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In the context of many applications of turbulent multi-phase flows, knowledge of the
dispersed phase size distribution and its evolution is critical to predicting important
macroscopic features. We develop a large eddy simulation (LES) model that can
predict the turbulent transport and evolution of size distributions, for a specific
subset of applications in which the dispersed phase can be assumed to consist
of spherical droplets, and occurring at low volume fraction. We use a population
dynamics model for polydisperse droplet distributions specifically adapted to a LES
framework including a model for droplet breakup due to turbulence, neglecting
coalescence consistent with the assumed small dispersed phase volume fractions.
We model the number density fields using an Eulerian approach for each bin
of the discretized droplet size distribution. Following earlier methods used in the
Reynolds-averaged Navier–Stokes framework, the droplet breakup due to turbulent
fluctuations is modelled by treating droplet–eddy collisions as in kinetic theory of
gases. Existing models assume the scale of droplet–eddy collision to be in the inertial
range of turbulence. In order to also model smaller droplets comparable to or smaller
than the Kolmogorov scale we extend the breakup kernels using a structure function
model that smoothly transitions from the inertial to the viscous range. The model
includes a dimensionless coefficient that is fitted by comparing predictions in a
one-dimensional version of the model with a laboratory experiment of oil droplet
breakup below breaking waves. After initial comparisons of the one-dimensional
model to measurements of oil droplets in an axisymmetric jet, it is then applied in
a three-dimensional LES of a jet in cross-flow with large oil droplets of a single
size being released at the source of the jet. We model the concentration fields
using Nd = 15 bins of discrete droplet sizes and solve scalar transport equations
for each bin. The resulting droplet size distributions are compared with published
experimental data, and good agreement for the relative size distribution is obtained.
The LES results also enable us to quantify size distribution variability. We find that
the probability distribution functions of key quantities such as the total surface area

† Email address for correspondence: aaiyer1@jhu.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8163-8564
https://orcid.org/0000-0001-6947-3605
mailto:aaiyer1@jhu.edu
https://doi.org/10.1017/jfm.2019.649


Population balance modelling in a large eddy simulation framework 701

and the Sauter mean diameter of oil droplets are highly variable, some displaying
strong non-Gaussian intermittent behaviour.

Key words: breakup/coalescence, turbulence simulation, multiphase flow

1. Introduction
An understanding of liquid droplet size distributions in turbulent flows is important

in the context of numerous natural and engineering processes. For instance, knowledge
of the droplet size distribution is important for predicting fate and transport of oil
from an underwater spill (North et al. 2015; Nissanka & Yapa 2016). The size of
oil droplets affects their rise velocity and can influence the entire plume’s transport
characteristics in the ocean (Chen et al. 2018). A review of recent developments
in oil spill modelling can be found in Nissanka & Yapa (2018). In combustion
of fuel sprays the droplet size distribution plays an important role, determining
atomization quality and spray combustion performance (Bossard & Peck 1996).
The size distribution also plays a significant role in cloud dynamics, while also
affecting the thermodynamic characteristics of the system (Liu et al. 1995; Igel &
van den Heever 2016). Population balance equations (PBEs), initially formulated
by Smoluchowski (1916) to study aggregation processes, are commonly used in
many problems involving particulate systems with particles of many sizes. The
basic formulation of PBEs has been extended by Hulburt & Katz (1964), Randolph
(1964) and Ramkrishna (1985) to include additional phenomena such as breakup,
coalescence, nucleation, condensation, etc. PBEs can be classified into four main
categories (Jakobsen 2014): method of moments, multi-class method, method of
weighted residuals and stochastic methods. In this paper we use the multi-class
formulation to study the evolution of polydisperse liquid droplets in a surrounding
fluid. In this method the continuous size range is divided into a number of small
contiguous subclasses, and the PBE is converted into a number of discretized transport
equations for each class (bin). Methods such as the method of classes (Marchal et al.
1988), the fixed pivot method (Kumar & Ramakrishna 1996) and the cell average
technique (Kumar et al. 2006) have been developed to discretize the PBE.

