal design modeling languages in the
context of MBSE. We did not find any published work that specifically targets the
use of LLMs to generate design artifacts based on a set of requirements alone. This
category overlaps with the general usage of LLMs to generate design artifacts: this
includes methods that assist in generating new concepts, exploring the design
space, or proposing alternative designs based on non-requirement information:
maybe preferences or domain knowledge of engineers. LLMs are already being
applied in this domain: Zhu and Luo (2022) explored the usage of the GPT LLM to
generate novel design concepts based on high-level textual problem descriptions.
Code synthesis, a now widely adopted technology, outputs valid code in various
programming languages based on a short description of what the code should
accomplish Austin et al. (2021). We exclude this broader treatment of the design
category, as it is beyond the scope of this article, and reserve it exclusively for cases
with correctly formulated and validated requirements as the sole input. Although
the literature in this domain, when focusing on requirements, is still scarce, we
predict significant growth.

3.6. RE task-independent work

Although not an RE task, the fine-tuning applications discussed in the previous
RE task categories rely on pre-trained LLMs. Although general-purpose LLMs
such as BERT or RoBERTa can be used out of the box, fine-tuned models can
perform better on domain-adapted or task-specific adapted pre-training, which
is a task that can be carried out independently. For this purpose, Ajagbe and Zhao
(2022) trained BERT4RE, a domain-adapted version of BERT for RE, on the
PURE and PROMISE datasets and online review. Berquand et al. (2021) trained
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SpaceBERT and several variants (e.g. SpaceRoBERTa), a domain-adapted ver-
sion of BERT trained on documents from the space domain, including require-
ments documents.

3.7. Summary

We summarize the findings from these five subsections in Tables 2 and 3. Table 2
focuses on the actual applications, while Table 3 focuses on details with respect to
the data and LLM used.

R stands for reused (from previous study or publicly available annotated
dataset), A for automatic (when the annotations can be generated based on simple
rules from existing data), andM for manual annotation. LLMArchitecture legend:
B stands for binary classification, C for classification with more than two classes,
TC for token (entity) classification. P stands for prompt engineering.

Some common themes emerge from this review of applications of LLMs to RE
tasks. First, the number of requirements analyzed in the studies ranged from a few
dozen to almost 2000. These numbers are relatively small in the context of the size
of requirements sets typically found in complex systems development efforts.

Table 2. Overview of specific LLM applications

Publication Category Task description Relevance for downstream task

de Araújo and
Marcacini
(2021)

Generation Finding references in online user
reviews to existing requirements

May be used to elicit further
requirements.

Hey et al. (2020) Analysis Classification of requirements into
functional and non–functional
classes.

Not explicitly stated

Kici et al. (2021) Analysis Classification of requirements into
eight custom–defined classes.

Not explicitly stated

Dalpiaz et al.
(2019)

Analysis Detection of the presence of quality
or functional aspects.

Not explicitly stated

Berquand et al.
(2021)

Analysis Extraction of concepts belonging to
18 categories.

Domain modeling

Chami et al.
(2019)

Analysis Extraction of concepts belonging to
six categories.

Identifying elements of the
context/design model

Ray et al.2023) Analysis Classification into design, functional
or performance categories, and
extraction of concepts belonging
to five categories.

Detection of missing
information given
expected information for
standard categories

Fischbach et al.
(2021)

Analysis Dependency detection between
requirements.

Assist in redundancy and
inconsistency detection

Lin et al. (2021) Analysis Detecting trace from requirements
to design artifacts.

Complying with traceability
standards

Cosler et al. (2023) Translation Translating natural requirements
into temporal logic.

Model checking
(simulation–based
verification)
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However, finding open-source requirements datasets from large-scale systems can
be very challenging, and the search is often limited to academic sources (e.g.,
engineering competition projects) or system-level requirements for publicly-
funded programs (e.g., infrastructure or science). Another theme is that of the five
RE tasks defined here, the Analysis task is by far the most commonly addressed in
these studies. Of the studies in this task grouping, most explore NLP-specific
operations such as sequence classification or NER rather than addressing RE tasks
directly. This is consistent with the task’s definition, where analysis produces
products that potentially aid in downstream RE or engineering efforts but explores
NLP technology feasibility ahead of the application to and refinement of RE tasks
in practice.

One objective of this study was to identify RE tasks that could benefit from
LLMs. To date, we are unable to cite studies that directly explore the application of
LLMs to these RE tasks. New LLM technologies and particularly generative
language models like the recent variant of GPT (GPT-4) are very new, and
systematic studies of their potential to help RE are struggling to keep up with
the rapid pace of their evolution. Nevertheless, given the broad interest in LLMs in
general and the exploration of NLP in RE, we anticipate that new studies exploring
the applicability of LLMs to RE tasks will eventually emerge.

