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Abstract

This paper gives a characterisation of finite supersoluble groups of Wielandt length two of order coprime
to six.

2000 Mathematics subject classification: primary 20D15.

1. Introduction

This paper treats finite supersoluble groups of Wielandt length two and provides a
characterisation of such groups whose order is coprime to six.

Recall that the Wielandt subgroup a>(G) of a group G is the subgroup of elements
of G normalising each subnormal subgroup of G. It is non-trivial in every finite, non-
trivial group ([9]). A group has Wielandt length one if co(G) = G. But if co(G) ̂  G
and co{G/(o{G)) = G/co(G) then G is said to have Wielandt length two. We will
denote by W2 the class of all finite groups of Wielandt length at most two.

The main results of this paper can be thought of as a generalisation of results of [6]
for p -groups of Wielandt length two and what we need from [6] is summarised and
extended in section two. One of our main results is that a non-nilpotent supersoluble
group of odd order and Wielandt length 2 splits over its nilpotent residual (Theo-
rem 3.6). This result is a consequence of the technical result (Theorem 3.5) which is
also crucial in the characterisation of these groups in Section 4. The characterisation
of supersoluble groups of Wielandt length two and order coprime to six essentially
comes from analysing the properties that the splitting theorem gives us and can be
summarised by saying that we can find sufficient information about the structure of
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the nilpotent residual and a complement, as well as the action of a complement on the
residual to ensure that a group with those properties will be a supersoluble group of
Wielandt length two and exponent coprime to six. However the details are rather tech-
nical and we show how the group can be built up one prime at a time. Definition 4.1
extracts the necessary features of a normal Sylow subgroup, while Definition 4.3 gives
the way in which a complement of a normal Sylow subgroup must act on the normal
Sylow subgroup. Then Theorem 4.6 and Theorem 4.7 show that supersoluble groups
of Wielandt length two and order coprime to six are characterised as groups with the
structure given by these definitions. The restriction to groups of order coprime to six
comes from the fact that p -groups of Wielandt length two are more difficult to classify
for the primes two and three. Indeed 2-groups of Wielandt length two have not yet
been classified.

2. Preliminary results

For convenience, we state some results we will use frequently in what follows and
will use them without further reference.

THEOREM2.1([3,A.1.3]). Let U, V and W be subgroups of a group G with V c U.
Then Un(VW) = V(UD W).

THEOREM 2.2 ([3, Proposition A. 12.5]). If Q is a it'-group of operators of a n-
group P, then •

(1) P = [P,Q]CP(Q).
(2) [P, Q] = [P, Q,nQ]foralln> 1.
(3) IfP isabelian, then P = [P, Q] x CP(0.

THEOREM 2.3 ([1, Theorem 2.4]). Let G = BA be a semidirect product of sub-
groups A and B of coprime order with A nilpotent and normal. If P is the set of
those elements ofco (Z?) which act by conjugation as power automorphisms on A, then
o)(G) = Pco(A).

For the applications we make in later sections we have found it useful to complete
some of the detail omitted in Ormerod's Theorem [6]. Our account will be directed
to the application we make in the later sections, where the groups will have order
coprime to six: the 3-groups in Ormerod's work will therefore be omitted here.

We begin with the presentation of the following group

(2.1) H={x,y:[x,y,x] = x"', [x,y,y] = y"'>'" = y"2' = [x, y]"' = l ) .
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[3] On supersoluble groups of Wielandt length two 395

It is easy to see, by Dyck's Theorem, that there is a homomorphism from Ormerod's
group H(p,r) onto H. Since by its construction \H\ = p5r = \H(p, r)\, H is
isomorphic to H{p, r).

The properties we require of H(p, r) are summed up in the following theorem.

THEOREM 2.4. H = H{p, r) is a regular group of order p5r and nilpotency class
three satisfying

(1) H/H' = Cpr x Cpr,
(2) Z2(H) has exponent p'';
(3) H/y3(H) has exponent pr.

The proofs follow easily from the relations in (2.1).
Now let Ln (p

r) be the free group of rank n in the variety of all groups of nilpotency
class at most two and exponent dividing pT. Next set Gn{pr) — H(p, r) *Nl Ln(p

r)
for n > 1, r > 1, the second nilpotent product of H(p, r) and Ln(p

r) (the second
nilpotent product of groups A and B is defined to be E/N, where E = A * B is the
free product of A and B and N = [[A, B]G, G, G]\ see for example [5, Section 6.4].