Coulaloglou & Tavlarides (1977) were among the first to introduce a simple
macroscopic formulation to study breakup and coalescence in an agitated liquid–liquid
dispersion (droplets in a liquid), typically in a turbulent flow. Over the years, a
considerable number of studies have been performed for steady-state size distributions
in stirred vessels (e.g. Coulaloglou & Tavlarides 1977; Prince & Blanch 1990; Tsouris
& Tavlarides 1994; Wang & Wang 2007, among many others). These models used
the average dissipation rate of turbulent kinetic energy to characterize the breakup,
an approach well suited for use in Reynolds averaged Navier–Stokes (RANS) k − ε
modelling, where the mean rate of dissipation 〈ε〉 is a primary field variable available
from the turbulence model. There have been several studies conducted in recent years
that focus on predicting droplet size distribution either through models based on a
RANS approach, or by using correlations for the mean size distribution (e.g. Bandara
& Yapa 2011; Brandvik et al. 2013; Johansen, Brandvik & Farooq 2013; Zhao et al.
2014a,b). More recently Pedel et al. (2014) used large eddy simulation (LES) coupled
with an Eulerian solver for the droplet phase to predict droplet concentrations using
the direct quadrature methods of moment (DQMOM). Neuber et al. (2017) used an
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Eulerian LES coupled with a sparse Lagrangian droplet method to study aggregation
and nucleation. Further work combining LES for the carrier flow with PBE for
droplets can be found in Seubert et al. (2012), Salehi, Cleary & Masri (2017) and
Sewerin & Rigopoulos (2017), the latter of which used LES for the carrier phase
coupled with a statistical Lagrangian approach for the droplets. However, Lagrangian
methods can become expensive for large number of droplets. Even though limited
to applications with relatively low volume fractions, Eulerian approaches can be
advantageous since they are not limited by the number of droplets, as the distribution
of droplets in each size range is described by a continuous concentration field. Yang
et al. (2016) used an Eulerian–Eulerian LES model to study bubble-driven buoyant
plumes in a stably stratified quiescent fluid. They showed that the plume structure
depended on the diameter of the droplets, but their LES only used a single bubble
size in each simulation. Thus, there is interest in modelling plumes of droplets
of many sizes and there is a need to extend LES to systems with polydisperse
size distributions. There is little existing body of literature of combining LES with
PBEs using the method of classes in the context of Eulerian descriptions of droplet
concentration fields. The present paper is devoted to developing and testing such a
tool.

The population balance equation is a transport equation that describes the evolution
of the number density field representing the population of a type of particles due to
advection, diffusion, breakup or coalescence. It can be written as

∂n(di, x, t)
∂t

+∇ · [v(di, x, t)n(di, x, t)] = Sb,i + Sc,i, (1.1)

where n(di, x, t) is the number density of droplets of diameter di, v(di, x, t) is the
droplet velocity, Sb,i and Sc,i are source terms for droplet breakup and coalescence
affecting droplets of diameter di (within bin i), respectively. The divergence is
calculated with respect to the spatial coordinate x. In this work we consider small
dispersed phase volume fractions and neglect droplet coalescence (Sc,i = 0). Effects
of evaporation, growth and aggregation have also been neglected in this work. The
droplet concentration transport velocity v(di, x, t) can be specified using the approach
of Ferry & Balachandar (2001) and Yang et al. (2016) that includes effects of drag,
buoyancy and relative acceleration (see § 4).

In order to close the problem, one needs a model for the source term Sb,i. A
number of models have been developed for breakup due to turbulent fluctuations. For
a turbulent flow, breakup due to shearing-off processes and due to interfacial instability
are often neglected. The turbulent fluctuations need to overcome the main resistive
forces in the droplet, namely surface tension and viscosity. Prince & Blanch (1990)
and Tsouris & Tavlarides (1994) treated the interaction between eddies and droplets
similar to collisions between molecules in kinetic theory of gases. This allowed them
to define a collision frequency based on the size of the eddy and droplet, and invoke
a model for their typical relative velocity at that scale. The requirement for breakup
in such a model is that the turbulent kinetic energy of the colliding eddy is greater
than the potential energy associated with the resistive forces of the droplet. Skartlien,
Sollum & Schumann (2013) and Zhao et al. (2014b) extended the model of Prince &
Blanch (1990) and Tsouris & Tavlarides (1994) to include the effect of viscosity in
the resistive force. It should be noted that there are numerous other droplet breakup
models in the literature based on criteria such as turbulent kinetic energy of the
droplet being higher than a critical value (Coulaloglou & Tavlarides 1977; Chatzi &
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James 1987), or the inertial force of colliding eddy exceeding the interfacial force of
the smallest droplet (Lehr & Mewes 1999), surface deformation and breakup due to
turbulent stresses of surrounding fluid (Martínez-Bazán, Montañés & Lasheras 1999a),
to name a few.

In most of the previous formulations, the scale of the colliding droplets and eddies
was assumed to be in the inertial range of turbulence. Hence Kolmogorov scaling for
the inertial subrange was used to estimate the magnitude of eddy-velocity fluctuations
at a particular scale. This precludes these models from being able to calculate the
breakup frequency for droplets that fall in or near the viscous range, e.g. below η up
to approximately 15η, where η is the Kolmogorov length scale. A unified treatment is
needed to extend these models to the entire spectrum of turbulence. Recently, Solsvik
& Jakobsen (2016) included the viscous range using a model energy spectrum
(Pope 2011) for the complete range of scales. Using a Fourier series transform, they
derived the second-order structure function from this spectrum including the viscous
range. The resulting expressions are somewhat complicated, owing to the particular
functional form of the viscous cutoff in spectral space. However, a more direct
approach and simpler expressions can already be found in the literature, based on
the Batchelor blending function (Batchelor 1951) written directly for the structure
function in physical space. In this study, we adopt this particular physical space
version for modelling the eddy-velocity fluctuations, since it affords more intuitive
understanding and more efficient numerical evaluations of the model terms.