4. Challenges to using large language models in
requirements engineering

As of this article’s writing, the application of LLMs to RE is still in its infancy. As
noted previously, LLM capabilities have advanced rapidly in a short period, and the

Table 3. Overview of LLM publication with the number of requirements, training, validation and
testing split, annotation method, and architecture

Publication Category
No. of
Requests

Train/valid/
test Annotation LLM architecture

de Araújo and
Marcacini (2021)

Generation 1000 87.5/12.5/0% M BERT + TC

Hey et al. (2020) Analysis 625 469/156/� R BERT + C

Kici et al. (2021) Analysis Not specified 80/10/10% – DistilBERT + C

Dalpiaz et al. (2019) Analysis 1502 469/156/877 R + M BERT + C

Berquand et al.
(2021)

Analysis 882 80/20/� M BERT + TC

Chami et al. (2019) Analysis 100 80/�/20% M BERT + C

Ray et al. (2023) Analysis 325 90/10/0% M BERT + C and
BERT + TC

Fischbach et al.
(2021)

Analysis 61 Not specified M BERT + B

Lin et al. (2021) Analysis 1834 Not specified A BERT + B

Cosler et al. (2023) Translation 36 Not specified M GPT3 variant + P
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number of published studies documenting their RE application is small. However,
adoption and deployment challenges of NLP have long existed in other domains
and themore general field of artificial intelligence. It is perhaps useful to learn from
deployment experiences in other domains to better anticipate where challenges
might arise when applying LLM-based NLP methods for RE. In the biomedical
field, Chapman et al. (2011) identified a set of six challenges: lack of access to shared
data, lack of annotated datasets for training and benchmarking, lack of reprodu-
cibility, insufficient common conventions and standards for annotations, lack of
user-centered development and scalability, and lack of collaboration. To the best of
our knowledge, a dedicated study addressing the challenges identified by Chapman
et al. for RE is yet to be published. We hypothesize that NLP applications become
more attractive to improve RE productivity in the cases of large volumes of
requirements generated by advanced systems engineering. We seek to identify
possible challenges to implementingNLPmethods in RE and use as a starting point
the six challenges identified by Chapman et al. To simplify the discussion, those six
challenges can be generalized into the categories of challenges with limited require-
ments-specific data, inconsistent data annotation and inadequately defined RE use
cases. These types of challenges will be explained in the sections that follow. The
data challenges identified as problematic in other domains may be especially
relevant to this discussion, given that the performance and accuracy of large-
language-based methods are critically dependent on supervised learning, large
volumes of sample training data, and fine-tuning.

4.1. Limited requirements-specific data

Open datasets for requirements remained a long-time challenge until recently. As
pointed out by Ferrari et al. (2017): “With some exceptions, most of the works use
proprietary or domain-specific documents as benchmarks, and replication of the
experiments and generalization of the results have always been an issue.”Although
publicly available datasets have long existed, a central and diverse repository for the
community to work on did not. To address this issue, the PURE dataset was
published by Ferrari et al. (2017). This dataset composes a corpus of 79 raw public
requirements documents curated from theWeb from a wide range of products and
systems. One other source of requirements to address this challenge is the PROM-
ISE requirement dataset, comprising 625 requirements and released in 2007 based
on 15 student projects (Cleland-Huang et al. 2007). Yet, although diverse in
application types, all of the documents come from software engineering. Even
though the requirements are often for a hardware system’s software component or
control, hardware engineering requirements are not represented in these datasets.

Is it helpful to differentiate between requirements for software-based and
hardware-based systems? That is an empirical question to be addressed. Indeed,
hardware requirements represent a critical, if not dominant, part of the engineering
of advanced systems. Hardware requirements are arguably different from software
requirements in that software is often developed with a modular architecture while
hardware may be driven by performance or other drivers toward more integrated
architectures. The coupling associated with a more integrated architecture may
create additional dependencies between requirements, perhaps greater use of
domain-specific knowledge, system architecture knowledge, or other context-
specific information not directly referenced in the requirement statement. Since
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LLMs are trained and fine-tuned based on available data, any bias in the data
sampling (e.g., hardware, software, etc.) may distort the model’s outcomes. For
instance, is the corpus of requirements statements alone sufficient to train and fine-
tune LLMs or do other sources of context- and system-specific data need to be
included in the training corpus in order to produce a helpful LLM for RE tasks?

