# UNIQUE REPRESENTATION BI-BASIS FOR THE INTEGERS 

RAN XIONG and MIN TANG ${ }^{\boxtimes}$

(Received 27 June 2013; accepted 7 July 2013; first published online 12 September 2013)


#### Abstract

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let $r_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}+a_{2}, a_{1} \leq a_{2}\right\}$ and $\delta_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=\right.$ $\left.a_{1}-a_{2}\right\}$. We call $A$ a unique representation bi-basis if $r_{A}(n)=1$ for all $n \in \mathbb{Z}$ and $\delta_{A}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$. In this paper, we construct a unique representation bi-basis of $\mathbb{Z}$ whose growth is logarithmic.


2010 Mathematics subject classification: primary 11B34.
Keywords and phrases: bi-basis, representation function.

## 1. Introduction

For sets $A, B$ of integers and any integer $c$, we define the sets

$$
A+B=\{a+b: a \in A, b \in B\}, \quad A-B=\{a-b: a \in A, b \in B\}
$$

and the translations

$$
c+A=\{c+a: a \in A\}, \quad c-A=\{c-a: a \in A\}
$$

For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let

$$
\begin{gathered}
r_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}+a_{2}, a_{1} \leq a_{2}\right\}, \\
\delta_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: n=a_{1}-a_{2}\right\} .
\end{gathered}
$$

The counting function for the set $A$ is $A(y, x)=\#\{a \in A: y \leq a \leq x\}$.
In 2003, Nathanson [4] constructed a family of arbitrarily sparse sets $A \subseteq \mathbb{Z}$ satisfying $r_{A}(n)=1$ for all $n \in \mathbb{Z}$. In 2011, Tang et al. [6] proved that there exists a family of sets $A \subseteq \mathbb{Z}$ satisfying $\delta_{A}(n)=1$ for all nonzero integers $n$. We call $A$ a bibasis of $\mathbb{Z}$ if $r_{A}(n) \geq 1$ for all $n \in \mathbb{Z}$ and $\delta_{A}(n) \geq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$. In particular, we call $A$ a unique representation bi-basis of $\mathbb{Z}$ if $r_{A}(n)=1$ for all $n \in \mathbb{Z}$ and $\delta_{A}(n)=1$ for all $n \in \mathbb{Z} \backslash\{0\}$. For other related problems, see [1-3, 5].

[^0]In this paper, we obtain the following results.
Theorem 1.1. Let $\varphi(x)$ be a positive function such that $\lim _{x \rightarrow \infty} \varphi(x)=+\infty$. Then there exists a set $A \in \mathbb{Z}$ such that

$$
\begin{gathered}
r_{A}(n)=1 \quad \text { for all } n \in \mathbb{Z} \\
\delta_{A}(n)=1 \quad \text { for all } n \in \mathbb{Z} \backslash\{0\}
\end{gathered}
$$

and

$$
A(-x, x) \leq \varphi(x)
$$

for all $x>1$.
Theorem 1.2. There exists a unique representation bi-basis A of $\mathbb{Z}$ such that

$$
\frac{4(\log x-\log 2)}{\log 15}-1<A(-x, x)<\frac{4(\log x-\log 2)}{\log 3}+7
$$

for all $x>1$.

## 2. Proof of Theorem 1.1

We will construct an ascending sequence of finite sets $A_{1} \subseteq A_{2} \subseteq \cdots$ such that the following three conditions are satisfied:
(i) $\# A_{k}=4 k-1$;
(ii) $r_{A_{k}}(n) \leq 1$ for all $n \in \mathbb{Z}, \delta_{A_{k}}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$;
(iii) $r_{A_{2 k}}(n)=1$ for $n \in[-k-1, k+1], \delta_{A_{k}}(n)=1$ for all $n \in[-k-2, k+2] \backslash\{0\}$.

Conditions (ii) and (iii) imply that the infinite set

$$
A=\bigcup_{k=1}^{\infty} A_{k}
$$

is a unique representation bi-basis for $\mathbb{Z}$.
We construct the sets $A_{k}$ by induction. Let $A_{1}=\{1,-1,2\}$, so that

$$
A_{1}+A_{1}=\{0,1,2,-2,3,4\}, \quad A_{1}-A_{1}=\{0, \pm 1, \pm 2, \pm 3\} .
$$

Suppose that, for some integer $k \geq 1$, we have constructed a set $A_{k}$ satisfying (i) and (ii).