A significant number of experimental studies have been conducted in stirred tanks
(Narsimhan, Ramkrishna & Gupta 1980; Calabrese, Wang & Bryner 1986; Sathyagal,
Ramkrishna & Narsimhan 1996) and have been used to measure the droplet breakup
frequency. However, it is challenging to relate the measured transient droplet size
distributions to models due to the difficulty in characterizing the turbulence in stirred
tanks which is highly anisotropic and spatially very heterogeneous. For instance, such
flows contain highly localized high shear regions near the surface of the impeller
blades and strong tip vortices shed by the blades.

There have been efforts to design suitable experiments in which the turbulence
is well characterized. A well-known reference is that of Martínez-Bazán et al.
(1999a) who designed and carried out a series of experiments where air bubbles
were injected into a fully developed turbulent water jet. This ensured that the
turbulence was well characterized and size distributions could be measured using
non-intrusive optical techniques. Eastwood, Armi & Lasheras (2004) injected droplets
of varying density, viscosity and interfacial tension into a fully developed water
jet and tracked particle size distributions using digital image processing techniques.
Brandvik et al. (2013) performed oil jet experiments in a very large cylindrical tank.
They measured droplet size distributions using an in situ laser diffractometer. Murphy
et al. (2016) used an oil jet in cross-flow to study the droplet breakup and resulting
size distributions. Their experiment consisted of a nozzle supported by a carriage that
was moved at a constant speed thus setting up a cross-flow. The size distribution
was measured non-intrusively using in-line holographic techniques. Zhao et al. (2016)
conducted a large-scale experiment of underwater oil release through a 25.4 mm
pipe. They measured size distributions using two LISSTs (laser in situ scattering
and transmissometry) in the range of 2.5–500 µm. Recently, Li et al. (2017) studied
the time evolution of subsurface oil droplets generated by breaking waves. They
performed experiments for varying wave energy and surface tension and measured
the generated size distribution using digital inline holography at two magnifications.
Such experiments, where the flow is well characterized and the size distributions can
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be measured non-intrusively, are ideal to use as comparisons for models and we shall
make use of such laboratory-scale oil droplet experimental data sets in the present
work.

Over the recent decade, progress has been made in simulating two-phase flows
using sufficiently fine spatial resolution to describe detailed deforming interfaces and
thus capture the formation of droplets from instabilities of liquid sheets (Desjardins,
Moureau & Pitsch 2008; Gorokhovski & Herrmann 2008; Herrmann 2010; Duret et al.
2012; Herrmann 2013). The aim is to, for example, simulate primary atomization
and determine the resulting droplet size distributions. The LES tool described in the
present work focuses on much coarser numerical meshes that cannot resolve such
detailed dynamics and assume, for example, that the size distribution resulting from
small-scale initial droplet formation processes is known.

The paper begins in § 2 with a description of the breakup model that is based on
prior approaches used in RANS or integral models (Prince & Blanch 1990; Tsouris
& Tavlarides 1994; Zhao et al. 2014b), extended here to include the correct scaling
for droplets in the viscous range and adapted for applicability in LES. The modelling
is focused on applications of LES where relatively coarse grids have to be employed
and the small-scale details cannot be resolved. The model contains an undetermined
multiplicative dimensionless parameter that is chosen by matching predictions of a
simplified version of the model to an experiment in breaking waves, and we then
verify its robustness under very different flow conditions (a round jet), as explained in
§ 3. An application to LES of a turbulent, droplet-laden jet in cross-flow is presented
in § 4, focusing on the droplet breakup and transport occurring in regions away from
the nozzle. In the present LES application, the nozzle details will not be resolved and
thus the initial breakup mechanisms of oil into large droplets near the nozzle will
be replaced by an appropriately chosen initial inflow condition of droplets of a given
diameter. The focus of the study will be on comparing the size distributions far away
from the nozzle with available experimental data, and to showcase the advantage of
LES in being able to predict variability and intermittency of the size distribution and
characteristic scales of the droplets. Conclusions are presented in § 5.

