UNIQUE REPRESENTATION BI-BASIS FOR THE INTEGERS

RAN XIONG and MIN TANG[™]

(Received 27 June 2013; accepted 7 July 2013; first published online 12 September 2013)

Abstract

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let $r_A(n) = \#\{(a_1, a_2) \in A^2 : n = a_1 + a_2, a_1 \le a_2\}$ and $\delta_A(n) = \#\{(a_1, a_2) \in A^2 : n = a_1 - a_2\}$. We call *A* a unique representation bi-basis if $r_A(n) = 1$ for all $n \in \mathbb{Z}$ and $\delta_A(n) = 1$ for all $n \in \mathbb{Z} \setminus \{0\}$. In this paper, we construct a unique representation bi-basis of \mathbb{Z} whose growth is logarithmic.

2010 *Mathematics subject classification*: primary 11B34. *Keywords and phrases*: bi-basis, representation function.

1. Introduction

For sets A, B of integers and any integer c, we define the sets

$$A + B = \{a + b : a \in A, b \in B\}, \quad A - B = \{a - b : a \in A, b \in B\}$$

and the translations

$$c + A = \{c + a : a \in A\}, \quad c - A = \{c - a : a \in A\}.$$

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let

$$r_A(n) = \#\{(a_1, a_2) \in A^2 : n = a_1 + a_2, a_1 \le a_2\},\$$

$$\delta_A(n) = \#\{(a_1, a_2) \in A^2 : n = a_1 - a_2\}.$$

The counting function for the set *A* is $A(y, x) = #\{a \in A : y \le a \le x\}$.

In 2003, Nathanson [4] constructed a family of arbitrarily sparse sets $A \subseteq \mathbb{Z}$ satisfying $r_A(n) = 1$ for all $n \in \mathbb{Z}$. In 2011, Tang *et al.* [6] proved that there exists a family of sets $A \subseteq \mathbb{Z}$ satisfying $\delta_A(n) = 1$ for all nonzero integers *n*. We call *A* a bibasis of \mathbb{Z} if $r_A(n) \ge 1$ for all $n \in \mathbb{Z}$ and $\delta_A(n) \ge 1$ for all $n \in \mathbb{Z} \setminus \{0\}$. In particular, we call *A* a unique representation bibasis of \mathbb{Z} if $r_A(n) = 1$ for other related problems, see [1–3, 5].

This work was supported by the National Natural Science Foundation of China, Grant No. 10901002 and Anhui Provincial Natural Science Foundation, Grant No. 1208085QA02.

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

In this paper, we obtain the following results.

THEOREM 1.1. Let $\varphi(x)$ be a positive function such that $\lim_{x\to\infty} \varphi(x) = +\infty$. Then there exists a set $A \in \mathbb{Z}$ such that

$$r_A(n) = 1 \quad for \ all \ n \in \mathbb{Z},$$

$$\delta_A(n) = 1 \quad for \ all \ n \in \mathbb{Z} \setminus \{0\}$$

and

 $A(-x, x) \le \varphi(x)$

for all x > 1.

THEOREM 1.2. There exists a unique representation bi-basis A of \mathbb{Z} such that

$$\frac{4(\log x - \log 2)}{\log 15} - 1 < A(-x, x) < \frac{4(\log x - \log 2)}{\log 3} + 7$$

for all x > 1.

2. Proof of Theorem 1.1

We will construct an ascending sequence of finite sets $A_1 \subseteq A_2 \subseteq \cdots$ such that the following three conditions are satisfied:

(i) $#A_k = 4k - 1;$

(ii)
$$r_{A_k}(n) \leq 1$$
 for all $n \in \mathbb{Z}, \delta_{A_k}(n) \leq 1$ for all $n \in \mathbb{Z} \setminus \{0\}$;

(iii) $r_{A_{2k}}(n) = 1$ for $n \in [-k-1, k+1]$, $\delta_{A_k}(n) = 1$ for all $n \in [-k-2, k+2] \setminus \{0\}$.