For $k \geq 1$, define

$$
d_{k}=\max \left\{|a|: a \in A_{k}\right\} .
$$

Then

$$
A_{k} \subseteq\left[-d_{k}, d_{k}\right] .
$$

If both $d_{k}$ and $-d_{k}$ belong to $A_{k}$, then we have the two representations of 0 in the sumset $A_{k}+A_{k}$ :

$$
0=1+(-1)=d_{k}+\left(-d_{k}\right)
$$

That is, only one of the two numbers $d_{k}$ and $-d_{k}$ belongs to $A_{k}$. Then we know that if $-d_{k} \in A_{k}$, then $A_{k}+A_{k} \subseteq\left[-2 d_{k}, 2 d_{k}-2\right]$. Otherwise, $A_{k}+A_{k} \subseteq\left[-2 d_{k}+2,2 d_{k}\right]$. Moreover, in either case, $A_{k}-A_{k} \subseteq\left[-2 d_{k}+1,2 d_{k}-1\right]$.

For $k \geq 1$, let

$$
u_{k}=\min \left\{|n|: n \notin A_{k}+A_{k}\right\}, \quad v_{k}=\min \left\{n>0: n \notin A_{k}-A_{k}\right\} .
$$

We know that

$$
1 \leq u_{k} \leq 2 d_{k}-1, \quad 4 \leq v_{k} \leq 2 d_{k}-1
$$

Choose integers $x_{k} \geq 3 d_{k}+1, y_{k} \geq 3 x_{k}+2 u_{k}$.
Case 1: $u_{k} \notin A_{k}+A_{k}$. Put

$$
A_{k+1}=A_{k} \cup\left\{u_{k}+x_{k},-x_{k}, y_{k}, v_{k}+y_{k}\right\} .
$$

Then

$$
\begin{aligned}
A_{k+1}+A_{k+1}=S & \cup\left(A_{k}+A_{k}\right) \cup\left(u_{k}+x_{k}+A_{k}\right) \cup\left(-x_{k}+A_{k}\right) \cup\left(y_{k}+A_{k}\right) \\
& \cup\left(v_{k}+y_{k}+A_{k}\right), \\
A_{k+1}-A_{k+1}=T & \cup\left(A_{k}-A_{k}\right) \cup \pm\left(u_{k}+x_{k}-A_{k}\right) \cup \pm\left(x_{k}+A_{k}\right) \\
& \cup \pm\left(y_{k}-A_{k}\right) \cup \pm\left(v_{k}+y_{k}-A_{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
S= & \left\{2\left(y_{k}+v_{k}\right), 2 y_{k}+v_{k}, 2 y_{k}, u_{k}+v_{k}+x_{k}+y_{k}, u_{k}+x_{k}+y_{k},\right. \\
& \left.v_{k}+y_{k}-x_{k}, y_{k}-x_{k}, 2\left(u_{k}+x_{k}\right), u_{k},-2 x_{k}\right\}, \\
T= & \left\{\left(v_{k}+x_{k}+y_{k}\right), \pm\left(x_{k}+y_{k}\right), \pm\left(y_{k}-x_{k}+v_{k}-u_{k}\right),\right. \\
& \left. \pm\left(y_{k}-x_{k}-u_{k}\right), \pm\left(u_{k}+2 x_{k}\right), \pm v_{k}\right\} .
\end{aligned}
$$

We know that

$$
\begin{gathered}
u_{k}+x_{k}+A_{k} \subseteq\left[2 d_{k}+3, x_{k}+3 d_{k}-1\right], \quad-x_{k}+A_{k} \subseteq\left[-x_{k}-d_{k},-2 d_{k}-1\right], \\
y_{k}+A_{k} \subseteq\left[y_{k}-d_{k}, y_{k}+d_{k}\right], \quad v_{k}+y_{k}+A_{k} \subseteq\left[y_{k}-d_{k}, y_{k}+3 d_{k}-1\right], \\
x_{k}+3 d_{k}<2\left(u_{k}+x_{k}\right)<v_{k}+y_{k}-x_{k}<y_{k}-d_{k} .
\end{gathered}
$$

Moreover, $\left(y_{k}+A_{k}\right) \cap\left(v_{k}+y_{k}+A_{k}\right)=\varnothing$. In fact, if $\left(y_{k}+A_{k}\right) \cap\left(v_{k}+y_{k}+A_{k}\right) \neq \varnothing$, then there are $a, a^{\prime} \in A_{k}$ such that $y_{k}+a=v_{k}+y_{k}+a^{\prime}$, so $v_{k}=a-a^{\prime}$, which is impossible. Hence

$$
S, A_{k}+A_{k}, u_{k}+x_{k}+A_{k},-x_{k}+A_{k}, v_{k}+y_{k}+A_{k}, y_{k}+A_{k}
$$

are pairwise disjoint.

