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Abstract

In this paper, we consider the system governed via the coefficients of a semilinear elliptic
equation and give the necessary conditions for optimal control. Furthermore, we obtain the
necessary conditions for an optimal domain in a domain optimization problem.

1. Formulation of the problem

In this paper, we consider the system governed via the divergence component of a
semilinear elliptic equation. Standard results of optimal control problems for systems
governed by elliptic equations with distributed control can be found in [2,3,5,10, 13,
15, 16]. Casas considers the system governed via the coefficients of a linear elliptic
equation in [4] and gives the necessary conditions of optimal control by using convex
analysis under the supposition that the phase spaces of both the control and the cost
functional are convex. In this paper, the phase space of both the control and the
cost functional may not be convex. We will give the necessary conditions of optimal
control by using the convexification method and Ekeland's variational principle.

We first consider the following problem: there are two kinds of materials s/ and
SB (for example, material si may be oil and material BS may be water). Let the
temperatures of si and SB be given by y^ and y& respectively. The quantities fi^r
and Q& represent the domains occupied by s/ and 38. Assume I"V (the boundary of
£2^) and Tm ((the boundary of £2#)\rV) are smooth (see Figure 1). Then y^ and
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[2] Necessary conditions for optimal control of elliptic systems 543

FIGURE 1.

satisfy the equations

(*)=/(*),
-bAy»(x)=f(x),

— ^ - A —
3/i dn

x €

x 6
(1.1)

where Z? > a > 0. We know that there exists a unique classical solution y^ and ?
for Problem (1.1) if/ (•) e C°°(G) for 0 < a < 1. We now give a cost functional

-L f°(x,y«(x),Vy*(x))dx+ I f°(x, y3g(x),Vy9l(x))dx (1.2)

and a set

c G, = 1, rV is smooth}, (1.3)

where | £ | = meas E, G is a fixed domain and G = f2^ U
We can raise the following domain optimization problem.

PROBLEM D. Find a domain £2^ e n , such that

nj. (1.4)

If there exists a domain J2^ such that (1.4) holds, we say that the domain Q& is an
optimal domain.

We now introduce a function

u(x) = (1.5)

https://doi.org/10.1017/S0334270000011814 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011814
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Problem (1.1) can then be written as

J =/(*), x e G,
(1.6)

u lrc= 0,

that is,

, . \y*(x), x e
\ya(x), x e

The cost functional (1.2) becomes

J(u) = f f°(x, yH(x), Vyu{x)) dx. (1.8)
JG

Let

W = {u(x) = flXQ^C*) + bXna(x) | fi^ e n}. (1.9)

We can now raise the optimal control problem corresponding to Problem D.

PROBLEM C. Find a control ueW, such that

7(5) = inf{7(u) | u € W). (1.10)

In this practical problem, the control variable is involved in the coefficient, the
admissible control set "W is not convex and the cost functional (1.8) may not be
convex.

In this paper, we will discuss a more general system:

where £2 ( c Rn ) is a bounded domain with smooth boundary Fn, u(x) € U is a
control function, U C /?m is a bounded closed set and cof/ stands for the convex hull
of the U.

We denote the set of all admissible controls by ^ad, that is,

^ad = {"CO € t/1 u(-) is measurable on £2}. (1.12)

If for any u() e 9/^, y(x) = y(x; u) is a solution of Problem (1.11), we can define
the cost functional

7(«)= f f°(x,y(x;u),Vy(x;u),u(x))dx. (1.13)
Jn

Our optimal control problem can be stated as follows.
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PROBLEM E. Find a «(•) € <24d, such that

/(«(•)) = inf{/(n(-)) | «(•) e %d], (1.14)

where J(u()) is given by (1.13).

Any admissible control £(•) satisfying (1.14) is called an optimal control for Prob-
lem E; the corresponding state jf(-) is called an optimal state and the pair (y(-)< «())
is referred to as an optimal pair.

2. Variation of convexification problems

Let us assume that

(PI) ay : Qx coU -*• R satisfies the following conditions.

(1) The quantity a<,-(-, u) is bounded measurable on Q and atj{x, •) is Lipschitz
continuous of rank K on co U.
(2) There exists a constant A. > 0, for any {x, u) € Q x co U, such that

We shall also assume that
(P2) / : fi x /? x co [/ -> 7? is such that / (-, y, u) is measurable on £2 and that

/ (x, -, •) and/>,(*, •, •) are Lipschitz continuous of rank K on R xco U. There exists
a constant L > 0, such that

- L < f y ( x , y , u) < 0 , V ( ^ , y , u ) e & x R xcoU,

where/°(-, y, f, M) is measurable on S2 and/°(x, •, •, -),f°(x, •, •, •) and/°(j:, •, •, •)
are Lipschitz continuous of rank K on R x R" x co U.