Additional public datasets that have been used comprise public user review (de
Araújo &Marcacini 2021), and public standards, for example, Part 23 and Part 25
of Title 14 of the Code of Federal Regulations for aircraft (Tikayat Ray et al. 2023),
and the European Cooperation for Space Standardisation (ECSS) dataset. The
most extensive coverage, to our knowledge, of recent hardware requirements was
carried out by Lim (2022), containing 42 hardware systems, including two com-
munication systems, five telescope systems, and 35 spacecraft systems. Data
challenges have primarily been addressed in software and control requirements.
Yet a diverse set of publicly available hardware requirements across engineering
industries (aerospace, automotive, communications, oil and gas, energy, infra-
structure, marine) has yet to be curated. Although these fields all have certification
standard documents that include requirements, these are typically behind paywalls
and not publicly available.

One aspect of data challenges not typically mentioned in the literature is the
diversity in requirements databases, depending on what type of requirement is
given and from what part of the system and the system lifecycle it derives. For
instance, a system-level requirement (generally a small proportion of the total
requirements) may be expressed concisely, with clear functions, targets, measures,
and relationships. On the other hand, a derived requirement (perhaps for a
subsystem or component and likely representing the majority of requirements in
a large requirements database) may be wordy, context-specific (with many
expressed or implied dependencies to other elements in the system), and may
include a combination of functions, operations, references to other documents, or a
variety of different data representations. The latter type of requirement poses a
different and more demanding challenge to NLP processes than the former based
on the complexity of the expression, andmay require a different NLP approach and
use case.

4.2. Inconsistent data annotation

Of the publicly available datasets, most of the requirements (i.e., the PURE dataset)
are not annotated for requirements engineering-specific tasks. PROMISE is one of
the few exceptions – yet large annotated corpora, similar to those used for grammar
and syntax NLP tasks, such as Penn Treebank or the CoNLL-2003 NER task
(annotating names of persons, locations, organizations, andmiscellaneous entities)
(Sang & De Meulder 2003), that are used for benchmarking and reproduction of
results of general purposes NLP tasks, are too rare.

The lack of annotated datasets has two major drawbacks for the fields of RE:
first, the lack of benchmarks, when using the data for testing, and second, the lack
of training data for ML purposes.

The lack of benchmarks is critical, as it makes it impossible to comparemultiple
NLP methods that attempt to solve the same task, and that can thereby claim that
they are able to solve this task beyond a set of crafted use cases. The risk is that the
method overfits to the specific test case for the domain used in a study, and does not
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generalize to other domains. The lack of benchmarks also makes it hard to
benchmark the novel LLMs against past methods that have been applied (e.g.,
rule-based, feature-based ML) (Lim 2022).

Second, the lack of annotated datasets used for training data is even more
problematic when applying LLMs. Fine-tuning and few-shot approaches (that is
with GPT family models) require training data (that is examples) as an input.
Whereas rule-based methods rely on a set of handcrafted expert rules that can be
validated against a small set of use cases and tests, LLMs require annotated data for
fine-tuning. Although new architectures, like GPT, have enabled zero-shot, or few-
shot applications, these are still poorly understood and covered in the literature,
and the lack of adequate training data requires a significant annotation effort for
every study. As a result, although NLPmethods in the past could get away with the
lack of training data, with LLMs this is (exceptions aside) no longer the case.

One challenge very specific to LLMs is turning RE tasks into LLM problems.
This involves either adapting the underlying architecture of the LLM by adding a
few neural network layers or, in the case of GPT-based LLMs, the careful task of
prompt design and prompt engineering (that is, tailoring the model prompts or
instructions so they aremore compatible with the structure of the LLM). For LLMs
deriving from the encoder transformer architecture, like BERT, the challenge is to
frame the NLP task as a sequence classification, sequence labeling, or sequence-to-
sequence problem. For example, Soares et al. (2019) framed the task of extracting
relationships between entities with BERT in six different ways, where a naive choice
versus a more advanced architecture could differ by as much as 46.6 percentage
points in the F1 score.

4.3. Inadequately-defined Requirements Engineering use cases

The application of NLP within the RE tasks discussed in Section 3 has too often
been driven by what we would describe as technology push rather than a need pull.
That is to say, at this early period in the evolution of LLMs, published studies (or
unpublished but public presentations or discussions) tend to focus on trying to
understand and demonstrate what the LLM capabilities can accomplish when
applied to NL requirements. This is the technology push aspect since the technol-
ogy solution is searching for an application.