Similarly, we can show that

$$
A_{k}-A_{k}, T, \pm\left(u_{k}+x_{k}-A_{k}\right), \pm\left(x_{k}+A_{k}\right), \pm\left(y_{k}-A_{k}\right), \pm\left(v_{k}+y_{k}-A_{k}\right)
$$

are pairwise disjoint.
By the hypothesis, if $n \in A_{k}+A_{k}$, then $r_{A_{k+1}}(n)=r_{A_{k}}(n)=1$, and if $n(\neq 0) \in A_{k}-A_{k}$, then $\delta_{A_{k+1}}(n)=\delta_{A_{k}}(n)=1$. Moreover,

$$
u_{k}+x_{k}+A_{k},-x_{k}+A_{k}, v_{k}+y_{k}+A_{k}, y_{k}+A_{k}
$$

are translations. If $n$ belongs to one of the above four sets, then $r_{A_{k+1}}(n)=1$. Similarly, if $n$ belongs to one of the sets

$$
\pm\left(u_{k}+x_{k}-A_{k}\right), \pm\left(x_{k}+A_{k}\right), \pm\left(y_{k}-A_{k}\right), \pm\left(v_{k}+y_{k}-A_{k}\right),
$$

then $\delta_{A_{k+1}}(n)=1$. It follows that, for all $k \geq 2$,

$$
r_{A_{k+1}}(n) \leq 1 \quad \text { for all } n \in \mathbb{Z},
$$

and

$$
\delta_{A_{k+1}}(n) \leq 1 \quad \text { for all } n \in \mathbb{Z} \backslash\{0\}
$$

Case 2: $u_{k} \in A_{k}+A_{k}$. Put

$$
A_{k+1}=A_{k} \cup\left\{-u_{k}-x_{k}, x_{k}, y_{k}, v_{k}+y_{k}\right\} .
$$

As in the proof of Case 1 , we know that $r_{A_{k+1}}(n) \leq 1$ for all $n \in \mathbb{Z}, \delta_{A_{k+1}}(n) \leq 1$ for all $n \in \mathbb{Z} \backslash\{0\}$.

Now we shall prove that the set $A$ satisfies (iii).
If $u_{k} \notin A_{k}+A_{k}$, then, by the construction of $A_{k+1}$ in Case $1, u_{k} \in A_{k+1}+A_{k+1}$. If $-u_{k} \in A_{k+1}+A_{k+1}$, then, by the definition of $u_{k+1}, u_{k+2} \geq u_{k+1}>u_{k}$. If $-u_{k} \notin A_{k+1}+$ $A_{k+1}$, then $u_{k+1}=u_{k}$. Thus $u_{k+1}=u_{k} \in A_{k+1}+A_{k+1}$. By the construction of $A_{k+2}$ in Case $2,-u_{k+1} \in A_{k+2}+A_{k+2}$. Thus $u_{k+2}>u_{k+1}=u_{k}$.

If $u_{k} \in A_{k}+A_{k}$, then, by the construction of $A_{k+1}$ in Case $2,-u_{k} \in A_{k+1}+A_{k+1}$. Moreover, $u_{k} \in A_{k}+A_{k} \subset A_{k+1}+A_{k+1}$, so $u_{k+2} \geq u_{k+1}>u_{k}$.

By the above discussion, $u_{k+2}>u_{k}$. By the construction of $A_{2}, u_{2} \geq 3$. Thus $u_{2 k} \geq$ $u_{2}+k-1 \geq k+2$. If there exists an integer $n$ such that $|n| \leq k+1$ and $n \notin A_{2 k}+A_{2 k}$, then $u_{2 k} \leq k+1$, which is a contradiction. Hence

$$
\{-k-1,-k \cdots-1,0,1 \cdots k, k+1\} \subseteq A_{2 k}+A_{2 k} .
$$

Similarly, we can show that $v_{k}<v_{k+1}$. Combining with $v_{1}=4$, we have $v_{k} \geq k+3$. Hence

$$
\{-k-2,-k-1 \cdots-1,0,1 \cdots k+1, k+2\} \subseteq A_{k}-A_{k} .
$$

Let $A=\bigcup_{k=1}^{\infty} A_{k}$. Then $\mathbb{Z}=A+A=A-A$. If $r_{A}(n) \geq 2$ for some integer $n$ or $\delta_{A}(m) \geq 2$ for some nonzero integer $m$, then there exists a positive integer $k$ such that $r_{A_{k}}(n) \geq 2$ or $\delta_{A_{k}}(m) \geq 2$, which is a contradiction. So $A$ is a unique bi-basis of $\mathbb{Z}$.

