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An Endpoint Alexandrov Bakelman Pucci
Estimate in the Plane

Stefan Steinerberger

Abstract. The classical Alexandrov-Bakelman-Pucci estimate for the Laplacian states

. —_n
I;l:g(|u(x)| < max [ue(x)] + c5,n diam(Q)*7 % | Au] 1 (),

where QO ¢ R", u € C2(Q) n C(Q) and s > n/2. The inequality fails for s = n/2. A Sobolev
embedding result of Milman and Pustylnik, originally phrased in a slightly different context, implies
an endpoint inequality: if n > 3 and Q c R" is bounded, then

max |u(x)| < max |u(x)| + cnlAul g s
where LP*1 is the Lorentz space refinement of LP. This inequality fails for n = 2, and we prove a
sharp substitute result: there exists ¢ > 0 such that for all Q c R2 with finite measure,

1|
max |u(x)| < max [u(x)| + ¢ max max 4 1,1o (7) Au(y)|dy.
s (o) < max o)+ ema [ max{ log (15) Haulay
This is somewhat dual to the classical Trudinger-Moser inequality; we also note that it is sharper
than the usual estimates given in Orlicz spaces; the proof is rearrangement-free. The Laplacian can

be replaced by any uniformly elliptic operator in divergence form.

1 Introduction and Main Results

1.1 Introduction

The Alexandrov-Bakelman-Pucci estimate [2,3,7,27, 28] is one of the classical esti-
mates in the study of elliptic partial differential equations. In its usual form it is stated
for a second order uniformly elliptic operator

Lu= aij(x)a,-ju + bi(x)aiu
with bounded measurable coefficients in a bounded domain QO c R”. The Alex-

androv-Bakelman-Pucci estimate then states that for any u € C2(Q) n C(Q),

sup |u(x)| < sup |u(x)|+ cdiam(Q)HLuHLn(m,
xeQ) x€0Q)

where ¢ depends on the ellipticity constants of L and the L"-norms of the b;. Itis a
rather foundational maximum principle and discussed in most of the standard text-
books, e.g., Caffarelli and Cabré [13], Gilbarg and Trudinger [17], Han and Lin [19],
and Jost [20]. The ABP estimate has inspired a very active field of research; we do
not attempt a summary and refer the reader to [11-13,17, 33] and references therein.
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Alexandrov [4] and Pucci [28] showed that L” can generally not be replaced by a
smaller norm. However, for some elliptic operators operators it is possible to get es-
timates with L? with p < n; see [6]. We will start our discussion with the special case
of the Laplacian, where the inequality reads, for any s > n/2,

. 2_n
1}1{1628(|u(x)| < Jrclelaza(>§|1,¢(x)| + C5,p diam( Q)¢ | Au s 0.

1.2 Results

The inequality is known to fail in the endpoint s = n/2. The purpose of our short
paper is to note endpoint versions of the inequality. The first result is essentially due
to Milman and Pustylnik [22] (see also [23]), with an alternative proof due to Xiao
and Zhai [34]. Ascribing it to anyone in particular is not an easy matter; one could
reasonably argue that Talenti’s seminal paper [31, Eq. 20] already contains the result
without spelling it out.

Theorem 1.1 ([22,23,31,34]) Letn >3, let QO c R" be bounded, and let u € C*(Q)n
C(Q). Then

max1(x)] < maxu(x)] + ¢ |Au], 11 g,

where c,, depends only on the dimension.

Here L"/?! is the Lorentz space refinement of L"/2. We note that its norm is slightly
larger than L"/2, and this turns out to be sufficient to establish an endpoint result
in a critical space for which the geometry of Q no longer enters into the inequality.
We refer to Grafakos [18] for an introduction to Lorentz spaces. The proofs given
in [22-24, 31] rely on rearrangement techniques. Theorem 1. fails for n = 2: the
Lorentz space collapses to L' = L', and the inequality is false in L' (see below for an
example). We obtain a sharp endpoint result in R?.