Themotivation behind specific use cases can often be called into question when
we ask what will be done with the data returned from the NLP application. Most of
the case studies used in the literature stem from ‘what-if’ scenarios, where NLP
practitioners seek the application of their techniques to RE. Less often are the case
studies inspired by either trying to reproduce a repetitive RE task carried out by
engineers in the practice already or solving a problem that RE practitioners are
constantly faced with.

The lack of clearly defined use cases also makes it difficult to make claims of
success on the basis of F1 scores alone, which gives equal weight to precision and
recall. As pointed out by Lim (2022), “the failure to extract all required information
may result in the construction of an incomplete system model, affecting its
functionality and desired ilities. In this specific context, recall should be prioritized
over precision.” Berry et al. (2012) make a similar claim that for certain applica-
tions, nothing short of a perfect recall and perfect precision would be acceptable –
the Perfect Recall Condition according to Lucassen et al. (2016), as the tool should

14/21

https://doi.org/10.1017/dsj.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.8


notmiss any critical information, or mislead the user with wrong information. The
utility of any NLP, and by extension LLMs, for RE, therefore, is also highly
dependent on the downstream task that needs to be carried out based on the result
of the output generated.

4.4. Adoption challenges

Adopting LLM-based NLP tools for RE will require new skill sets that may not
currently exist among RE professionals, particularly in ML methods and tools,
model training and validation, and implementing those methods and tools to
address specific use cases. Critically, the current performance of the best LLM-
based NLP tools is less than perfect in precision and recall (i.e., the F1 scores of the
best models are less than 1.0). That means these models will continue to produce
false positive and false negative predictions for the foreseeable future. Organiza-
tions will have to determine inwhich RE applications the error level is tolerable and
in which cases it is not. For instance, would the imperfect prediction performance
of LLMs be acceptable in highly regulated environments or where human safety is
an overriding consideration? With additional fine-tuning and training, the per-
formance of these models will improve, but that will likely require RE experts to be
directly involved in the training and validation of the models. Experts are fre-
quently in short supply in most organizations. They may perhaps not be available,
allowed, or inclined to commit time to develop the application of these NLP tools
unless they are considered to be a priority by the organization.

5. Discussion
NLP and, more specifically, transformer-based LLMs are relatively new technolo-
gies advancing rapidly. Progress in the field is being made both in academia and in
industry. Notably, private companies are investing heavily in the development of
the technology and each new generation of LLM, and inmany areas, are leading the
state-of-the-art by virtue of their ability to collect and apply themassive amounts of
data needed to train LLMs. The allocation of focus, effort, and contributions is not
as clearly differentiated between academia and industry in the advance of LLMs as
inmoremature product domains where industrymight playmore of a leading role.
Therefore, the implications resulting from this review are not necessarily for
academia and industry but for NLP for RE practitioners and NLP4RE researchers.

For the RE practitioners interested in the potential of NLP, there is a need for
clearly defined RE use cases in which NLPmethods can be applied. These use cases
should have clearly defined outcomes and measures of performance to enable
comparison of the benefits not only with various NLP approaches but also
comparison of NLP with traditional RE methods to determine how the most
compelling benefits might be obtained. Absent a definition of specific use cases,
the tools’ need for accuracy, speed, and effectiveness, and the required outcomes
for technical and program management and other stakeholders, it will not be easy
to judge whether NLP LLM-based techniques provide compelling benefits to RE
tasks compared with existing approaches.

The F1 score is a valuablemeasure of the performance of a languagemodel but a
poor indicator of the overall benefit resulting from the application of themodel to a
real RE task. Much of the existing literature reports analysis based on measures of
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model performance rather than benefits from application. This is not unexpected
given the relative infancy of LLMs applied to RE. Still, studies going forward should
identify specific application use cases that enable comparisons between NLP and
traditional methods based on outcomes and relative benefits. In addition to the F1
score to assess the relative performance advantages of the model, the performance
measures for the RE tasks themselves should be a part of assessing the relative
benefits provided by applying NLP methods.

RE practitioners are also in a favorable position to identify and curate require-
ments datasets representing the range of requirements types encountered in
practice. These datasets may be considered confidential and competition-sensitive,
but through collaboration with academic researchers or industry consortia, stand-
ardized or benchmark requirements datasets could be developed that can enable
consistent evaluation of the performance of various NLP approaches or methods
across multiple industry or academic research teams.