Now we will show that $A$ can be arbitrarily sparse. Given a function $\varphi(x)$ tending to infinity as $x \rightarrow \infty$, we use induction to construct a sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ such that $A(-x, x) \leq \varphi(x)$ for all $x>x_{1}$. We observe that

$$
A(-x, x)=A_{k+1}(-x, x) \leq 4 k+3 \quad \text { for } d_{k} \leq x<d_{k+1}
$$

We begin by choosing an integer $x_{1} \geq 7$ such that

$$
\varphi(x) \geq 7 \quad \text { for } x \geq x_{1} .
$$

Then

$$
A(-x, x) \leq 7 \leq \varphi(x) \quad \text { for } x_{1} \leq x \leq d_{2} .
$$

Let $k \geq 2$, and suppose we have selected an integer $x_{k-1} \geq 3 d_{k-1}+1$ such that

$$
\varphi(x) \geq 4 k-1 \quad \text { for } x \geq x_{k-1}
$$

and

$$
A(-x, x) \leq \varphi(x) \quad \text { for } x_{k-1} \leq x \leq d_{k}
$$

There exists an integer $x_{k} \geq 3 d_{k}+1$ such that

$$
\varphi(x) \geq 4 k+3 \quad \text { for } x \geq x_{k} .
$$

Then

$$
A(-x, x) \leq 4 k+3 \leq \varphi(x) \quad \text { for } x_{k} \leq x \leq d_{k+1},
$$

so

$$
A(-x, x) \leq \varphi(x) \quad \text { for } x_{1} \leq x \leq d_{k+1}
$$

It follows that

$$
A(-x, x) \leq \varphi(x) \quad \text { for all } x \geq x_{1} .
$$

This completes the proof of Theorem 1.1.

## 3. Proof of Theorem 1.2

We apply the method of Theorem 1.1 with

$$
x_{k}=3 d_{k}+1, \quad y_{k}=3 x_{k}+2 u_{k} \quad \text { for all } k \geq 2 .
$$

Note that

$$
3 d_{k}<x_{k}<u_{k}+x_{k}<v_{k}+y_{k}<15 d_{k}
$$

that is,

$$
3 d_{k}<d_{k+1}<15 d_{k} .
$$

Since $d_{1}=2$,

$$
2 \cdot 3^{k-1}<d_{k}<2 \cdot 15^{k-1}
$$

For $d_{k}<x \leq d_{k+1}$,

$$
2 \cdot 3^{k-1}<x<2 \cdot 15^{k}
$$

Then

$$
\frac{\log x-\log 2}{\log 15}<k<\frac{\log x-\log 2}{\log 3}+1
$$

It is easy to see that

$$
4 k-1 \leq A(-x, x) \leq 4 k+3 \quad \text { for } d_{k}<x \leq d_{k+1} .
$$

Hence

$$
\frac{4(\log x-\log 2)}{\log 15}-1<A(-x, x)<\frac{4(\log x-\log 2)}{\log 3}+7
$$

This completes the proof of Theorem 1.2.

## Acknowledgement

We sincerely thank the referee for valuable comments.

## References

[1] Y. G. Chen, 'The difference basis and bi-basis of $\mathbb{Z}_{m}$ ', J. Number Theory $\mathbf{1 3 0}$ (2010), 716-726.
[2] J. Cilleruelo and M. B. Nathanson, 'Perfect difference sets constructed from Sidon sets', Combinatorica 28 (2008), 401-414.
[3] J. Lee, 'Infinitely often dense bases for the integers with a prescribed representation function', Integers 10 (2010), 299-307.
[4] M. B. Nathanson, 'Unique representation bases for integers', Acta Arith. 108 (2003), 1-8.
[5] M. Tang, 'Dense sets of integers with a prescribed representation function', Bull. Aust. Math. Soc. 84 (2011), 40-43.
[6] C. W. Tang, M. Tang and L. Wu, 'Unique difference bases of $\mathbb{Z}$ ', J. Integer Seq. 14 (2011), Article 11.1.8.

RAN XIONG, School of Mathematics and Computer Science,
Anhui Normal University, Wuhu 241003, China
e-mail: ranxiong2012@163.com
MIN TANG, School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China
e-mail: tmzzz2000@163.com


[^0]:    This work was supported by the National Natural Science Foundation of China, Grant No. 10901002 and Anhui Provincial Natural Science Foundation, Grant No. 1208085QA02.
    (c) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