For a p-group A, define e(A) to be the positive number such that pe(A) is the
exponent of A/y3(A) and note that e(H(p, r)) = r.

The next result gives the classification of #^-groups of [6] and is essential in our
classification.

THEOREM 2.5 ([6, Theorem A]). Let p > 3 be a prime. For all n > 1, r > 1,

Gn(p
r) e W2.

Conversely, if G e Wi is a p-group with e(G) = r and if G can be generated by
n + 2 elements, then G is a homomorphic image of Gn{pr).

For convenience, we write G = Gn(p
r), H = H(p, r) and L = Ln(p

r) in what
follows, p, n and r being understood.

Now we state results, which give connections between two numerical invariants of
p -groups in #2 and are used later in the article.

LEMMA 2.6. (1) Z2(G) = Z2(H)L[L, H].

(2) e(G) = e(H).
(3) Let A be a p-group, with p > 3, and Wielandt length two. Then Z2{A) has

exponent dividing pe(A).

PROOF. (l)By the definition of second nilpotent product, we have G = HL[L, H].
Also Z2(H)L[L, H] c Z2(G); and Z2(G) D H c Z2(H). Therefore,

Z2(H)L[L, H] c Z2(G) c L[L, H](Z2(G) n H) c L[L, H]Z2(H),
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which gives the result claimed.
(2) This is because every commutator of weight three in G is a power of one

of the forms [hi, h2, hj], [hu lu h2], [hi, h, l2] or [l\, l2, h], where ht e H, /, e L
(1 < i < 3). Here we use the Jacobi identity which holds in a metabelian group.
However, all but the first of these are necessarily trivial in G. Hence ^ ( G ) = yi(H).
It follows that G/y-$(G) = / / / y 3 ( / / ) *N2 L. Both factors on the right have exponent
dividing pe(H) and H /y^{H) has exactly this exponent, so, by regularity, G/y->,{G) has
the exponent exactly pe(H). That is e(G) = e(H), as required.

(3) If A has nilpotency class at most two, there is nothing to prove. So suppose that
A has nilpotency class three, and that it can be generated by n + 2 elements. Then,
for some N <G= Gn(p

eW), G/N = A.
Suppose that g e G and gN e Z2(G/N). Since Z2(G)N/N c Z2(G/N) and

Z2(G) has exponent peW by Theorem 2.4 and (1) above, we may suppose that
g g Z2(G) and therefore that g e H but g & H', since G is regular.

Moreover we may suppose that g = xmy" for some integers m,n. Then for
r = e(A):

x™"' = [x,y,x]m = [g,y,x]eN

and

yv' = [*, y, yT = \y,x, y]~n = [g,x, y]"1 e N.

From this we see, using [4, Satz 3.9.4], that gp' = {xmyn)p' = x"*'y^' € N.
Hence Z2(A) has exponent dividing pr = pe{A). D

LEMMA 2.7. Let p > 3 be a prime, let Gi be a p-group of Wielandt length two
and nilpotency class three and G2 a p -group of nilpotency class at most two. Let
W=Gi *N, G2. IfN c [Gi, G2] is a normal subgroup of W, then W/N e W2 if and
only if the exponent of G2 divides pe(G'\

PROOF. First suppose that G2 has exponent dividing pr, where r = e(G\). Also
suppose that G2 is generated by m elements. By Theorem 2.5, for some positive
integer n, there is an onto homomorphism 0 : Gn(p

r) -> G\. It follows that 0 may
be extended to an onto homomorphism Gm+n(p

r) -> Gi *^2 G2, so W e W2 by
Theorem 2.5 and hence W/N e W2.

Conversely suppose that W/N e W2. Then

G2 = G2N/N c Z2(W)N/N c Z2(W/N)

and so the exponent of G2 divides pei-wlN) by Lemma 2.6'(3). Therefore

(W/N)/K(W/N) = W/y3(W)N = (W/y3(W))/(y3(W)N/Vi(W))

so e(W/N) < e(W) — e{Gx). Hence the exponent of G2 divides pe(Gl) as required.

D
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3. Some basic results

The main result of this section is Theorem 3.6 which says that in a supersoluble
group of odd order and Wielandt length two, the nilpotent residual is complemented.
To prove this fact we need the following results.