For any M > 0, there exists a function FM() 6 L2(£2), such that

1/(*, y, «)l + \fy(.x, y, u)| + 1/V, y. f, «)l + \f?(*, y, K, «)l < 1 /̂(^)1,
|y| < M, VM g co U, V^ g R".

In deriving necessary conditions for optimal control, one needs to make certain
perturbations for the control and the corresponding variations of the state and the cost
functional need to be determined.

We first introduce a new control set

<% = [u(x) | «(•) : Q -> co U is measurable}. (2.1)
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DEFINITION 2.1. A function y(-) is called a generalized solution of Problem (1.11)
if )>(•) € HQ(Q) and for any <p e //o'(ft) the following equality holds:

/ Taij(x,u(x))^-y(x)^-<p(x)dx = f f(x,y(x),u(x)Mx)dx. (2.2)
Jnfjtx dxi dx< Jn

We have the following lemmas.

LEMMA 2.1. Let (Pl)-{P2) hold. For any u e %', there exists a unique generalized
solution y(x) = y(x;u) € HQ(Q.) for Problem (1.11), and there exists a constant C
being independent of u, such that

llyll»'(o) < C. (2.3)

PROOF. Step 1. We have

\f(x,y(x),u(x))\<c\y(x)\ + cl(x).

In fact,

f(x, y(x), u(x))=f(x, y(x), «(*)) - / ( * , 0, u(x)) +f(x, 0, u(x))

= / fy(x,ry(x),u(x))dry(x)+f(x,O,
Jn

From this equality and condition (P2), we know that the inequality of Step 1 is true.
Step 2. For any y e //J (ft), we have

3 3
atJ(x, u(x))— y(x)— y(x)dx

^ f

-f(x,y(x),u(x))y(x)\dx > c2\\y\\HHn) - c3.

In fact, for any y e //o'

^ ^ -f(x,y(x), u(.x))y(x)\ dx/ J2 \au(x, U(x))^-y(x)^-y(x)dx -f(x,y(x), u(.x))y(x)\
n fjt\ I dxJ dxi \

= f J2 Uj(x,u(x))^-y(x)^-y(x)dx
JsiiJ=l I °XJ °Xi

- I fy(x, zy(x), u(x))dry2(x)-f(x,0, u(x))y(x) 1 dx

-.0, H
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Since || Vy||/.2(n) > C||y||/.2(n) for any y e //o'(fi), we can choose e small enough so
that

Therefore Step 2. holds.
Secondly, from condition (P2), it is easy to see that

Jn
{/(*. *(*). «(*)) -f(x,y(x), u(x))y(x)}{yi(x)-y2(x)}dx < 0.

According to Theorem 9.1 of Chapter 4 in [9], we know that there exists a function
y e H*(ti) which satisfies (2.2).

We can prove the uniqueness of this solution. In fact, suppose yi(x) and y2(x) are
the generalized solutions of Problem (1.11). We then have

/ T au(x, «(x))-^-(y,(x) - y2(x))^-(p(x)dx
Jn fjzx oXj dXi

= [[f(x,yi(x),u(x))-f(x,y2(x),u(x))]<p(x)dx.
Jn

In particular, let cp(x) = y\(x) — y2(x). We now have

0

< / Yia0(x,u(x))^-(y1(x)-y2(x))^-(yi(x)-y2(x))dx
Jn f~t\ dxi dxi

= 11 fy(.x,y2(x) + r(yl(x)-y2(x)),u(x))dr{y1(x)-y2(.x))2dx<O.
JnJo

Therefore || V(y, - y2)\\ma> = 0. That is, ||y, - y2\\HHn) = 0, so yt(x) = y2(x).
Using conditions (PI)-(P2), we have

A / \Vy(x)\2dx < [ Ta^x, u(x))^y(x)^-y(x)dx
Jn J^ij^i dxJ dXi

= I f(x,y(x),u(x))y(x)dx
Jn

= [ f(x,0,u(x))y(x)dx+ f f fy(x,Ty(x),u(x))dxy2(.x)dx
Jn Jn Jo

<C\\f(;0,u(-))\\L2tai\\y\\L2iai.

