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Abstract

For n ∈ Z and A ⊆ Z, let rA(n) = #{(a1, a2) ∈ A2 : n = a1 + a2, a1 ≤ a2} and δA(n) = #{(a1, a2) ∈ A2 : n =

a1 − a2}. We call A a unique representation bi-basis if rA(n) = 1 for all n ∈ Z and δA(n) = 1 for all
n ∈ Z \ {0}. In this paper, we construct a unique representation bi-basis of Z whose growth is logarithmic.
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1. Introduction

For sets A, B of integers and any integer c, we define the sets

A + B = {a + b : a ∈ A, b ∈ B}, A − B = {a − b : a ∈ A, b ∈ B}

and the translations

c + A = {c + a : a ∈ A}, c − A = {c − a : a ∈ A}.

For n ∈ Z and A ⊆ Z, let

rA(n) = #{(a1, a2) ∈ A2 : n = a1 + a2, a1 ≤ a2},

δA(n) = #{(a1, a2) ∈ A2 : n = a1 − a2}.

The counting function for the set A is A(y, x) = #{a ∈ A : y ≤ a ≤ x}.
In 2003, Nathanson [4] constructed a family of arbitrarily sparse sets A ⊆ Z

satisfying rA(n) = 1 for all n ∈ Z. In 2011, Tang et al. [6] proved that there exists a
family of sets A ⊆ Z satisfying δA(n) = 1 for all nonzero integers n. We call A a bi-
basis of Z if rA(n) ≥ 1 for all n ∈ Z and δA(n) ≥ 1 for all n ∈ Z \ {0}. In particular, we
call A a unique representation bi-basis of Z if rA(n) = 1 for all n ∈ Z and δA(n) = 1 for
all n ∈ Z \ {0}. For other related problems, see [1–3, 5].
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In this paper, we obtain the following results.

T 1.1. Let ϕ(x) be a positive function such that limx→∞ ϕ(x) = +∞. Then there
exists a set A ∈ Z such that

rA(n) = 1 for all n ∈ Z,

δA(n) = 1 for all n ∈ Z \ {0}

and
A(−x, x) ≤ ϕ(x)

for all x > 1.

T 1.2. There exists a unique representation bi-basis A of Z such that

4(log x − log 2)
log 15

− 1 < A(−x, x) <
4(log x − log 2)

log 3
+ 7

for all x > 1.

2. Proof of Theorem 1.1

We will construct an ascending sequence of finite sets A1 ⊆ A2 ⊆ · · · such that the
following three conditions are satisfied:

(i) #Ak = 4k − 1;
(ii) rAk (n) ≤ 1 for all n ∈ Z, δAk (n) ≤ 1 for all n ∈ Z \ {0};
(iii) rA2k (n) = 1 for n ∈ [−k − 1, k + 1], δAk (n) = 1 for all n ∈ [−k − 2, k + 2] \ {0}.

Conditions (ii) and (iii) imply that the infinite set

A =

∞⋃
k=1

Ak

is a unique representation bi-basis for Z.
We construct the sets Ak by induction. Let A1 = {1, −1, 2}, so that

A1 + A1 = {0, 1, 2, −2, 3, 4}, A1 − A1 = {0, ±1, ±2, ±3}.

Suppose that, for some integer k ≥ 1, we have constructed a set Ak satisfying (i) and
(ii).

For k ≥ 1, define
dk = max{|a| : a ∈ Ak}.

Then
Ak ⊆ [−dk, dk].

If both dk and −dk belong to Ak, then we have the two representations of 0 in the sumset
Ak + Ak:

0 = 1 + (−1) = dk + (−dk).
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That is, only one of the two numbers dk and −dk belongs to Ak. Then we know
that if −dk ∈ Ak, then Ak + Ak ⊆ [−2dk, 2dk − 2]. Otherwise, Ak + Ak ⊆ [−2dk + 2, 2dk].
Moreover, in either case, Ak − Ak ⊆ [−2dk + 1, 2dk − 1].

For k ≥ 1, let

uk = min{|n| : n < Ak + Ak}, vk = min{n > 0 : n < Ak − Ak}.

We know that
1 ≤ uk ≤ 2dk − 1, 4 ≤ vk ≤ 2dk − 1.

Choose integers xk ≥ 3dk + 1, yk ≥ 3xk + 2uk.

Case 1: uk < Ak + Ak. Put

Ak+1 = Ak ∪ {uk + xk, −xk, yk, vk + yk}.

Then

Ak+1 + Ak+1 = S ∪ (Ak + Ak) ∪ (uk + xk + Ak) ∪ (−xk + Ak) ∪ (yk + Ak)

∪ (vk + yk + Ak),

Ak+1 − Ak+1 = T ∪ (Ak − Ak) ∪ ±(uk + xk − Ak) ∪ ±(xk + Ak)

∪ ±(yk − Ak) ∪ ±(vk + yk − Ak),

where

S = {2(yk + vk), 2yk + vk, 2yk, uk + vk + xk + yk, uk + xk + yk,

vk + yk − xk, yk − xk, 2(uk + xk), uk, −2xk},

T = {±(vk + xk + yk), ±(xk + yk), ±(yk − xk + vk − uk),

±(yk − xk − uk), ±(uk + 2xk), ±vk}.

We know that

uk + xk + Ak ⊆ [2dk + 3, xk + 3dk − 1], −xk + Ak ⊆ [−xk − dk, −2dk − 1],

yk + Ak ⊆ [yk − dk, yk + dk], vk + yk + Ak ⊆ [yk − dk, yk + 3dk − 1],

xk + 3dk < 2(uk + xk) < vk + yk − xk < yk − dk.