Conditions (ii) and (iii) imply that the infinite set

$$A = \bigcup_{k=1}^{\infty} A_k$$

is a unique representation bi-basis for \mathbb{Z} .

We construct the sets A_k by induction. Let $A_1 = \{1, -1, 2\}$, so that

$$A_1 + A_1 = \{0, 1, 2, -2, 3, 4\}, \quad A_1 - A_1 = \{0, \pm 1, \pm 2, \pm 3\}$$

Suppose that, for some integer $k \ge 1$, we have constructed a set A_k satisfying (i) and (ii).

For $k \ge 1$, define

$$d_k = \max\{|a| : a \in A_k\}.$$

Then

$$A_k \subseteq [-d_k, d_k]$$

If both d_k and $-d_k$ belong to A_k , then we have the two representations of 0 in the sumset $A_k + A_k$:

$$0 = 1 + (-1) = d_k + (-d_k).$$

461

That is, only one of the two numbers d_k and $-d_k$ belongs to A_k . Then we know that if $-d_k \in A_k$, then $A_k + A_k \subseteq [-2d_k, 2d_k - 2]$. Otherwise, $A_k + A_k \subseteq [-2d_k + 2, 2d_k]$. Moreover, in either case, $A_k - A_k \subseteq [-2d_k + 1, 2d_k - 1]$.

For $k \ge 1$, let

$$u_k = \min\{|n| : n \notin A_k + A_k\}, \quad v_k = \min\{n > 0 : n \notin A_k - A_k\}.$$

We know that

$$1 \le u_k \le 2d_k - 1, \quad 4 \le v_k \le 2d_k - 1.$$

Choose integers $x_k \ge 3d_k + 1$, $y_k \ge 3x_k + 2u_k$.

Case 1: $u_k \notin A_k + A_k$. Put

$$A_{k+1} = A_k \cup \{u_k + x_k, -x_k, y_k, v_k + y_k\}.$$

Then

$$A_{k+1} + A_{k+1} = S \cup (A_k + A_k) \cup (u_k + x_k + A_k) \cup (-x_k + A_k) \cup (y_k + A_k) \cup (v_k + y_k + A_k),$$

$$A_{k+1} - A_{k+1} = T \cup (A_k - A_k) \cup \pm (u_k + x_k - A_k) \cup \pm (x_k + A_k) \cup \pm (y_k - A_k) \cup \pm (v_k + y_k - A_k),$$

where

$$S = \{2(y_k + v_k), 2y_k + v_k, 2y_k, u_k + v_k + x_k + y_k, u_k + x_k + y_k, v_k + y_k - x_k, y_k - x_k, 2(u_k + x_k), u_k, -2x_k\},$$

$$T = \{\pm(v_k + x_k + y_k), \pm(x_k + y_k), \pm(y_k - x_k + v_k - u_k), \pm(y_k - x_k - u_k)\}.$$

We know that

$$u_{k} + x_{k} + A_{k} \subseteq [2d_{k} + 3, x_{k} + 3d_{k} - 1], \quad -x_{k} + A_{k} \subseteq [-x_{k} - d_{k}, -2d_{k} - 1],$$

$$y_{k} + A_{k} \subseteq [y_{k} - d_{k}, y_{k} + d_{k}], \quad v_{k} + y_{k} + A_{k} \subseteq [y_{k} - d_{k}, y_{k} + 3d_{k} - 1],$$

$$x_{k} + 3d_{k} < 2(u_{k} + x_{k}) < v_{k} + y_{k} - x_{k} < y_{k} - d_{k}.$$

Moreover, $(y_k + A_k) \cap (v_k + y_k + A_k) = \emptyset$. In fact, if $(y_k + A_k) \cap (v_k + y_k + A_k) \neq \emptyset$, then there are $a, a' \in A_k$ such that $y_k + a = v_k + y_k + a'$, so $v_k = a - a'$, which is impossible. Hence

$$S, A_k + A_k, u_k + x_k + A_k, -x_k + A_k, v_k + y_k + A_k, y_k + A_k$$

are pairwise disjoint.