2. Droplet breakup model
The population balance equation described in (1.1), neglecting the effect of

coalescence and written using the droplet size (diameter di) as the internal coordinate,
is given by

∂n(di, x, t)
∂t

+∇ · [v(di, x, t)n(di, x, t)] = Sb(di, x, t), (2.1)

where n(di, x, t) is the number density of droplets in the ith bin representing droplets
of diameter around di, at location x at time t. The divergence is calculated with respect
to the spatial coordinate x. The source term due to breakup is written according to
Zhao et al. (2014b),

Sb(di, x, t)=
n∑

j=i+1

P(di, dj)g(dj, x, t)n(dj, x, t)− g(di, x, t)n(di, x, t). (2.2)

The first term on the right-hand side of (2.2) represents the birth of droplets of size
di due to the total contribution from breakups of larger droplets of diameter dj. The
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second term accounts for death of droplets of size di due to breakup. The factor
P(di, dj) is the probability of formation of a droplet of size di due to the breakup of a
parent droplet of size dj, and g(di, x, t) is the breakup frequency of a droplet of size
di (in bin i). The breakup probability can be related to the probability density function
β(di, dj), i.e. P(di, dj)= β(di, dj)δ(di), where δ(di) is the width of the bin centred at
di. Also note that the number density n(di, x, t) for discrete bins can be related to the
more general continuous number density distribution function n∗ according to

n(di, x, t)=
∫ di+1/2

di−1/2

n∗(d, x, t) d(d), (2.3)

where [di+1/2− di−1/2] is the ith bin width. In order to solve (2.1), models are needed
for the probability P(di, dj) and the breakup frequency g(di, x, t).

2.1. Model for the breakup probability
Models for the breakup probability function P(di, dj) (or β(di, dj)), can broadly be
classified as statistical, phenomenological or empirical (see Lasheras et al. 2002; Liao
& Lucas 2009). In this study we use the phenomenological model proposed by Tsouris
& Tavlarides (1994) that leads to a ‘U-shaped’ distribution. We keep in mind, however,
that experiments for bubble breakup (Martínez-Bazán, Montañés & Lasheras 1999b)
have led to other possible shapes for P(di, dj) and that there remains considerable
uncertainty about the best model to use. Here we proceed with the model of Tsouris
& Tavlarides (1994) because it is based on a relatively simple physical reasoning as
shown below.

The breakup is considered to be binary, and P(di, dj) is formulated based on
the formation energy required to form the daughter droplets of size di and a
complementary droplet to ensure volume conservation (Tsouris & Tavlarides 1994).
The formation energy is proportional to the difference in initial and final surface
areas according to

Ef (di, dj)=πσ [(d3
j − d3

i )
2/3
+ d2

i − d2
j ], (2.4)

where σ is the interfacial tension between the dispersed and continuous phase. It can
be shown using (2.4) that the breakup of a parent droplet into two equal size daughter
droplets is a maximum energy process. Substituting di = dj/21/3 in (2.4) we get a
maximum formation energy equal to

Ef ,max =πσd2
j (2

1/3
− 1). (2.5)

Equation (2.4) is minimized when di= 0, that is no breakup of the parent droplet. To
allow for breakup, a minimum diameter dmin is specified and the corresponding surface
formation energy is

Ef ,min =πσ [(d3
j − d3

min)
2/3
+ d2

min − d2
j ], (2.6)

where dmin = 1 µm in this study. Making the crucial assumption that the probability
of breakup of a drop of size dj leading to a droplet of size such that it falls in a bin
around di decreases linearly with the required formation energy and remains within
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the bounds specified above, the discrete breakup probability P(di, dj) can be written
as

P(di, dj)=
[Ef ,min + (Ef ,max − Ef (di, dj))]

j−1∑
k=1

[Ef ,min + (Ef ,max − Ef (dk, dj))]

, (2.7)

where Ef (di, dj) is the surface formation energy defined in (2.4). Also, we assume
that the bin sizes are logarithmically distributed. Thus (2.7) is meant to model the
discrete probability that a particle of size dj breaks up into a particle inside a bin
centred at di with a width of δ(log(di)), and its complement dc (to conserve volume).
This distribution is U-shaped, with a minimum probability for the formation of two
equally sized daughter droplets (when Ef (di, dj) = Ef ,max which leads to a maximum
of required energy), and probability maxima at the two ends (which have formation
energy minima).

Martínez-Bazán et al. (2010) derived constraints that apply to the droplet size
probability density function β(di, dj) for the breakup process to be volume conserving.
The discrete probability of forming a droplet in bin di must be equal to the probability
of formation of the complement in bin dc. The discrete breakup probability in (2.7)
conserves volume, since P(di, dj)= P(dc, dj) (we note that expressing this probability
in terms of a universal density β(di, dj) presents further challenges (Martínez-Bazán
et al. 2010) that are left for future analysis, while here we use the discrete version).