From Poincare's inequality, we have

so the inequality (2.3) holds.
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Let u, v € <M, y(-) = y(-, u) and yv(-) = y(-, v) be the generalized solutions of
Problem (1.11) corresponding to «(•) and v(-), respectively.

LEMMA 2.2. Let (P1MP2) hold. We have the following estimate

lly(-) - y»(-)IU'(O) 5 C||« - ulk-jo), (2.4)

where the constant C is independent ofu() and v(-).

PROOF. From (1.11), we have

( ( ( » ( ( ) ( ) ) ) (2-5)

y(x)
dX>

[f(x,yv(x),v(x))-f(x,y(x),u(x))]

dxJ
= Y] —(ayix, v(x)) - dyke, u(x)))—~y(x)

t dx' dxJ

f
Jo

x, y{x) + x(yv(x) - y(x)), v(x)) dr(yv(x) - y(x))

+ \f(x,y(x),v(x))-f(x,y(x),u{x))].

Multiplying (2.5) by yv(x) — y(x) and integrating the resulting relation over Q, we
have

3 3
iij(x,u(x)) -aijix, v(x))]-—y(x) — (yu(x) - y(x))dx

+ fy(x,y(x) + r(yv(x)-y(x)),v(x))dz(yv(x)-y(x))2dx
Jn Jo

+ / \f(x,y(x), v(x)) -f(x,y(x), u(x))](yu(x) - y(x))dx
Jn

< A:||ii-i;||i.»(Q)||Vy||i.2(B)

+ Ar||u-u||i«(n)||>>u -y

We thus obtain the result of Lemma 2.2.
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Let z(-) 6 HQ(Q) satisfy the following equation

549

dx, \ dx

= fy(x,y{x),u(x))z{x)
^ 3

+ V r—(«(,•(*, u(x)
3

dxJ

(2.6)

+\f(x, y(x), v(x)) -f(x, y(x), u(x))],

z\ra=0

and let

z° =

+ / V 9(x), Vy(x), v(x)) -f°(x, y(x), Vy(x), u(x))\dx. (2.7)

R E M A R K 2 . 1 . We see that the solutions z ( ) of (2.6) and z° defined by (2.7) are
dependent on the choice of v, u e <%/. If u is fixed, then we can denote z ( ) = z(-, v)
and z° = z°(v). Multiplying (2.6) by z(x) and integrating the resulting relation over
S2, we have

| |Vz | | 1.2

Thus, we have

llfl'(n) < C\\u - v\

THEOREM 2.1. Suppose that conditions (P1HP2) hold. Then

= y(x) + z{x) + r(x),

(2.8)

(2.9)

(2.10)

and

\r°\ = o(\\v - u\\L»(ai) . (2.11)
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PROOF. From (2.5) and (2.6), we obtain

(yv(x) — y(x) — .

jpfcty (x, v(x)) - av (x, u(x)))—z(x)

fl ' (2.12)
+ / fy(x,y(x) + z(yv(x)-y(x)),v(x))dr(yv(x)-y(x)-z(x))

r
+ / \fy(x,y(x) + T(yv(x)-y(x)), v(x))-fy(x,y(x), u(x))]dzz(x),

Jo
(yv-9-z)\ra=0.

Multiplying (2.12) by yv(x) — y(x) - z(x) and integrating the resulting relation over
Q, we have

» - y -
n

in,J = 1 " y ' 9*; 9xi

+ fy(x,y(x) + T(yv(x)-y(x)),v(x))dT(yv(x)-y(x)-z(x))2dx
Jn Jo

+ [ [ \f,(x,y(x) + T(yv(x)-y0c)),v(x))-fy(x,y(x),u{x))]dr
Jn Jo

x z(x)(yv(x) — y(x) — z(x))dx

+ K\\u — u||L°°(n)l|z||z.2(n)ll)V ~ y ~ zlk2(n)

< C||u - v||*,»(n)||V(yu -y -z)\\LHW•

From this inequality, we obtain

lkll//'(n) = \\yv -y-Z\\HHO) = o(\\v - M||L»(n)).