462

Similarly, we can show that

$$A_k - A_k, T, \pm (u_k + x_k - A_k), \pm (x_k + A_k), \pm (y_k - A_k), \pm (v_k + y_k - A_k)$$

are pairwise disjoint.

By the hypothesis, if $n \in A_k + A_k$, then $r_{A_{k+1}}(n) = r_{A_k}(n) = 1$, and if $n \neq 0 \in A_k - A_k$, then $\delta_{A_{k+1}}(n) = \delta_{A_k}(n) = 1$. Moreover,

$$u_k + x_k + A_k, -x_k + A_k, v_k + y_k + A_k, y_k + A_k$$

are translations. If *n* belongs to one of the above four sets, then $r_{A_{k+1}}(n) = 1$. Similarly, if *n* belongs to one of the sets

$$\pm(u_k + x_k - A_k), \pm(x_k + A_k), \pm(y_k - A_k), \pm(v_k + y_k - A_k),$$

then $\delta_{A_{k+1}}(n) = 1$. It follows that, for all $k \ge 2$,

$$r_{A_{k+1}}(n) \leq 1$$
 for all $n \in \mathbb{Z}$,

and

$$\delta_{A_{k+1}}(n) \leq 1$$
 for all $n \in \mathbb{Z} \setminus \{0\}$.

Case 2: $u_k \in A_k + A_k$. Put

$$A_{k+1} = A_k \cup \{-u_k - x_k, x_k, y_k, v_k + y_k\}.$$

As in the proof of Case 1, we know that $r_{A_{k+1}}(n) \le 1$ for all $n \in \mathbb{Z}$, $\delta_{A_{k+1}}(n) \le 1$ for all $n \in \mathbb{Z} \setminus \{0\}$.

Now we shall prove that the set A satisfies (iii).

If $u_k \notin A_k + A_k$, then, by the construction of A_{k+1} in Case 1, $u_k \in A_{k+1} + A_{k+1}$. If $-u_k \in A_{k+1} + A_{k+1}$, then, by the definition of u_{k+1} , $u_{k+2} \ge u_{k+1} > u_k$. If $-u_k \notin A_{k+1} + A_{k+1}$, then $u_{k+1} = u_k$. Thus $u_{k+1} = u_k \in A_{k+1} + A_{k+1}$. By the construction of A_{k+2} in Case 2, $-u_{k+1} \in A_{k+2} + A_{k+2}$. Thus $u_{k+2} > u_{k+1} = u_k$.

If $u_k \in A_k + A_k$, then, by the construction of A_{k+1} in Case 2, $-u_k \in A_{k+1} + A_{k+1}$. Moreover, $u_k \in A_k + A_k \subset A_{k+1} + A_{k+1}$, so $u_{k+2} \ge u_{k+1} > u_k$.

By the above discussion, $u_{k+2} > u_k$. By the construction of A_2 , $u_2 \ge 3$. Thus $u_{2k} \ge u_2 + k - 1 \ge k + 2$. If there exists an integer *n* such that $|n| \le k + 1$ and $n \notin A_{2k} + A_{2k}$, then $u_{2k} \le k + 1$, which is a contradiction. Hence

$$\{-k-1, -k \cdots - 1, 0, 1 \cdots k, k+1\} \subseteq A_{2k} + A_{2k}$$

Similarly, we can show that $v_k < v_{k+1}$. Combining with $v_1 = 4$, we have $v_k \ge k + 3$. Hence

$$\{-k-2, -k-1 \cdots -1, 0, 1 \cdots k+1, k+2\} \subseteq A_k - A_k$$

Let $A = \bigcup_{k=1}^{\infty} A_k$. Then $\mathbb{Z} = A + A = A - A$. If $r_A(n) \ge 2$ for some integer *n* or $\delta_A(m) \ge 2$ for some nonzero integer *m*, then there exists a positive integer *k* such that $r_{A_k}(n) \ge 2$ or $\delta_{A_k}(m) \ge 2$, which is a contradiction. So *A* is a unique bi-basis of \mathbb{Z} .