2.2. Model for breakup frequency
Modelling breakup based on encounter rates of turbulent eddies and their characteristic
fluctuations with droplets of a certain size has been a popular method in the literature.
The phenomenological model by Coulaloglou & Tavlarides (1977) postulates that a
droplet in a liquid–liquid dispersion breaks up when the kinetic energy transmitted
from droplet–eddy collisions exceeds the surface energy. Many other papers have
pursued this approach, mostly in the RANS context (e.g. Narsimhan, Gupta &
Ramkrishna 1979; Chatzi & James 1987). Here we follow the approach of Prince &
Blanch (1990) and Tsouris & Tavlarides (1994), where the droplet–eddy collisions
are treated akin to the of collisions between molecules in kinetic theory of gases.
The breakup frequency is computed as an integral over the product of a collision
frequency and a breakup efficiency according to

g(di)=K
∫ di

0

π

4
(di + de)

2ue(de)Ω(di, de) dne(de). (2.8)

Here di is the diameter of the droplet, de is the eddy size, ne(de) is the number density
of eddies of size de, ue(de) is the characteristic fluctuation velocity of eddies of size
de (in a frame moving with the advection velocity caused by larger eddies), Ω(di, de)
is a breakup efficiency and the integral is evaluated over all eddies, up to the size of
the droplet (i.e. for de up to de= di). A crucial assumption of the model is that eddies
larger than the scale of the droplet are assumed to be only responsible for advection of
the droplet, not contributing to collisions with the droplet that require relative velocity.
One could develop a ‘smoother’ model in which the lack of deformation due to eddies
larger than di is included as an additional cutoff behaviour in the function Ω(di, de).
Here we choose to include that cutoff behaviour by following earlier work (Tsouris &
Tavlarides 1994; Luo & Svendsen 1996) as a sharp cutoff, while lumping any possible
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dependencies on the exact cutoff scale into the unknown model parameter K, expected
to be of order unity.

The number density of eddies, ne(de), can be estimated from the energy spectrum
(Azbel 1981; Tsouris & Tavlarides 1994; Solsvik, Maaß & Jakobsen 2016), or more
simply by assuming the eddies to be space filling, i.e. ne(de) ∝ d−3

e . The latter
argument leads to dne(de)=C1d−4

e d(de), where C1 is a constant of order 1.
The eddy fluctuation velocity ue(r) written in terms of the two-point separation

distance, r, is assumed to be expressed based on the second-order longitudinal
structure function S2(r) as ue(r) ∼ [S2(r)]1/2. The structure function is defined
according to (Pope 2011),

S2(r)= 〈[uL(x+ reL)− uL(x)]2〉, (2.9)

where uL is the fluid velocity component in the direction of unit vector eL and
the angular brackets represent statistical averaging. In previous models (Tsouris &
Tavlarides 1994; Bandara & Yapa 2011; Zhao et al. 2014b) a Kolmogorov scaling
valid in the inertial range of turbulence was used for S2(r), leading to ue(r)∼ (εr)1/3.
However, this expression cannot be used if the size of the droplet is near the viscous
range of turbulence. In order to capture both inertial and viscous ranges, as well as a
smooth transition between the two ranges, we use the approach of Batchelor (1951)
with a blending function. In this approach, the structure function is given by

S2(r)=C2ε
2/3r2/3

[
1+

(
r
γ2η

)−2
]−2/3

, (2.10)

where η is the Kolmogorov length scale. We choose the usual value for the
Kolmogorov coefficient C2≈ 2.1 (Pope 2011). The parameter γ2= (15C2)

3/4
≈ 13 sets

the cross-over scale between the inertial and viscous range. We note that while most
prior models are for use in a RANS framework using the average energy dissipation,
ε, in LES we can use a local value of the instantaneous rate of dissipation averaged
over the grid scale, modelled as the subgrid-scale (SGS) dissipation rate. As a result,
even though (2.10) is based on K41 theory (Kolmogorov 1941), in LES we only
assume K41 scaling for the scales below the grid scale while intermittency in the
resolved range of scales can be explicitly computed, and its effects on breakup rates
taken into account in the LES model.

The breakup efficiency Ω(di, de) in (2.8) is the probability that a given eddy
interacting with the droplet has sufficient energy to overcome the resistive forces in
the system, namely surface tension and viscosity. It is assumed to be given by the
usual formation potential in terms of an exponential (Coulaloglou & Tavlarides 1977;
Prince & Blanch 1990)

Ω(di, de)= exp
(
−

Eσ (di)+ Eν(di)

Ee(de)

)
, (2.11)

where Eσ (di) is resistive energy associated with a droplet of size di due to surface
tension, Eν(di) is the viscous resistive energy and Ee(de) is the kinetic energy of the
turbulent eddy at scale de. The resistive surface tension energy Eσ is defined as the
integral of the formation energy Ef (d′, di) multiplied by a measure of the breakup
probability (see (2.7)):

Eσ (di)=

∫ di

0
c[Ef ,min + (Ef ,max − Ef (d′, di))]Ef (d′, di) d(d′), (2.12)
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where c is a normalization constant so that the integral of the probability between 0
and di is unity. Using (2.4), changing the integration to ξ ′ = d′/di and evaluating the
integral numerically, we obtain

Eσ (di)= 0.0702πσd2
i , (2.13)

where σ is the surface tension of the droplet. The viscous resistive energy of the
droplet at steady state can be expressed as (Calabrese et al. 1986; Skartlien et al.
2013; Zhao et al. 2014b)