Furthermore, we may calculate directly

J(v) - J(u)

= f\f°(x,yv(x), VyB(jc), v(x)) -f°(x,y[x), Vy(x), u(x))]dx
Jn

= / [f°(x,yv(x), Vyv(x), v{x)) -f°(x,y(x), Vyv(x), v(x))]dx
Jn

+ [[f°(x,y(x),Vyv(x),v(x))-f°(x,y(x),Vy(x),v(x))]dx
Jn
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+ / lf°(x,y(x), Vy(x), v(x)) - f°(x, y(x), Vy(x), u
Jn

f /"'

Jn Jo

+ I
3

+ f [f°(x,y(x), VyOc), v(x)) -f°(x,y(x), Vy(x), u(x))]dx.
Jn

From (2.9), we have

7(w) - 7(5)

= / / f°(x, y(x) + r(yv(x) - y(x)), Vyv(x),v(x))drz(x)dx
JnJo

/[ E /
Jn ~(Jo

d

(

d \ 3
)-y(x)),... , -— yv(x), v(x) ) dz—z(x)dx

dxn ) dxf

+ f[f°(x,y(x), Vy(x), v(x))-f°(x,y(x), Vy(x), u(.x))]dx+o(\\v-u\\L~m)
Jn

= Z°+ f f [f°(x, y(x) + T(yv(x) - y(x)), Vyv(x), v(x))
Jn Jo

-f°(x, y(x), Vy(x), u(x))]drz(x)dx

+ f E / \ft, (x' yw- F~^(X)' • • •' j-yw
Jnj^Jo L V dxi dxj

ft \ ~\

(yv(x)-y(x)),..., T^Vvix), v(x)j - /»(x, y(x), Vy(x), u(x))\ dx
—

X T~z^ dx

Thus Theorem 2.1 is proved.

3. The case of U being the endpoints set of a cuboid

In this section, we suppose that U is a set of the end points of a cuboid and discuss
the necessary conditions for the optimal control problem with a state constraint.
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Now, suppose Q C H^(Sl). For any w() e <2fad, there exists a unique function
y«(x) = y(x',u) € //O'(S2), which is the generalized solution of (1.11). We can
therefore talk about the state constraint

yu{-) e Q.

We let

^ad
e = {« e ^ d I >(-, «) 6 Q).

Our optimal control problem can be stated as follows.

PROBLEM E G . Find a 5(0 € ^f , such that

7(5(0) = inf { 7 ( K ( 0 ) I «(0 6 ^ a d
G } , (3.1)

where 7 (M(0) is given by (1.13).

Any admissible control 5(0 satisfying (3.1) is called an optimal control for Prob-
lem EG, the corresponding state y{-) is called an optimal state and the pair (y(0> 5(0)
is referred to as an optimal pair.

It is clear that Problem E is a special case of Problem Ee.
We first raise the question: Suppose u(x) is an optimal control of Problem E and

ud(x) is an optimal control of Problems (1.11), (1.13) and (2.1). Then is it true that
u(x) = «</(*)?

EXAMPLE 3.1. We consider the system given by

j-div(«(jc)Vy(je)) = / ( * ) , xeSl,

We set

<2rad = {u(x) e U — {a, b) \ u(-) is measurable on fi)

and

7(M)

where 0 < a < b and

= f {(«(*) - u(x))2(yu(x) - yd(x))2 + («(JC) - ud(x))2} dx,

xeE2.
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[12] Necessary conditions for optimal control of elliptic systems 553

We have that £, U £2 = ft, Ex D E2 = 0, yd(x) is a solution of Problem (3.2)
corresponding to ud and

u(x) =

It is clear that

/(«(•)) = inf

Let

<%/ — {u(x) € [a, b] | «(•) is measurable on ft),

then

We thus have u(x) ^ M</(JC).

This example indicates that the optimal control of Problem E is not equal to the
optimal control of the convexification problem for Problem E. It therefore implies that
we can't use the convexification method alone to solve both Problems E and EG.

We shall now discuss Problem Ee. Suppose that

(P3) Q is a closed and convex subset of Ho' (ft).

Let

dQ(y) = min{||v - q\\HHay\q € Q) and du(u(x)) = min \v - u(x)\,

where |«| = { £"= 1 u]\V2 and u = { « , , . . . , un}.

DEFlNraON 3.1. Let Z be a Banach space. A set 5 is said to be finite codimensional
in Z if there exists a point z € S such that Zo = span(5 — z) is a finite codimensional
subspace of Z and co(5 — z) has a nonempty interior in Zo.

We have the following result.