LEMMA 3.1. Let A be a normal Sylow p-subgroup of a non-nilpotent group G
and B be a Hall p -subgroup of G.

If N is the nilpotent residual of G and H is the nilpotent residual of B, then
N = H[B,A].

PROOF. Since A is a normal Sylow p-subgroup of G, we have [B, A] = [B, A, j B]
for all; > 1 and so [B, A] c AT. Since [B, A] is normal in G, we have

G/[B, A] = (B[B, A]/[B, A]) x (A/[B, A])

and so N/[B, A] is the nilpotent residual of B[B, A]/[B, A].
Clearly, B[B, A]/H[B, A] is nilpotent and so N c H[B, A]. On the other hand,

the nilpotent residual of B[B, A]/[B, A] is isomorphic to the nilpotent residual of
B/(B fl [B, A]) = B. Therefore N/[B, A] = H and hence N = H[B, A]. D

LEMMA 3.2. Let A be a normal Sylow p -subgroup of a non-nilpotent soluble group
G of odd order and Wielandt length two and B be a Hall p' -subgroup of G. If B acts
non-trivially on A/co(A), then A has nilpotency class at most two.

PROOF. Since A is normal, A e W2 and therefore A/co(A) is abelian. Also, it is
easy to see that A has nilpotency class at most three.

Let us suppose, contrary to the claim of the lemma that A has nilpotency class
exactly three. It follows from Theorem 2.5 that A has elements au a2 for which

[ct\,a2,ai] = a\ ,

where r = e(A). Now since G/co(G) is a T-group, B(o(G)/<o(G) acts as a power
automorphism by conjugation on A/a>(A) (by [7, 13.4.4 and 13.4.6]) and it is imme-
diate from [2, Theorem 5.3.1] that these power automorphisms are universal (that is,
they map each element of A/co(A) to the same power). Suppose b e B induces a non-
trivial universal power automorphism by conjugation on A/a>(A). Then there exists
an integer m which is not divisible by p, for which a\ = a"c and a* = a

2d
c,d e a»(A) c Z2(A), by [8]. Then, using the regularity of A and Lemma 2.6 (3):

[a,, flj, ai]
mi = [a?c, a^d, a?c] = [au a2, a3]» = {a()» = « c ) " '

= « ) P V ' [ c , a™rpr(p'-m = « r ) m = [au a2, ax]
m•
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It follows that m3 — m == 0 (mod p). Hence m2 = 1 (mod p) as m ^ 0 (mod p).
This means that b2 e CB((A/co(A)/(<t>(A/co(A))) whence b2 e CB(A/co(A)) by [3,
Theorem A.9.14]. Therefore b e CB(A/a>(A)) because |B| is odd. This contradicts
our choice of b. We conclude therefore, that A has nilpotency class at most two, as
claimed. •

The following lemmas give useful information about (non-nilpotent) supersoluble
groups. The statements involve increasingly more precise hypothesis on the groups
involved.

LEMMA 3.3. Let Abe a normal Sylow p-subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two and B be a Hall p'-subgroup of G.
Then either [B, A] c W(A) or CA(B) c a>(A).

PROOF. AS in Lemma 3.2 B acts as a group of universal power automorphism
on A/a)(A). Therefore, either [b, A] c a>(A) for all b e B or, for some b e B,
CA/aiW(b) = 1. Therefore, either [B, A] c co(A) or CA(B) c co(A). D

The next lemma gives more information about the semidirect product of subgroups
of coprime order of a group.

LEMMA 3.4. Let A be a normal Sylow subgroup of a supersoluble group G of odd
order and B a Hall p'-subgroup of G. Suppose A has nilpotency class exactly two,
B acts as a group of universal power automorphisms on A/a>(A) and [B, A] = A.
Then CA(B) = 1.

PROOF. By [3, Theorem A. 11.6], A/A' has a direct decomposition

A/A' = AX/A' x ••• xAs/A'

into B-admissible subgroups At/A' with the following properties for each i =
1, . . . ,s:

(1) At/A' is indecomposable as a fl-module.
(2) (A,/A')/<I>(A,/A') is an irreducible S-module.