Theorem 1.2 (Main result) Let Q c R? have finite measure and let u € C*(Q) n
C(Q). Then

el

L2) Houtyiay.

1;16%(|u(x)| < )1:16151()%|u(x)| + cmax /yen max{l,log( ”

The result seems to be new. We observe that Talenti [31] is hinting at the proof of
a slightly weaker result using rearrangement techniques (after his equation (22), see
a recent paper of Milman [24] for a complete proof and related results). Note that
Q need not be bounded; it suffices to assume that it has finite measure. We illus-
trate sharpness of the inequality with an example on the unit disk. Define the radial
function u.(r) by
u(r) = {; —loge - %s_zrz %fO <r<e,
—logr ife<r<lL

We observe that Au, ~ £ 1.} and [u]r~ ~ log(1/€). This shows that the solu-
tion is unbounded as ¢ — 0, while |Aul|;: ~ 1 remains bounded; in particular, no
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Alexandrov-Bakelman-Pucci inequality in L' is possible for n = 2. The example also
shows Theorem 1.2 to be sharp: the maximum is assumed at the origin and

fyeg max { MOg( |||;)|||2 ) } € 1 pyzeydy = Eiz fB(O’S) log ( Hy%) dy ~log ( %) .

The proof will show that the constant |Q| inside the logarithm is quite natural, but it
can be improved if the domain is very different from a disk. Indeed, we can get sharper
results that recover some of the information that is lost in applying rearrangement
type techniques, and with a slight modification of the main argument, we can obtain
a slightly stronger result capturing more geometric information.

Corollary  Let Q c R? have finite measure and be simply connected and let u €
C*(Q) N C(Q). Then

. 2
I,?E%XW(X)' < xnel%\u(xﬂ + cr}?:g([ym max{l,log(m)}Mu(yﬂdy.

All results remain true if we replace the Laplacian —A by a uniformly elliptic oper-
ator in divergence form —div(a(x) - Vu) or replace R” by a manifold as long as the
induced heat kernel satisfies Aronson-type bounds [5].

1.3 Related Results

There is a trivial connection between Alexandrov-Bakelman-Pucci estimates and
second-order Sobolev inequalities. After constructing

Ap=0 inQ, ¢=u ondQ,
we can trivially estimate, using the maximum principle for harmonic functions,

max [u(x)| < max|¢(x)[ + max|u(x) - ¢(x)| < max|u(x)| + max|u(x) - ¢(x)].

This reduces the problem to studying functions u € C*>(Q) that vanish on the bound-
ary and verifying the validity of estimates of the type

[ul=() Sa [Au]x.
The Alexandroff-Bakelman-Pucci estimate is one such estimate. These objects have
been actively studied for a long time; see e.g., [15,16,34] and references therein. Theo-

rem 1.1 can thus be restated as second-order Sobolev inequality in the endpoint p = co
and requiring a Lorentz-space refinement; it can be equivalently stated as

4] oo (mny < cn || Aut] forallu e C°(R"), n > 3.

L5 (")
This inequality seems to have first been stated in the literature by Milman and Pustyl-
nik [22] in the context of Sobolev embedding at the critical scale. Xiao and Zhai [34]
derive the inequality via harmonic analysis. The failure of the embedding of the crit-
ical Sobolev space into L is classical:

2,2 o
W2 (Q) 4 17(Q).
There are two natural options: one could either try to find a slightly larger space Y >
L*(Q) to have a valid embedding or one could try to find a space slightly smaller than
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the Sobolev space to have a valid embedding. The result of Milman and Pustylnik [22]
deals with the second question. From the point of view of studying Sobolev spaces,
the first question is quite a bit more relevant, since it investigates extremal behavior of
functions in a Sobolev space and has been addressed in many papers [1,8,10,22,25,26].
We emphasize the Trudinger-Moser inequality [25,32]: for Q c R?,

sup f e4”|”|2dx£c|Q|.
Q

Hqul}Sl

Cassani, Ruf, and Tarsi [14] prove a variant: the condition |Au|p1 < oo suffices to
ensure that u has at most logarithmic blow-up. These results should be seen as some-
what dual to Theorem 1.2. Put differently, Theorem 1.2 is a natural converse to this
result, since it implies that any function with |Au| ;1 < oo and logarithmic blow-up
has a Laplacian Au that concentrates its L'~mass.