THEOREM 3.1. Let (P1MP3) hold, u(-) e ^ be an optimal control ofProblemEQ,
y(-) = y (•, u) be an optimal state and Q be finite codimensional in //0' (ft). Then there
exist f° € [ -1 , 0], tfr1 6 [ -1 , 0], f (x) = (£•(*),... , f"(x)), tp € //-1, ̂  6 H*(O),
such that

W°,il,l,<p)?0, (3.3)

(<P,q(-)-y(-))<0, VqeQ (3.4)
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and \jf{-) satisfies the following equation

= fy(x, y(.x), u(x))-4r{x) + f \fy(x, y{x), Vy(x), u(x))

^ 3
.=1 J

maximum condition

K(x) • u(x) = max K(x) • v, a.e. x eQ (3.6)
veU

holds, where

H(x, u) = - V ayQc, u)—y(x) — ijr(x)
(3.7)

x)f (x, y(x), u) + f°f\x, y(x), Vy(x), u),

N(x) € duH(x, u(x)) and (3.8)
1 (3.9)

f'OO = 1 as u'(x) = a' and^(x) = - 1 as u'(x) = bl, in which [a1,*1] =
ProjXj co U, ii(x) = (iil(x), ..., um(x)).

PROOF. NOW, for any M(-), U(-) € %, we define d(u(-), t>()) by

d(u(), u(-)) = esssup|«(x) — v(x)\.
n

We know then that (f&, d) is a complete metric space. Without loss of generality, we
may assume that J(u) = 0. For any e > 0, we define Fe : % -> R by

;"))]2

so that Fe : ( ^ , rf) -> /? is continuous. Furthermore, we have

Fe(u(-)) > 0,

e.
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Hence, by Ekeland's variational principle (see [6]), we can find ue(-) € %, such that

Let ze() € //J (£2) satisfy the following relation

^ 3 3
- V r—(a,y(jc, «£(Jc))r— ZeC

,vTi dx' dxJ
= fy(x, yt(x), Ue(x))ze(x)

2
), ue(x)),

Ze Ir«= 0

and let

+ f°(x, y.(x), Vy.(jc

We set

yu(x) = y(x;u) and

By Theorem 2.1, we have

I yu(x) = ye(x)

), ut(x)) \ dx. (3.12)

= y(x; uc).

re(x),

and

IMtf'(Q) = O(\\U - M£|

From (3.10), we obtain that

-y/ed(u, «,) < F,(«) - F,(M£) (3.14)
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1
~BP

4- / [du(u(x)) + do(u£(x))] dx f [du(u(x)) - du(u£(x))] dx
He Jn Jn

+ —[dQ(y(-;«)) + dQ{y{-\ M<

where B£ = F£(u) + F£{ue). We define

1

(3.15)

in which §,'(*) = 1 as ul
e(x) e [a', a' + e] and ?;'(*) = - 1 as u'e(x) € [bl - e, b%

[a1, b'] = ProjXi co U, ue(x) — (u\(x),..., u"(x)). From (3.14), we obtain that

(3.16)

(M, U£) < <p°z°e + <p\ I ££(x)[u(x) — ue{x)] dx
Jn

+ (<Pe, yE)//-',//> + O(\\U - Ue\\Loo(n)).

Let V*f = — 9°E, ire
l = —<p\ and

x ^ 3 / ' 3 \

fjtx dx> V dxj )

r
y°(*, ye(x), Vye(x), ue(.

, US(X)) - <pe,

(3.17)

From (3.11), (3.12) and (3.17), we have

<p°z° = xlf°zQ

/- / *?
^ a
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~ / te[f°(x, ydx), Vy$(x), u(x)) -f°(x, ye(x), Vye(x), u£(x))]dx
Jn

Jn [Ij^i dxi dxj

~ fy(X, ye(x), Uc(x))\lrE(x)ze(x) 1 dx - {<pe, Ze)

— I f^[f°{x, y£(x), Vyc(x), u(x)) —f°(x, ye(x), Vyc(x), uc(x))]dx
Jn

Jn [Ij^i 'J '' dx> e dxJ
- fe(x)[f(x,ye(x), u) -f(x,y£(x), uc(x))]

— yjf°[f°{x, ye(x), Vye(x), u(x)) —f°(x, yB(x), Vye(x), ue(x))] \ dx
\

- {<Pe, Ze)

= - f[H(x,u(x),e)-H(x,us(x),e)]dx-{cpe,Ze), (3.18)
Jn

v^ 3 3
H(x, «,£) = - > au(x, u)—ye(x)-—

tji dx vx

where

(x, yt(x), II) + tff°(x, ye(x), Vy,(Jc), «).