0

Now we will show that *A* can be arbitrarily sparse. Given a function $\varphi(x)$ tending to infinity as $x \to \infty$, we use induction to construct a sequence $\{x_k\}_{k=1}^{\infty}$ such that $A(-x, x) \le \varphi(x)$ for all $x > x_1$. We observe that

$$A(-x, x) = A_{k+1}(-x, x) \le 4k + 3$$
 for $d_k \le x < d_{k+1}$.

We begin by choosing an integer $x_1 \ge 7$ such that

$$\varphi(x) \ge 7$$
 for $x \ge x_1$.

Then

$$A(-x, x) \le 7 \le \varphi(x)$$
 for $x_1 \le x \le d_2$.

Let $k \ge 2$, and suppose we have selected an integer $x_{k-1} \ge 3d_{k-1} + 1$ such that

$$\varphi(x) \ge 4k - 1$$
 for $x \ge x_{k-1}$

and

$$A(-x, x) \le \varphi(x) \quad \text{for } x_{k-1} \le x \le d_k$$

There exists an integer $x_k \ge 3d_k + 1$ such that

$$\varphi(x) \ge 4k + 3$$
 for $x \ge x_k$.

Then

$$A(-x, x) \le 4k + 3 \le \varphi(x) \quad \text{for } x_k \le x \le d_{k+1},$$

so

$$A(-x, x) \le \varphi(x) \quad \text{for } x_1 \le x \le d_{k+1}$$

It follows that

 $A(-x, x) \le \varphi(x)$ for all $x \ge x_1$.

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We apply the method of Theorem 1.1 with

$$x_k = 3d_k + 1$$
, $y_k = 3x_k + 2u_k$ for all $k \ge 2$.

Note that

$$3d_k < x_k < u_k + x_k < v_k + y_k < 15d_k,$$

that is,

$$3d_k < d_{k+1} < 15d_k$$
.

Since $d_1 = 2$,

$$2 \cdot 3^{k-1} < d_k < 2 \cdot 15^{k-1}.$$

For $d_k < x \le d_{k+1}$,

 $2\cdot 3^{k-1} < x < 2\cdot 15^k.$

Then

$$\frac{\log x - \log 2}{\log 15} < k < \frac{\log x - \log 2}{\log 3} + 1$$

It is easy to see that

$$4k - 1 \le A(-x, x) \le 4k + 3$$
 for $d_k < x \le d_{k+1}$.

Hence

$$\frac{4(\log x - \log 2)}{\log 15} - 1 < A(-x, x) < \frac{4(\log x - \log 2)}{\log 3} + 7.$$

This completes the proof of Theorem 1.2.

Acknowledgement

We sincerely thank the referee for valuable comments.

References

- [1] Y. G. Chen, 'The difference basis and bi-basis of \mathbb{Z}_m ', J. Number Theory **130** (2010), 716–726.
- [2] J. Cilleruelo and M. B. Nathanson, 'Perfect difference sets constructed from Sidon sets', *Combinatorica* 28 (2008), 401–414.
- [3] J. Lee, 'Infinitely often dense bases for the integers with a prescribed representation function', *Integers* **10** (2010), 299–307.
- [4] M. B. Nathanson, 'Unique representation bases for integers', Acta Arith. 108 (2003), 1-8.
- [5] M. Tang, 'Dense sets of integers with a prescribed representation function', *Bull. Aust. Math. Soc.* 84 (2011), 40–43.
- [6] C. W. Tang, M. Tang and L. Wu, 'Unique difference bases of Z', J. Integer Seq. 14 (2011), Article 11.1.8.

RAN XIONG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China e-mail: ranxiong2012@163.com

MIN TANG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China e-mail: tmzz2000@163.com

[6]

465