Since A is supersoluble, (A,/A')/<1)(A,/A') is cyclic of prime order. Hence Ai/A' is
cyclic by [7, 5.2.12]. Therefore At/A' = (y,A'), for 1 < i < s, is cyclic of prime
power order. Let b e B. Then we may write yf = y. ' c, for some c, 6 A' and some
integers mf\ for 1 < i < s. Note that m[fc) ^ 0 (mod p), for 1 < / < s. Since
A' c O(A), it follows that A = {yu y2, •. •, ys), by [7, 5.2.12]. Also note that for
each i there is at least one b e B such that /njb) ^ 1 (mod p): otherwise [B, A] ^ A.
We aim now to show that

A' = ([yhyj]:yi^co(A),yj ?co(A)).
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To this end suppose that, for some j , y} e to(A). Then choose b e B such that
m^ ^ 1 (mod p). For simplicity we write m, = mf\ for 1 < i < s. By [6,
Corollary 4.3] there is an integer n such that [y,, yj ] = y" for 1 < / < s. Note that p
divides n, otherwise [y,, y,] ^ 1. Hence, since A has nilpotency class two,

to, yj]"1"" = to, yjt = (y-)b = Of)" = Ofc,)"
= {y1)m'd}[cit y™r(n-l)/2 = [yt, yj]m'^[ch yj"<]"(l-1)/2,

whence [yh y;]""^-») e <t>(A'). Now [y,, yj] £ <D(A') would mean m,(w; - l ) = 0
(mod p) leading to m, = 1 (mod p), a contradiction. Hence [y,-, yj] e <J>(A').
It follows that A' is generated by the commutators [yt, yj] where neither yt nor yj
belongs to <o(A).

Finally, we are given that each b e B induces, by conjugation, a universal power
automorphism on A/u>(A). That is, in particular, for some integer m, m = m'fc>

(mod p) if yt & co(A). It follows that, for all such pairs i,j (when y,, yj g co(A)),

[yi, yj}" = \yt, y> T""1 = to, yjT2 (mod * ( A ' ) ) .

Hence [yh yj]b = [yt, yj] (mod 0>(A')) if and only if m2 = 1 (mod p) and that is
if and only if yf — yt (mod A') whence if and only if y* = y, (mod A') since
(2, \b\) = 1. This is a contradiction to our choice of b. Hence at least one b e B
acts fixed point freely on A'/<t>(A') and so [A', B] = A'. Thus CA,(B) = 1. Finally
note that CA/A.(B) = 1 since A/A' = [B, A/A']. Therefore CA(B) c CA{B) HA' =
CA'(B) = 1 as required. •

THEOREM 3.5. Let A be a normal Sylow p -subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two and B be a Hall p'-subgroup of G.
Then[B,A]DCA(B) = 1.

PROOF. If A is abelian, the result is immediate. Therefore suppose that A is
non-abelian. As in Lemma 3.2, we see that B acts as a group of universal power
automorphisms on A /co (A). By Lemma 3.3, either [B, A] c co(A) or CA(B) c co(A).
First suppose that [B, A] c <D(A). As &>(A) is abelian, we have that

o>(A) = M A ) , B] x Ca(A)(B).

But [B, A, B] = [B, A] and [B,co(A),B] = [B,co(A)]. Now

[B, A] = [B, A, B] c [a>(A), B] c [B, A],

so [fi, A] = [B, co(A)]. As we know from above that [B, co(A)] n C(^)(B) = 1,
therefore [fl.A] D Cw(A)(B) = 1. But C U u W = w(A) D Q ( B ) . Therefore,
[B, A] n Q( f i ) = 1 (as [B, A] c GJ(A)), as required.
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Now suppose that CA(B) c co(A) so that [B, A/co(A)] = A/co{A). If [B, A] is
abelian, we have QB,A](B) = 1 and hence CA(B) D [B, A] = 1 as required.

We get the same result when [B, A] is non-abelian because [B, A] and B satisfy
the hypothesis of Lemma 3.4: here we have relied on Lemmas 3.2 and 3.3. •

Now we use these results to prove the following theorem.

THEOREM 3.6. Let N be the nilpotent residual of a supersoluble group G of odd
order and Wielandt length two. Then N is complemented in G.