Eν(di)= α
π

6
ε1/3d7/3

i µd

√
ρc

ρd
, (2.14)

where α ≈ 2, ρc and ρd are the carrier and droplet phase density, and µd is the
dynamic viscosity of the dispersed droplet phase. For Ee(de), the kinetic energy of the
turbulent eddy, we use the longitudinal structure function S2, defined in (2.10) applied
to all three coordinate directions for the eddy fluctuation velocity, ue. Assuming the
volume of the eddy to be equal to that of a sphere, with density equal to the carrier
phase density, the total energy contained in an eddy can be written as

Ee(de)=
3
2

(π

6
ρcd3

e

)
S2(de). (2.15)

In order to formulate a parameterization for the breakup frequency, here we identify
the important non-dimensional numbers of the system. The breakup frequency can
be rewritten as a function of the Reynolds number (Rei) based on droplet diameter
and a velocity scale defined as udi = (εdi)

1/3, the Ohnesorge number (Ohi) of the
dispersed phase controlling the relative importance of viscosity to surface tension of
the droplet, and the density and viscosity ratio of droplet to carrier flow fluid. These
non-dimensional numbers are defined below,

Rei =
ε1/3d4/3

i

ν
; Ohi =

µd
√
ρdσdi

; Γ =
µd

µc

(
ρc

ρd

)1/2

. (2.16a−c)

After some manipulation, equation (2.8) can be rewritten as

gi =K∗
1
τb,i

∫ 1

0
r−11/3

e (re + 1)2

1+

(
reRe3/4

i

γ2

)−2
−1/3

Ω(Ohi, Rei, Γ ; re) dre, (2.17)

where, re=de/di is the eddy size normalized by the droplet diameter, τb,i= ε
−1/3d2/3

i is
the breakup time scale for an eddy of size equal to that of the droplet as if it were in
the inertial range (it does not have to be) and Ω(Oh,Re, Γ ; re) is the non-dimensional
breakup probability,

Ω(Oh, Re, Γ ; re)= exp

−Γ f2

Re

[
1+

(
reRe3/4

γ2

)−2
]2/3

r−11/3
e

 , (2.18)

where
f2 = 0.14

Γ

ReOh2
+ 0.583. (2.19)
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All the non-dimensional prefactors appearing when rewriting (2.8) have been absorbed
into K∗. Equation (2.17) provides a frequency for droplet breakup that depends on
Rei, Ohi and Γ . Note that if we had only considered an inertial-range scaling for the
eddy fluctuation velocity, we can combine Re and Oh into a Weber number, defined
as We = Re2 Oh2. The breakup frequency would then only depend on We and Γ .
The integral represents a correction to the frequency calculated by solely considering
an eddy equal to the size of the droplet, by evaluating the effect of collisions of
eddies smaller than the droplet. If di falls in the viscous range, the integral cancels
the inertial-range scaling assumed by the prefactor τb,i= ε

−1/3d2/3
i so that this situation

is also accounted for. We note that the value of the integral giτb,i/K∗ in (2.17) will
inevitably depend on the assumed maximum eddy size interacting with the droplet,
which is currently taken to be exactly the droplet size di. However, if one were to take
a different upper integration limit (still of order di but not exactly di), the breakup
frequency may not change much since the modified value of the integral will be
largely (but not exactly) cancelled when fitting the prefactor K to data. This behaviour
is demonstrated in the next section.

In LES, gi needs to be evaluated on every grid point and timestep, depending on the
local Reynolds number Rei and the local rate of dissipation. Evaluating numerically
the integral in (2.17) at every timestep and grid point would be prohibitive in practice.
Hence, we develop an empirical fit to prior numerical integrations. The speedup
obtained from the fits is discussed in appendix A. We develop the parameterization for
a wide range of Reynolds and Ohnesorge numbers, for a fixed value of Γ . We define
gf (Re, Oh, Γ ) as the integral in (2.17), i.e. gf (Re, Oh, Γ ) = gi(Rei, Ohi, Γ ) τb,i/K∗,
and evaluate it numerically for a range of Re and Oh values for a fixed Γ . Then, a
fit can be developed in the following form,

log10(gf )= axb
+ cxd

− e, (2.20)

where x = log10 Re, and a, b, c, d, e are functions of Oh. Further details of the
functional form of the coefficients are provided in appendix A. The final model for
the breakup frequency (for a given value of Γ ) thus has the form

gi(Rei,Ohi; Γ )=
K∗

τb,i
10G(Rei,Ohi),

G(Rei,Ohi)= a[log10(Rei)]
b
+ c[log10(Rei)]

d
− e,

 (2.21)

where the fits for parameters a–e as functions of Oh are provided in appendix A for
a few representative values of Γ .