Substituting (3.18) into (3.16), we obtain

-Jediju, ue)< I { - [H(x, u(x), s) - H(x, «,(*), e)]
Jn

- #&(*)[«(*) ~ u.(x)])dx + o(\\u - «.|U-(O)). (3.19)

It is clear that

So there exist i/̂ 0 € [—1,0], ^ ' e [—1,0], <pe e H'1 and a sequence o
such that

{f°Ei, fl, #»„} - • {if,0, f l<p) weakly star.

Since d(ue(), «(•)) < \ / e , when e -> 0, we have

llye-y||ff'(n) ->• 0.
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It is known that there exists ty € HQ(£2), which satisfies

[17]

f?(x,y(x),Vy{x),u(x))

^ 3

Let

iMro=0.

H(x, u) = Hx(x, u) + H2(x, u),
v ^ 3 3

Hi(x, u) = - > aijix, u)—y(x) — ty{x),
tjtx dx> dxJ

(3.20)

H2(x, u) = ^(x)f(x, y(x), u) + f°f°(x, y(x), Vy(x), u).

From (3.19), we obtain

-^d(u, u£) - f{[H(x, u(x))-H(x, u£(x)]-[H(x, u(x), e)-H(x, us(x), s)]} dx
Jn

< / {—[H(x, u(x)) — H(x, u£(x))] — i/f£t;£(x)[u(x) — u£(x)]} dx
Jn
+ o{\\u — u£\\Loo(n)). (3.21)

We may therefore obtain

f{[H(x, u(x))-H(x, u£(x)]-[H(x, u(x), e)-H(x, u£(x), e)]}dx < CA£d(u, u£),
Jn

where

It is easy to see that A£ 0 as £ —»• 0. From (3.21), we have

-[H(x, u(x)) — H(x, u£(x))]

[x)-u£(x)]}dx + o(\\u

< f[-[
Jn

(3.22)

https://doi.org/10.1017/S0334270000011814 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011814


[18] Necessary conditions for optimal control of elliptic systems 559

For any v € ^r, let

u(x) = ue(x) + p(v(x) - u£(x)),

then d(u, u£) = pd(v, ue). From (3.22), we have

-(VS+ CA£)d(v, ut) < f{-Ne(x) - rlrlje(x)}[v(x) - u£(x)]dx, (3.23)
Jo

where

Ne(x) =

N? (x) e duatj (x,ue(x)) and N^(x) e duH2{x, ue(x)).

We shall now discuss the case as s ->• 0. We first want to prove that

{jlr°',if\<p)^O. (3.24)

In fact, if f° ^ Oori/f1 # 0 then (3.24) holds. We shall suppose that \jr° = xj/1 = Oand
attempt to prove that (p ^ 0. In fact, according to the definition of the subdifferential,
we have

(ddQ(ye(-)), q(-) - y£(-)> < 0, Vq(-) G Q,

which implies that

Furthermore, we have

Se = (<Pe, 9 ~ *(•))) < (9e, 9 ~ ?(•)), V9 6 Q. (3.25)

Since d(ue(-), «(•)) < \fe, when e -> 0, we have

lly«-y||/f(0)-»-o.

Thus Sl
e —> 0 as e —> 0. Since the set Q is finite codimensional in HQ(Q), from

[7, 12], we know that cp ^ 0, so (3.24) holds, that is, (3.3) holds. Furthermore, we
obtain (3.4) from (3.25).

Set

/ , («)= [ H,(x,u(x))dx, i = l ,2.
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Then

l|tf*lk-(n)<C, IIAkllt-(n) < C,

so there exist N" e L°°(fi), W2 e L°°(n), such that

Aff -> tf«', N2e -*• N2 weakly star in L°°(Q).

According to \\u£ — u\\LHn) -*• 0 and from [6], we know that iV2 € dI2(u), that is,
N2(x) e duH2(x, u(x)). Furthermore, we have Nij (x) e aua,y (x, u(x)). We note that
fe is independent of s, so there exists i-(x) such that lim^o&C*) = £(*)• Let

N(x) =

From (3.23), we have

0 < / {—N(x) — yt1^(x))[v(x) — u(x)]dx.
Jn

We shall now set

Applying Fillipov's Lemma, we have

K(x) • u(x) = max K(x) • v = max K(x) • v, a.e. x e Q.
vecoll veil

Theorem 3.1 is thus proved.