2 Proofs

The proofs are all based on the idea of representing a function u: Q — R as the sta-
tionary solution of the heat equation with a suitably chosen right-hand side (these
techniques have recently proven useful in a variety of problems [9, 21,29, 30])

ve+ Av = Au in Q

v=u on 0Q).

The Feynman-Kac formula then implies a representation of u(x) = v(¢, x) as a con-
volution of the heat kernel and its values in a neighborhood to which standard esti-
mates can be applied. We use w,(t) to denote Brownian motion started in x € Q at
time t; moreover, in accordance with Dirichlet boundary conditions, we will assume
that the boundary is sticky and that a particle remains at the boundary once it touches
it. The Feynman-Kac formula implies that for all ¢ > 0,

u(x) = Euwy (1)) +E/Ot (M) (wy (1)) dt.

This representation will be used in all our proofs. The proof of Theorem 1.1 will be
closely related in spirit to [34, Lemma 3.2.] but phrased in a different language; this
language turns out to be useful in the proof of Theorem 1.2 where an additional geo-
metric argument is required.

2.1 A Technical Lemma

The purpose of this section is to quickly prove a fairly basic inequality. The lemma
appeared in a slightly more precise form in work of Lierl and the author [21]. We only
need a special case, we and prove it for completeness of exposition.

Lemma 2.1 LetneN, lett>0,c;,cy>0,and 0+ x € R". We have

el v ),
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and, for n > 3,

© ( IIxHZ) 1
— = €X - dS 5 .
fo o2 P T went |2

Proof The substitutions z = s/|x|* and y = 1/(c,z) show

fa |x[> ® -1 -
T ray.
0 s eXp( czs) $ e \x\z/(czt)y ey

If |x|?/(c2d) < 1, we have that

foo y_le_ydy§1+[1 y_le_ydySI-r/1 y_ldySI—log(&),
%[/ (e2t) Ix[?/(c2t) %[/ (c2t) et

and if |x|*/(c2t) > 1, we have

o 1 d e _ ot |x|? |x|?
wd<&f Ydy = 2 exp (=20 cexp( - 2.
/\;‘\2/(621‘))/ CERE Japsan© TP eXp( czt) ‘EXP( czt)

Summarizing, this establishes that

N 2 2
A“z/(cm ie_ydy : (Hmax{o’—log( |:2|t)}) exp - %)

which is the desired statement for n = 2. The second statement, for n > 3, is trivial. W
2.2 Proof of Theorem 1.1

Proof We rewrite u as the stationary solution of the heat equation
vi+Av=Au inQ, v=u onodQ.

As explained above, the Feynman-Kac formula implies that for all £ > 0,

u(x) =v(t,x) =Ev(wy (1)) +E/0t (Au)(wx(t))dt.

Let x be arbitrary; we now let t - co. The first term is quite simple, since we recover
the harmonic measure. Indeed, as t - oo, we have

A¢ =0 inside Q,

lim Ev(wx(f)) = ¢(x) where {¢, =u  ondQ.

This can be easily seen from the stochastic interpretation of harmonic measure. This
implies that

. . '
lim Ev(wx()) < maxu(x)
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It remains to estimate the second term. We denote the heat kernel on Q by
pa(t, x, y) and observe

‘E[Ot(Au)(wx(t))dt SE/0t|Au(wx(t))|dt

:fofAeﬂpg(s,x,y)|Au(y)|dyds
S[yeﬂ(/(;OOPQ(S,x,}/)dS)|AM()/)|d)/.