The breakup frequency model is thus complete except for the prefactor K∗ appearing
in (2.17). Its value is obtained by fitting results from an experiment (see next section),
and the fitted value will then be used subsequently for comparisons with other data
and for future applications.

3. Determining the value of K∗

3.1. Wave breaking experiment of Li et al. (2017)
In order to fit a specific value for the parameter K∗ we use the data of a breaking
wave experiment from Li et al. (2017). The experiments were performed in an
acrylic tank 6 m long, 0.6 m deep and 0.3 m wide. Breaking waves were generated
mechanically using a piston-type wave maker consisting of a vertical plate that
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Oil

0.25 m

z = -11.1 cm

z = -13 cm

Time

n-(z, t)

n-(z, 0)

z

FIGURE 1. (Colour online) (a) Sketch of the wave breaking experiment of Li et al. (2017).
(b) Schematic dependence of ni(z, t) on time and height for a particular droplet size,
starting from a step-function initial condition that is assumed to be well mixed initially
down to a depth of 13 cm below the surface and having zero concentration below. At
increasing times, turbulent diffusion smooths the step and droplets rise towards the surface
at different speeds depending on their size. The dotted horizontal line at z=−11.1 cm is
where the experimental data are available.

extends over the entire tank cross-section. The tank was filled with water up to a
height of 0.25 m. The wave height and characteristics were controlled by varying
the frequency and stroke of the vertical plate. Oil was placed on a patch at the
surface. The wave impingement and subsequent breakup processes were recorded
using 3 high-speed cameras. The droplet size distribution was measured using digital
inline holography. A sketch of the set-up is depicted in figure 1. The oil patch on
the surface was broken up into droplets by the plunging wave. The size distribution
generated due to this process was recorded at a depth of 11.1 cm from the free
surface. A simplified sketch of the evolution of the concentration of a particular
droplet size is shown in figure 1(b).

As shown by Li et al. (2017), the time evolution of the droplet size distribution at
the measurement location could be represented well by a simple model that includes
the effects of turbulent diffusion and droplet buoyancy only. Since the dissipation
rate was quite low at the measurement location, Li et al. (2017) neglected the effect
of droplet breakup in their model. Consequently, for the case of crude oil with
dispersants, the model under-predicted the number of smaller size droplets generated.
This is due to the fact that with the effect of dispersants, the surface tension of the
oil droplets was significantly lowered, resulting in droplet breakup despite of the
weak turbulent dissipation rate. The Weber number (We= 2ρ(εd)2/3d/σ ) based on the
droplet diameter for the case with dispersants is approximately We = 3, confirming
that the effects of droplet breakup are important. Our goal is to expand the model
of Li et al. (2017) by including breakup and select a value of K∗ that can achieve
improved agreement with their experimental data.

Adding the effect of breakup and following Li et al. (2017) in considering only
vertical diffusion and droplet rise velocity, the ensemble-averaged number density
n̄i(z, t) for a droplet of size di obeys

∂ n̄i(z, t)
∂t

+wr(di)
∂ n̄i(z, t)
∂z

=D(t)
∂2n̄i

∂z2
+

n∑
j=i+1

P(di, dj)g(dj)n̄j(z, t)− g(di)n̄i(z, t), (3.1)
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where z is the vertical coordinate, wr(di) is the buoyancy-induced rise velocity of
droplets of size di and D(t) is the turbulent diffusion coefficient. The daughter droplet
probability function P(di, dj) and the breakup frequency g are evaluated following the
model presented in § 2. The droplet rise velocity is calculated as a balance between
the drag and buoyancy force acting on a droplet.

wr(d)=

{
wr,S if Red < 0.2,
wr,S(1+ 0.15Re0.687

d )−1, 0.2< Red < 750,
(3.2)

where

wr,S =
(ρ0 − ρd)g d2

18µf
, (3.3)

and Red = ρ0wrd/µf is the droplet rise velocity Reynolds number (not to be confused
with the eddy Reynolds number Rei used to express the breakup frequency). The time-
dependent diffusion coefficient can be estimated using D(t)= kDu′(t)L(t), where u′(t)
is the time-dependent turbulent fluctuation (root-mean-square) velocity as measured in
the experiment and L(t) is the corresponding integral length scale, also measured. The
constant kD is known to be between 0.23 and 0.6 for diffusion of droplets in isotropic
turbulence (Sato & Yamamoto 1987; Gopalan, Malkiel & Katz 2008). We chose a
value of kD = 0.3 in accordance with Li et al. (2017) for this study. Li et al. (2017)
fit the values of u′(t) (in m s−1) and ε (in m2 s−3) with a power law in time. The
data can be represented as (ε/ε0)= (t/t0)

p and (u′/u′0)= (t/t0)
q where ε0≈ 0.2 m2 s−3,

u′0≈ 0.2 m s−1 and t0≈ 7 s. The exponents p and q can be related by p= 2q− 1, and
the data were fitted with q=−0.89 (Li et al. 2017). The integral length scale L(t) is
then calculated as u′(t)3/ε(t).