PROOF. If G is nilpotent, there is nothing to prove. Therefore we suppose that G
is non-nilpotent. Let A be the normal Sylow p -subgroup of G, where p is the largest
prime dividing \G\ and B a Hall p'-subgroup of G so that G = BA. We can also write
G = B(CA(B)[B, A]). By induction on the order of G, if B is non-nilpotent then the
nilpotent residual (say H) of B must be complemented in B. Let X be a complement
of H so that B = XH. If B is nilpotent then H = 1 and X = B. By Lemma 3.1, we
know that N = H[B, A] < G. Let Y = XCA(B). Then G = N Y and

NDY=

But by Theorem 3.5 we have CA{B) D [B, A] = 1. Therefore N DY =1. Thus we
conclude that JV is complemented in G. •

The following result gives a necessary and sufficient condition for the direct product
of an abelian group and a T-group to be a T-group.

LEMMA 3.7. Let G\ be a T-group and B\ be a complement ofy3(G\) in G\. If G2

is abelian, then G\ x Gi is a T-group if and only if(\yj(G\)\, IG2I) = 1 and B\ x G2
is a Dedekind group.

PROOF. The existence of Si is ensured by [7, 13.4.4]. The proof is a routine
application of [7, 13.4.6 and 13.4.4]. D

The following lemma gives conditions for an abelian p -group Gt (for a prime
p > 3) acting as a group of power automorphisms on a p -group G2 of nilpotency
class at most two, to lie in the Wielandt subgroup of the semidirect product G\ G2.

We use the standard notation fir(G2) to denote the subgroup of G2 generated by
elements of order pr.

LEMMA 3.8. Let G\ be an abelian p-group (for p > 3) of exponent pr and G2 be a
p-group of nilpotency class at most two. Let 6 : G\ —*• Paut(G2) be a homomorphism
andwrite G = G \G2for the semidirect product ofG2 by G\ underO. Then G\ C co(G)
if and only if G\ centralises Qr(G2).
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PROOF. We start by observing that since G\ is abelian, we have G' = G'2[G2, Gi] .
Also since Gi c Paut(G2), [2, Theorem 2.2.1] gives the following

[G2, G,] c Z(G2)

and hence G' C Z(G2) (since G'2 is also contained in Z(G2)).
Now suppose that Gi c oo(G) then by [8], we have G\ c &>(G) c Z2(G) and we

know from [7, 5.1.11(3)] that Z2{G) commutes with G'. Therefore G' centralises G\
and hence G' c Z{G) and so G has nilpotency class at most two.

Since G\ is abelian of exponent p r , it is generated by elements of order p r . So it
is sufficient to show that elements of order p ' of G\ centralise Qr(G2). Let gi be an
element of Gi such that |gi | = p r and let g2 e Qr(G2). Note that the exponent of
£2r(G2) divides p r , since G2 is regular. Now put g = g\g2. F o r * e G\, there exists
an integer m such that g* = gm and so {g\g2)

x = g\g* = (gift)"1. But as G is a
regular p -group, G\ acts as a group of universal power automorphisms on G by [2,
Theorem 5.3.1]. So we have g\ = g™. But using [4, Satz 3.9.4], we have

As Gi n G2 = 1, we have g™"1 = [g2, g,]"1*"1-')/2 = 1. This means that m = 1
(mod |gi |) and therefore w = 1 (mod \g2\) (as |g2| divides |gi|). Thus we conclude
that g\= gi and so G\ acts trivially on Qr(G2)-

Conversely suppose that Gi centralises Qr(G2). For any g e G, there exist gi e G\
and g2 e G2 such that g = gig2. Let x 6 G| . By hypothesis if g2 e Q.r{G2), then
g* = g. Suppose that g2 does not belong to £2r(G2) and let \g2\ = p s for s > r. But
g\ is an element of G2 such that |g2 | = p r and hence belongs to Qr(G2). This
means that (g2 )x = g^ . But as G2 is a regular p-group, G\ acts as a group of
universal power automorphisms on G2 by [2, Theorem 5.3.1]. Therefore there exists a
positive integer m such that gj = g™ for all g3 e G2 and so (gp

2 )x = g1^ = g2 •
Therefore gp

2 ^ " ^ = 1 and hence (m — \)ps~r = Zp1 for some positive integer t.
This means m — \ = tpr and so m = 1 + fpr. Hence gx = gxgx = g\gx = g ^ ? -