However, using domain monotonicity po(t, x, ¥) < pre (£, x, y) as well as the explicit
Gaussian form of the heat kernel on R” and Lemma 2.1 we have, uniformlyin x, y € Q,

oo oo C
> A d Sf n > A d Siﬂ'
S, polsmdss [ palsn s <
The duality of Lorentz spaces
1

LniZ’m(R") and W e L2 (R ,dy)

I£8luren) < F, 53 I8

then implies the desired result
t
|]Ef (Au)(wx(t))dt‘ gc,,f Mdy
’ yea [x =y

Cn
< H WHL#W lAul, 5. n

Remark  The part of the proof that is amenable to further improvement is the use
of the domain monotonicity pq (t,x, y) < pr-(t, x, ). It is well understood that for
domains that are very different from, say, disks, the heat kernel can have much faster
decay.

2.3 Proof of Theorem 1.2

Proof This argument requires a simple statement for Brownian motion: for all sets
Q c R? with finite volume |Q| < oo and all x € Q,

Q[ 1
]P’(EIOSts?.wx(t)géQ) 25‘

We start by bounding the probability from below. For this, we introduce the free
Brownian motion w}(t) that also starts in x but moves freely through R” without
getting stuck on the boundary 0Q. Continuity of Brownian motion then implies that

P(aog < % :wx(t)géﬂ) > P(w?(|Q)/8) ¢ Q).

Moreover, we can compute

et A0
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We use the Hardy-Littlewood rearrangement inequality to argue that
_ _ vl2 _ 2
f exp(=2[x - y| /|Q|)dy2[ exp(=2[y| /|B|)dy,
R*\Q (n]Q]/2) R*\B (n|B|/2)

where B is a ball centered in the origin having the same measure as Q). However,
assuming |B| = R?7, this quantity can be computed in polar coordinates as

exp(=2|y[*/|B]) , _ [ exp(-2r*/(R?m)) e 1
A”\B dy [R

2ardr=e 7 > —.
(n[BI/2) R T
We return to the representation, valid for all ¢ > 0,
t
v(t,x):Ev(a)x(t))HE[ (M) (we (1)) dt.
0

We will now work with finite values of t. The computation above implies that at time
t=10Q},

\S}

maxyeq U(x)

1
< =
|Ev(wx(|Q)] < 5 max u(x)] + 5

Arguing as above and employing Lemma 2.1 shows that

5 [ e < [ ([ eas) ey

Q| }
S|Au|p + f max+ 0,lo Au d
H ”L Je0 { g( Hx_yuz) | ()’)| y

1]
s [ max{11l Au(y)|dy.
nym aX{ Og(Hx—sz) |Au(y)ldy

We can now pick x € Q) so that u assumes its maximum there and argue that

maxu(x) =v(|Qf,x) = Ev(w,(]Q])) + E/‘Ql (Au)(wy(t))dt
xeQ 0

maXyeq U(x)

]
< =
< 5 max|u(x)| + 2

(o }
+ cmax max 1 Llog| ———— ) ¢ |Au(y)|dy,
{ g ”x_ynz) |Au(y)|dy
which implies the desired statement. ]

2.4 Proof of the Corollary

Proof The proof of Theorem 1.1 can be used almost verbatim; we only require the
elementary statement that for all simply-connected domains Q c R? and all x4 € Q,

1

P(30<t<c-inrad(Q)”: wy, () ¢ Q) > 100°

The idea is actually rather simple. For any such x, there exists a point ||xg — x1| <
inrad(Q) such that y ¢ Q. Since Q is simply connected, the boundary is an actual
line enclosing the domain. In particular, the disk of radius m - inrad(Q) centered

around x, either already contains the entire domain  or has a boundary of length
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at least (2m — 2) - inrad(Q) (an example being close to the extremal case is the third
one shown in Figure 1).

Figure I: The point of maximum xo, the circle with radius d(xo, ), the circle with radius
2d(xo, Q) (dashed) and the possible local geometry of 9Q).

It turns out that m = 2 is already an admissible choice; the computations were
carried out in earlier work of Rachh and the author [29]. [ |
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