REMARK 3.1. In Theorem 3.1, if Q = H^(Q), then <p = 0; If U =coU, then
fl = 0 .

REMARK 3.2. In Theorem 3.1, we suppose that Q is finite codimensional in //0' (£2).
If Q is not finite codimensional in H^(Q), then Theorem 3.1 may be trivial.

EXAMPLE 3.2. We consider the system

e)] = ii(jc), x €
{ (i.Zo)
\yu\rQ=o,

d = [u(x) e [—1, 1] I «(•) is measurable on £2}
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and we give a functional

J(u) = I {yu(x) + u(x)} dx.
Jn

Let uo(x) = 0. Then yo(-) = 0 is the solution of (3.26) corresponding to u = u0.
We shall now suppose that Q = {yo(-) = 0}. It is clear that u[x) = 0 is the optimal
control and y(x) = 0 is the optimal state. Suppose Theorem 3.1 holds. Then there
exists (r/r°, ^ O ) ^ 0, where ^(-) satisfies

U\ra=0,
H{x, u) = f{x)u + f°u

and

K(x) = f(x) + f°,

such that

0 = max [tfr(x) + f°]u. (3.28)
«e[-l.l]

From (3.28), we obtain f(x) = -f° = constant. From (3.27), we have \ff{x) =
—i/r° = 0, which contradicts the assumption that (iff0, ^(0) ¥" 0.

Example 3.2 indicates that if Q is not finite codimensional in HQ(Q), then it may
be that K(x) = 0, that is, Theorem 3.1 may be trivial. Therefore, the condition that
Q is finite codimensional in //„' (Q) is necessary.

We will now discuss the equivalent constraint problem. We define the equivalent
constraint to mean that for any u e ^ d , / n «,(*) dx = 1. Let

% = I u e %d A Ui(x) dx = \, i = l m l .

PROBLEM EI. Find u € W^, such that

J(u) = M{J(u) | u e W*).

To solve Problem Ei, we introduce a new state equation

yi(u) = / u(x)dx € Rm

Jn
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and thus obtain a new system

[21]

v^ 3 / 9
fjZx oxt \ dxj

yi(u) = /
Jn

e/T,

which has a solution ( j , yO € //o'(f2) x Rm for any M e ̂ . Let

Problem Ei then becomes the problem of finding it € ̂ a , such that (y, yx) e Qx and

J(u) = inf{/<» | u € %d}.

It is clear that Qx is finite codimensional in //o'(f2) x Rm. We have the following
variation equation

v^ 9 / 9 \
- /_ r— a,j(x, u(x))-—z(x) =fy{x, y(x), u(x))z(x)

f-?x oxi V dxj J
9 I 9

— {a.ij{x, v(x)) — aij(x, u(x))) ~
aXi |_ dxj

+lf(.x,y(x),v(x))-f(x,y(x),

Zi = / (v(x) -u(x))dx,
Jn

lro = °'
and the following conjugate equation

^ 9 / . . . . . 3

\f?(x,y(x), Vy(x),

^ 9

= At,

where \JL — (vu ... , vm) for v, e [—1, 1], i = 1 , . . . , m. The Hamiltonian function
is

ft ^ 1 1

^(A:, U) = - > a,y(^, M)_5;(X)_—
, ^ i dxi dxJ
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+ fOc)f (x, y(x), u) + f°f\x, y(x), Vy(x), u) + </z, u).

THEOREM 3.2. Let (P1MP2) hold, «(•) e W^ be an optimal control of Problem E]
and y(-) = y(-, u) be an optimal state. Then there exist xf/' € [—1,0], i = 0, 1,
fi = (v,, • • • , vm), v, € [—1,1], i = 1 , . . . , m, %{x) given by Theorem 3.1 and
\jr 6 HQ(Q) satisfying (3.5), such that

Let

c, y(x), u) + \l/°f°(x, y(x), Vy(x), u)

and

We have that

AT(x) • u(x) = max ^T(x) • v, a.e. x € Q.

We shall now return to Problem D which was raised in Section 1 and shall describe
the optimal domain using the result of Theorem 3.2.