We claim that gfg? = (gig2)
m. By [4, Satz 3.9.4], we have

where c2 and c3 are products of commutators with entries g\ and g2 of weight two and
three respectively, and v € y*(G). But since gj""1 = 1, we immediately see from [4,
Satz 3.10.6] that c2(")c3(") = 1, since p > 5. This means that g j " ^ = (gig2)mv and
hence (gy4(G))* = gmy4(G). Thus

G,] /4(G)/y4(G)C£u(G/y«(G)) .
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Since G/y^G) has a factorisation satisfying the hypothesis of the theorem we have,
from the first paragraph of the proof, that G/y4(G) has nilpotency class two. In other
words, y-i(G) c y4(G) and since G is nilpotent, we immediately see that yi(G) = 1
and hence G has nilpotency class at most two. This proves our claim that

g* = g?g2 = (Sift)" = gm

and thus G\ c CD(G). D

We explicitly record one of the main features of the above theorem.

COROLLARY 3.9. Let G\ be an abelian p -group of exponent pr and Gibe a p -group
of nilpotency class at most two on which G\ acts as a group of power automorphisms.
IfGi centralises £2r(G2), then the semidirectproduct ofG2 by G\ has nilpotency class
at most two.

We will need the following result: it has a routine proof.

THEOREM 3.10. Let G = BA where A is normal in G and A n B = 1 with A
nilpotent and B supersoluble. Then G is supersoluble if and only if for every prime q
dividing \A\, Bq'/CB ,(Aq) is abelian of exponent dividing q — 1, where Bq> is a Hall
q'-subgroup of B.

4. A structure theorem

We now have enough information in hand to construct all finite supersoluble groups
of Wielandt length two and order coprime to six.

To begin we introduce a definition which abstracts the properties elucidated in
Theorem 3.5 and in Lemmas 3.2, 2.7 and 3.8. In this section all groups will have order
coprime to six.

DEFINITION 4.1. We say that a p -group A has a special factorisation Y0N0 if the
following properties hold:

(1) Af0 is of nilpotency class at most two and Yo e W2.
(2) No < A, No PI Yo = 1 and A = Y0N0-
(3) Conjugation by the elements of Yo induces power automorphisms on No.
(4) If YQ is non-abelian, then

(a) A' c Yo;

(b) e(N0) < e(Y0) if Yo has nilpotency class 3.

(5) If Yo is abelian then [ YQ, Qr(N0)] = 1, where pr is the exponent of Yo-
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LEMMA 4.2. (a) Let A be a p -group having a special factorisation. Then A € W2.
(b) If p is the largest prime dividing the order of a supersoluble "W2-group G and

if Ao is a normal Sylow p-subgroup of G, and Bo a Hall p'-subgroup of G, then
No — [Bo, Ao] and Yo = CAo(Bo) afford a special factorisation ofAo-

PROOF, (a) If Yo is abelian, then by (5) of the definition, and Corollary 3.9, A has
nilpotency class at most two and so A 6 W2. Therefore suppose that lo is non-abelian.
Then A' c y0. This means that No is abelian and [No, Yo] = 1. It follows from
Lemma 2.7 and (4) of the definition that A e W2.

(b) By Theorem 3.5 we know that AQ = Y0N0 with No < Ao and No H Yo = 1.
Hence, by (a), Yo e W2 since Jo = Ao/No. From Lemma 3.3 either No c co(A0)
or Yo c co(A0). In the first case [No, lo] c J V o n y o = l, so Ao = No x YQ. Since
also NQ - 1, we have A'o = NQYQ[N0, YO] = Y^ c Yo. In particular YQ £ 1 ensures
A'o C Yo. What is more, if Jo has nilpotency class three then we conclude from
Lemma 2.7 that the exponent of No divides pe(-Yo) so that (4) holds. Clearly in the case
when Yo' ^ 1, (3) is satisfied too.

Finally if lo <= &>CAo) then Lemma 3.8 ensures that (5) holds, and also that (3) is
satisfied in this case. •

DEFINITION 4.3. G = B0A0 is a matched extension of Ao by Bo if, for some
prime p,

(1) Ao is a normal p-subgroup having special factorisation lo^o with No = [Ao, Bo]

and Yo = CAo(Bo);

(2) Bo is a supersoluble p'-group in W2\
(3) B0/CB0(NQ) is abelian of exponent dividing p — 1;
(4) if lo is abelian then the elements of Bo induce, by conjugation, power automor-

phisms in No/No n co(A0);
(5) (\y3(Bo/co(B0))\, \B0/CBo(Ao)\) = 1.