Moreover, (yk + Ak) ∩ (vk + yk + Ak) = ∅. In fact, if (yk + Ak) ∩ (vk + yk + Ak) , ∅,
then there are a, a′ ∈ Ak such that yk + a = vk + yk + a′, so vk = a − a′, which is
impossible. Hence

S , Ak + Ak, uk + xk + Ak, −xk + Ak, vk + yk + Ak, yk + Ak

are pairwise disjoint.
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Similarly, we can show that

Ak − Ak, T, ±(uk + xk − Ak), ±(xk + Ak), ±(yk − Ak), ±(vk + yk − Ak)

are pairwise disjoint.
By the hypothesis, if n ∈ Ak + Ak, then rAk+1 (n) = rAk (n) = 1, and if n(, 0) ∈ Ak − Ak,

then δAk+1 (n) = δAk (n) = 1. Moreover,

uk + xk + Ak, −xk + Ak, vk + yk + Ak, yk + Ak

are translations. If n belongs to one of the above four sets, then rAk+1 (n) = 1. Similarly,
if n belongs to one of the sets

±(uk + xk − Ak), ±(xk + Ak), ±(yk − Ak), ±(vk + yk − Ak),

then δAk+1 (n) = 1. It follows that, for all k ≥ 2,

rAk+1 (n) ≤ 1 for all n ∈ Z,

and
δAk+1 (n) ≤ 1 for all n ∈ Z \ {0}.

Case 2: uk ∈ Ak + Ak. Put

Ak+1 = Ak ∪ {−uk − xk, xk, yk, vk + yk}.

As in the proof of Case 1, we know that rAk+1 (n) ≤ 1 for all n ∈ Z, δAk+1 (n) ≤ 1 for all
n ∈ Z \ {0}.

Now we shall prove that the set A satisfies (iii).
If uk < Ak + Ak, then, by the construction of Ak+1 in Case 1, uk ∈ Ak+1 + Ak+1. If

−uk ∈ Ak+1 + Ak+1, then, by the definition of uk+1, uk+2 ≥ uk+1 > uk. If −uk < Ak+1 +

Ak+1, then uk+1 = uk. Thus uk+1 = uk ∈ Ak+1 + Ak+1. By the construction of Ak+2 in
Case 2, −uk+1 ∈ Ak+2 + Ak+2. Thus uk+2 > uk+1 = uk.

If uk ∈ Ak + Ak, then, by the construction of Ak+1 in Case 2, −uk ∈ Ak+1 + Ak+1.
Moreover, uk ∈ Ak + Ak ⊂ Ak+1 + Ak+1, so uk+2 ≥ uk+1 > uk.

By the above discussion, uk+2 > uk. By the construction of A2, u2 ≥ 3. Thus u2k ≥

u2 + k − 1 ≥ k + 2. If there exists an integer n such that |n| ≤ k + 1 and n < A2k + A2k,
then u2k ≤ k + 1, which is a contradiction. Hence

{−k − 1, −k · · · − 1, 0, 1 · · · k, k + 1} ⊆ A2k + A2k.

Similarly, we can show that vk < vk+1. Combining with v1 = 4, we have vk ≥ k + 3.
Hence

{−k − 2, −k − 1 · · · − 1, 0, 1 · · · k + 1, k + 2} ⊆ Ak − Ak.

Let A =
⋃∞

k=1 Ak. Then Z = A + A = A − A. If rA(n) ≥ 2 for some integer n or
δA(m) ≥ 2 for some nonzero integer m, then there exists a positive integer k such that
rAk (n) ≥ 2 or δAk (m) ≥ 2, which is a contradiction. So A is a unique bi-basis of Z.
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Now we will show that A can be arbitrarily sparse. Given a function ϕ(x) tending
to infinity as x→∞, we use induction to construct a sequence {xk}

∞
k=1 such that

A(−x, x) ≤ ϕ(x) for all x > x1. We observe that

A(−x, x) = Ak+1(−x, x) ≤ 4k + 3 for dk ≤ x < dk+1.

We begin by choosing an integer x1 ≥ 7 such that

ϕ(x) ≥ 7 for x ≥ x1.

Then
A(−x, x) ≤ 7 ≤ ϕ(x) for x1 ≤ x ≤ d2.

Let k ≥ 2, and suppose we have selected an integer xk−1 ≥ 3dk−1 + 1 such that

ϕ(x) ≥ 4k − 1 for x ≥ xk−1

and
A(−x, x) ≤ ϕ(x) for xk−1 ≤ x ≤ dk.

There exists an integer xk ≥ 3dk + 1 such that

ϕ(x) ≥ 4k + 3 for x ≥ xk.

Then
A(−x, x) ≤ 4k + 3 ≤ ϕ(x) for xk ≤ x ≤ dk+1,

so
A(−x, x) ≤ ϕ(x) for x1 ≤ x ≤ dk+1.

It follows that
A(−x, x) ≤ ϕ(x) for all x ≥ x1.

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We apply the method of Theorem 1.1 with

xk = 3dk + 1, yk = 3xk + 2uk for all k ≥ 2.

Note that
3dk < xk < uk + xk < vk + yk < 15dk,

that is,
3dk < dk+1 < 15dk.

Since d1 = 2,
2 · 3k−1 < dk < 2 · 15k−1.
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For dk < x ≤ dk+1,
2 · 3k−1 < x < 2 · 15k.

Then
log x − log 2

log 15
< k <

log x − log 2
log 3

+ 1.

It is easy to see that

4k − 1 ≤ A(−x, x) ≤ 4k + 3 for dk < x ≤ dk+1.

Hence
4(log x − log 2)

log 15
− 1 < A(−x, x) <

4(log x − log 2)
log 3

+ 7.

This completes the proof of Theorem 1.2.
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