Suppose Sirf € n (given by (1.3)) is an optimal domain. This implies that the
function

u(x) - a

is an optimal control of Problem C. Thus the optimal state y(x) satisfies:

J - div(H(jc)VyOc)) = / CO, x 6 G,

From Theorem 3.2, we know that there exist i/r' € [-1,0], i = 0, 1, v e [ -1 , 1],
£(*) = Xn*(x) ~ Xnm(x) and V 6 H*(Q), such that

•div(«(*)V^r(*)) = ^ ° /0( j C f y(jc)> Vj;(jc)) - £ J L / 0 (
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Let K(x) = -Vy(x) • Vx//(x) + fll-(x) + v. Then

_t ^ \b, if K(x) > 0,
[a, if K(x)<0,

that is,

{* € G | *:(*) < 0} c n * . {* € G | *(*) > 0} c

4. The case of U being a closed set

In this section, we consider the case of U being a general closed set. Let

du(u) = inf{||v - uh"(m I «(•) e %d}-

THEOREM 4.1. Ler(Pl)-(P3)/ioW, «(•) € &J? be an optimal control of Problem EQ

andy() = y(-,u) be an optimal state. Let Q be finite codimensional in HQ (Q). Then
there exist ^° e [ -1 , 0], <p e ^" 1 , ? € L°°(n)* anrf t/f e //O'(S2), such that

(\lr°,^,<p) ^0, (4.1)

V̂  (•) satisfies (3.5) and the following variational inequality holds:

0 < / Af (;C)(M(;C) — v(x))rfj: + (^, u — v), Vv € "2^, (4.3)

where N(x) is given by (3.7)-(3.8).

PROOF. This proof is similar to the proof of Theorem 3.1. Without loss of generality,
we may assume that J(u) = 0. For any e > 0, we define Fe : W -*• R by

Fe(u(-)) = {[(/(«(•)) + e)+]2 + [dj/(«))]2 + [dQ{y{-\ M))]2}1/2. (4.4)

By Ekeland's variational principle (see [6]), we can find u£() e %', such that

«(0),
VH(.) 6 «T.

6 Ho' (fi) satisfy (3.11) and let z° be given by (3.12). Set

yu(x) - y(x;u) and y£(x) = y(x;ue).
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By Theorem 2.1, we have

I yu(x) = y£(x) + zdx) + r£(x),

and

= o(\\u - M,| = o(||u -

From (4.5), we obtain

«. tie) < Fe(u) - Fe(u£)

1

565

(4.6)

(4.7)

(4.8)

- (7(1*,)

^[dQ(y(-; u)) + dQ(y(-; ut))][dQ(y{-, «)) - dQ(y(-, «,)

—[du(u)
Be

where B£ = F£(u) + F£(u£). We define

1
<P°e =

e(

F£(UB)
(4.9)

It is clear that

From (4.8), we obtain that

-Ved(ll, ««) < ^ Z ° + (f,, II - Ue) + O(\\U - M,||t- (4.10)

Let \j/°e = -(p°e and suppose that ^(x) satisfies (3.17). Then from (3.11), (3.12) and
(3.17), we have that

where

= - / [H(x, u(x), s) - H(x, ue(x), e)]dx,
In

•^ 3 3
H(x, u,s) = — ^ ay(x, u)-—y£(x)-—rjre(

i,j = \ ' J

(4.11)
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+ fE{x)f (x,yt(x), u) + Vj\x, yE(x), V*(JC), u).

Substituting (4.11) into (4.10), we obtain

-y/ed(u, uE) < - / [H{x, u(x),e) - H(x, uE(x),s)]dx
Jn

+ {§„ « - « , ) + o(\\u - H,||t-(Q)). (4.12)

In a manner similar to that used for Theorem 3.1 we have

- ( V £ + CAe)d(u, ut) < - f[H(x, u(x)) - H(x, ue(x))]dx
Jn

+ (f,, u-ue} + o(\\u - a.lU-pi)). (4.13)

For any u e f , let

u(x) = ue(x) + piy(x) - uc(x)),

then d(u, ue) = pd(v, ue). From (4.13), we have

- ( V £ + CAe)d(v, «,) < f (-Nt(x))[v(x) - ue(x)]dx + {?,, v - ue), (4.14)
Jn

where Ne(x) € duH(x, uE(x)). In a manner similar to that used for Theorem 3.1,
there exist \j/° € [ -1 , 0], £ € (L°°(Q))*, <p e / / - ' , such that V" ->• ^° and

{&, "P£} ->• (^. <P) weakly star,

such that (4.1) and (4.2) hold. From the proof of Theorem 3.1, we know that there
exists Nix) 6 duH(x, u(x)) such that

In

Theorem 4.1 is thus proved.
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