LEMMA 4.4. If G = B0A0 is a matched extension, then G is a supersoluble W2-
group.

PROOF. The aim of the proof is to calculate co(G) and to show that G/co(G) is a
T-group. First of all we have, co(G) = P0co(A0), where PQ is the subgroup of a>(B0)
inducing power automorphisms in Ao, by conjugation.

Note that CulBo)(A0) c Po. Also Cw(Bo)(Ao) = CBo(Ao) n o)(B0).
Now B0/co(Bo) is a T-group, by hypothesis, and Bo/CBo(Ao) is abelian by (3) of

the definition of a matched extension. It follows from (5) of the definition of matched
extension and Lemma 3.7 that Bo/a>(B0) x Bo/CBo(Ao) is a T-group. Hence, by [7,
13.4.7], C^fl^Ao) is a T-group. It then follows that Bo/Po is a T-group since Bo/Po
is isomorphic to a homomorphic image of Bo/ Ca,iBo)(AQ).
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If Ao is abelian, then a>(G) = P0A0 and so G/co(G) = Bo/Po. This implies that
G e W2.

Now suppose that Ao is non-abelian. In this case Po — C ( B 0 ) ( A 0 ) , by [2, Theo-
rem 5.3.2]. There are two cases to consider: either Y^ ̂  1 or JJJ = 1.

In the first case it follows from property (4) of the definition of special factorisation,
that No c co(A0). Hence G/co(G) = Yo/Yo n co(A0) x Bo/Po, a direct product of
T-groups of relatively coprime orders and so G/co(G) is also a T-group.

In the second case, when Jo is abelian, we have from property (5) of the definition
of special factorisation and Lemma 3.8 that Yo c co(A0). Hence

A0(o(G)/co(G) £ A o M A o ) = No/No n <u(A0),

an abelian p -group. However

G/co(G) = (BoCo(G)/(o(G))(A0co(G)/co(G),

and B0Q}(G)/CO(G) = Bo/Po is a T-group of p'-order acting by conjugation on
Aoco(G)/(o(G) as power automorphisms: property (4) of matched extension. Hence
G/eo(G) is a T-group.

This completes the proof that G e W2. To see that G is supersoluble, use Theo-
rem 3.10. •

We now generalise the concept of a matched extension.

DEFINITION 4.5. Let G — YN, with N<G,NDY = 1 and both N and Y nilpotent.
Suppose that p i , p2,... ,pr > 5 are the primes in decreasing order which divide \G\
and put Ni, Yt for the Sylow p,-subgroups of N and Y respectively, 1 < i < r.

We define a generalised matched extension inductively as follows:

(i) If r = 1 and G = Y\ N\, then Y\ N\ is a special factorization of G.
(ii) If r > 1 and B\ is a generalised matched extension, G is a matched extension

of K,Â , by B,.

The last lemma now enables us to prove the following theorem.

THEOREM 4.6. Every generalised matched extension of nilpotent groups whose
orders are coprime to 6 is a supersoluble group in W2.

PROOF. We use induction on the number r of primes dividing the order of the
generalised matched extension G. If r = 1 then, in the notation of the definition
above, G is a p\ -group in W2, so we are done.

Suppose r > 1 and a generalised matched extension involving at most r — 1 primes
is a supersoluble #i-group. Then if G is a generalised matched extension involving
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r primes, we may write G — BxAi, where B\ is a generalised matched extension
involving the r — 1 primes P2,P3, • • • ,pr, where A, is a /^-group, and where the
extension BXA\ is matched. By induction B\ is supersoluble p',-group in >^. Hence
by Lemma 4.4, G is a supersoluble >^-group. This completes the induction. •

Conversely we show that generalised matched extensions give rise to all supersol-
uble ^-groups.

THEOREM 4.7. Let G be a supersoluble ^-group of order coprime to 6. Then G
has an expression as a generalised matched extension.

PROOF. We use induction on the number r of primes dividing \G\. If G is a
Px -group then, with Yx = G and Nx = 1 we see that G is a generalised matched
extension.

Suppose r > 1 and that supersoluble ^-groups with fewer than r prime divisors
of their orders are generalised matched extensions.

