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The problem to be considered is that of finding transformations which leave
unchanged the form of the equation of isotropic heat flow
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where K is a constant. From such a transformation, we can at once deduce,
from any known integral of (1), a new integral which may depend upon one
or more arbitrary constants.

This problem has been studied by P. Appell (1) for the one-dimensional
form of the heat flow equation
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Appell showed that transformations having the required property are provided
by any combinations of two basic types; firstly, the trivial transformations
of the form

X = ax+b, T = a2t+c, V = v (a, b, t being constants),

and secondly, the now well-known transformation

X =x/t, T= -l/t, v = Vrie-x2'*Kt.

Well-known analogues of these two types apply to the two- and three-dimensional
forms of the heat flow equation.

2. We shall now show that there is, also, a non-trivial transformation of a
different kind, which leaves the form of (1) unchanged. This is the trans-
formation

X =x + 2Kat, Y=y + 2Kbt,Z=z + 2Kct, T=tA
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a, b, c being arbitrary constants.
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For, by direct calculation from (2), we have

dx~2 + dy~2 + d?~ KJt

[dX2 + dY2 + dZ2 ~ K~dfJ'
and therefore the form of (1) remains unaltered, x, y, z, /, v being replaced by
X, Y, Z, T, V respectively.

From (2) and the above result, we see that if v(x, y, z, t) be an integral
(supposed known) of (1), so also is

f, y + 2Kbt, z + 2Kct, t};

so that from one known integral we deduce at once an infinity of integrals,
depending upon three arbitrary parameters, a, b, c.

The corresponding results for the two- and one-dimensional heat flow
equations are obtained by writing c — 0 or b = c = 0, as the case may be,
in the expressions above.
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