For NLP4 RE researchers (and NLP researchers in general), there is a need to
develop additional measures of model performance beyond the F1 score better to
understand the practical impact of these emerging methods. Also, the tendency of
ML models to produce biased results based on the sample datasets used in their
training has been demonstrated across various application domains, such as image
recognition, text analysis, and recommendation engines. There is great diversity in
requirements depending on, e.g., their source, type, place in the allocation hier-
archy, degree of embeddedness in a specific system or technological context, and so
forth. It would be valuable for researchers to explore the degree to which this
diversity in the language used to express requirements potentially creates a bias that
limits the effectiveness of NLP methods for RE.

5.1. Implications for future work

The challenges discussed in Section 4 are challenges that have existed in other NLP
domains (Chapman et al. 2011) but also in ML areas beyond NLP. To help address
these potential challenges to the application of LLMs to RE, we recommend that
future studies should include:

• Increased use of hardware requirements datasets that include the increased
degree of dependency that can come with hardware compared with software
requirements.

• Comparing the challenges that requirements of different types and fromdifferent
stakeholders or different stages of the system lifecycle might pose to NLP and
LLM methods, and how to tailor them accordingly. The PURE dataset classifies
the requirement datasets into high-level and low-level requirements. The cur-
ation of additional requirements datasets that include requirements of multiple
types based on the same classification approach would help to understand how
diversity in requirements types and language might affect the benefits of NLP
and LLM methods in RE tasks.

• Develop benchmark requirements datasets to enable the systematic exploration
and evaluation of the application of NLP and LLMmethods to different RE tasks
to understand which of different approaches to the application of these tech-
nologies, if any, provides the greatest benefits. In the NLP field of information
extraction (IE), a dedicated set of challenges, sponsored by NAVWAR, the US
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Navy authority and acquisition command (formerly NRAD), created a common
set of annotations for NER for so-called coarse-grained categories of informa-
tion: organization, person names, locations, time, currency and percentages (Li et
al. 2022, Grishman & Sundheim 1996). A larger dataset with similar categories,
CoNLL-2003 NER challenge, was based on the same idea. The SemEval (Seman-
tic Evaluation) set of conferences has led to a set of benchmarking cases and
annotated dataset that has led to many follow-up studies, for example, SemEval
2010 Task 8 “Multi-Way Classification of Semantic Relations Between Pairs of
Nominals”.

• Identify RE tasks and reference use cases in the context of a real Product
Development Process to design and deploy NLP and LLMmethods and evaluate
their strengths and limitations relative to existing methods.

6. Conclusion
The volume of requirements and requirement-related data will only increase with
the advent of more complex advanced systems. Whereas many existing systems
can still rely on the human effort of expert engineers in RE and systems engineering
to carry out the tasks manually, this approach will likely not scale without
additional tools and methods. NLP has long been envisioned as the solution to
this problem, however, has yet to be adapted as a state of the practice for RE tasks.

In this article, we reviewed the recent development of state-of-the-art NLP
LLM-based techniques for RE tasks that have gathered significant traction. As
noted, while a number of possible RE applications have been explored, many are
based on demonstrations of the capabilities of the NLP technologies rather than a
systematic evaluation of what RE tasks are suited to the capabilities and limitations
of NLP methods. Understanding the net benefit in terms of improved RE and
system outcomes when counted against the cost to deploy the NLP methods is
underexplored.

The needs for precision and recall, speed, and effectiveness from the tools, and
the required outcomes for technical and program management and other stake-
holders, it will be difficult to judge whether LLM-based techniques provide any
benefit to RE tasks compared with existing approaches. The F1 score is a useful
measure of the performance of a model, but a poor indicator of the overall benefit
in the application of themodel. To date,much of the literature is based onmeasures
of model performance rather than benefits from application. This is not unex-
pected given the relative infancy of LLMs applied to RE, but studies going forward
should identify specific application use cases that enable comparisons between
NLP and traditional methods on the basis of outcomes and relative benefits. In
addition to the F1 score to assess the relative performance advantages of themodel,
the measures of performance for the RE tasks themselves should be a part of the
assessment of the relative benefits provided by the application of NLP methods.

This article and its observations do not come without limitations: in contrast to
Sonbol et al. (2022) and Zhao et al. (2021), we did not carry out a systematic review
of LLMs applied to RE tasks, and as a result might have missed work that does not
align with the challenges we identified in the cited research. However, given that
the LLM applications to RE are still a small field, we believe it is unlikely that we
missed any key publications not aligned with the observations made so far. The list
of possible research directions to overcome the challenges is also likely to be
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incomplete – and we look forward to seeing other directions mentioned in future
research as well.
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