If pi is the largest prime dividing | G\, let A\ be the normal Sylow px-subgroup of
Gandle t5 ,beaHal lp ' r subgroupof G,sothatG = BXAX. WriteNi = [£ i ,A, ]and
Y\ = Ct, (Si). By induction B\ has an expression as a generalised matched extension.

By Lemma 4.2 (b) A] = Y\N\ is a special factorisation of A \ andB] is a supersoluble
p\-group, so (1), (2) of the definition of matched extension hold. We need to verify
that the remaining axioms (3)-(5) of matched extension hold for G = B\ A \.

First of all (3) holds because, by Theorem 3.10, Nx Bx is supersoluble.
To prove (4) we observe first that if A\ is abelian, then (4) is automatically satisfied

asA/ino;(Ai) = ^ViHAi = Â i and so N\/N\ nw(Ai) is trivial. So suppose that Y\ is
abelian but Ai is non-abelian. Then Yx c co(Ai) is immediate from Lemma 3.3 if Nx

is non-abelian; and if Aft is abelian and Â i c co(A\) then [TVi, Yx] c Nx D Yx = 1, so
A] is abelian, a contradiction. Hence, in this case, Yt c a>(A\). Therefore

Axa)(G)/co(G) = Ax/u>{G) C\AX= Ax/co{Ax) = Nx/Nx D o)(A,).

Next observe that co(G) = Pxco(A{) where Px is the subgroup of co(Bx) inducing
power automorphisms on A\. Since A! is non-abelian, Px = Ca)(B,)(Ai) by [2,
Theorem 5.3.2]. Hence, since G/co(G) is a T-group and

G/co(G) = (AIQ)(G)/(O(G))(BIQ)(G)/Q}(G)),

it follows that Bx acts as a group of power automorphisms on N\/N\ D oo(A\), as
required to confirm (4).

Finally, to prove (5) note that C ( B | ) (Ai) = CBl(A{) n co(B{), so the T-group
fii/P, = Bi/Cw(Bl)(Ai) is a subdirect product of Bx/o(Bx) and Bx/CBx(A\)- Since
A\,BX have coprime orders, C B , ( A I ) is just the intersection of the centralisers of
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the chief factors of G contained in A \. But since G is supersoluble, each of these
centralisers contains B\. It then follows that fli/CBlG4i) is abelian. Now (5) follows
from the following lemma. •

LEMMA 4.8. If H is a T-group and Mu M2 are normal subgroups of H for which
Mi n M2 = 1 and H/M2 is abelian, then (\H/M2\, |y3(///M,)|) = 1.

PROOF. Firstly y3(//) c M2 and so Mi n y3(//) = 1. Therefore

MH/Mi) = Yi(H)Mi/Mi = /»(//),

whereas H/M\ is isomorphic to a factor group of H/y3(H). The result follows since

by [7, 13.4.4]. D

With this lemma we have concluded our characterisation of supersoluble /^-groups
of order coprime to 6. Theorems 4.6-4.7 show that they are precisely the groups with
a generalised matched extension.

References

[1] A. AH, 'On the Wielandt length of a finite supersoluble group', Proc. Roy. Soc. Edinburgh Ser. A
130(2000), 1217-1226.

[2] C. Cooper, 'Power automorphisms of a group', Math. Z. 107 (1968), 335-356.
[3] K. Doerk and T. Hawkes, Finite soluble groups (Walter de Gruyter, Berlin, 1992).
[4] B. Huppert, Endliche Gruppen 1, Die Grundlehren der mathematischen wissenschaften Band 134

(Springer, Berlin, 1967).
[5] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, 2nd edition (Dover Publications,

1976).
[6] E. A. Ormerod, 'Groups of Wielandt length two', Math. Proc. Cambridge Philos. Soc. 110 (1991),

229-244.
[7] D. J. S. Robinson, A course in the theory of groups (Springer, New York, 1982).
[8] E. Schenkman, 'On the norm of a group', Illinois J. Math. 4 (1960), 150-152.
[9] H. Wielandt, 'Uberden Normalisator der subnormalen Untergruppen', Math. Z 69 (1958), 463-465.

Department of Mathematics
Quaid-I-Azam University
Islamabad 45320
Pakistan
e-mail: asif.ali@anu.edu.au

https://doi.org/10.1017/S1446788700008594 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008594