We solve (3.1) numerically for the number density of the oil droplets. We
discretize the size range into Nd = 70 bins and assume that at the initial time
all the concentrations are spatially homogeneous in the z direction down to an initial
intrusion depth of z = 13 cm (see figure 1). The concentration equations are solved
for each droplet size using a second-order Crank–Nicholson temporal discretization
method. The boundary condition at the bottom of the domain, at z=−25 cm is that
of no flux, i.e. n̄iwr − D(∂ n̄i/∂z) = 0. A Neumann boundary condition is applied at
the top surface, i.e. (∂ n̄i/∂z)= 0. We initialize the concentration of each diameter bin
with the measured concentration at z = −11.1 cm which was recorded after 5 s of
impingement in the experiment. We integrate the model using different values of K∗
ranging from 0 to 1.

In figure 2 we compare the modelled size distributions (lines) to the experimental
data (symbols) at various times, for K∗= 0.2 and K∗= 1, at the measurement location
z=−11.1 cm. Since the initial condition (black circles in figure 2) already includes
the effects of significant initial breakup of the oil, a size distribution is already formed.
Since the energy dissipation at the point of measurement, z=−11.1 cm is relatively
low, the rate of further breakup is not very large and thus the effect of K∗ in the model
is subtle. Nevertheless, close inspection shows that there is too much breakup effect
for the large droplets for K∗= 1, as we can see that the number density of the larger
droplets is lower than the experimental data, especially for later times. Qualitatively,
it appears that K∗ = 0.2 captures the distribution slightly better, for both small and
large droplets at the various time instants. We also calculate the size distribution in
(3.1) using a coarser discretization of Nd = 15 bins. The resulting number density n̄
is shown in figure 2(a) at t = 55 s using green stars. We see that for this coarser
resolution there is a good agreement with the Nd = 70 case.
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FIGURE 2. (Colour online) Time evolution of the droplet size distribution for two values
of K∗, at the measurement location. The symbols correspond to the experimental data,
t= 5 s (E) represents the initial condition where experiment and simulation are matched,
t = 15 s (∗), t = 35 s (@), t = 55 s (6), while the lines correspond to the simulation,
t= 15 s (- - -), t= 35 s (-·-·) and t= 55 s (· · ·). The green stars (?) in (a) correspond to
the size distribution at t= 55 s using Nd = 15 bins.

In order to make a quantitative comparison we define an error measure E as the
integrated squared difference between the logarithmic experimental and modelled size
distributions. The error is calculated for each droplet size, and integrated over all bins
(the bin size varies logarithmically),

E =
〈

imax∑
imin

[log10(n̄expt(di))− log10(n̄mod(di))]
2 δdi

di

〉
t

, (3.4)

where δdi is the bin width, n̄expt refers to the experimental size distribution and n̄mod is
the modelled one. The maximum diameter at which the experimental data are reported
is d≈ 500 µm. Therefore, we select imax= 52 corresponding to d= 505 µm. And we
use imin=4 corresponding to d=86 µm. The error is averaged over the three available
times, t= 15 s, 35 s and 55 s.

As can be seen from figure 3, the absolute value of the error is smallest at K∗≈ 0.2
and hence this value is chosen as the fitted parameter for future applications of the
model. Note that K∗ = 0 corresponds to the case without breakup. We can see from
figure 3 that the error is larger, showing the improved agreement when including the
breakup term in the model.

As stated earlier in the text, previous breakup models use an inertial-range scaling
for the eddy fluctuation velocity for the entire range of scales,

u2
e = 2.1(εde)

2/3. (3.5)

This approach results in overestimated velocities of eddies in the viscous range. In
order to illustrate the net effects of this overestimation of turbulence at small scales
in the overall model predictions, we can use (3.5) in (2.8) to compute the breakup
frequency using K∗ = 0.2 for this scaling of eddy velocity (through numerical
integration). We solve (3.1) and plot the resulting size distributions in figure 4.
Figure 4(a) compares the computed size distributions with the experimental data. We
see that there is too much breakup effect resulting in too few of the larger droplets
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0.030 0.25 0.50
K*

0.75 1.00

FIGURE 3. Average square error between predicted and measured logarithms of number
densities averaged over three times during the evolution, at the measurement position, as
a function of the breakup constant K∗ assumed in the model.
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FIGURE 4. (Colour online) Time evolution of the droplet size distribution for K∗ = 0.2.
Panel (a) uses an inertial scaling of ue. In (b) we plot the effect of using a normal
distribution proposed by Coulaloglou & Tavlarides (1977). The symbols correspond to
the experimental data, t = 5 s (E) represents the initial condition where experiment and
simulation are matched, t= 15 s (∗), t= 35 s (@), t= 55 s (6), while the lines correspond
to the simulation, t= 15 s (- - -), t= 35 s (-·-·) and t= 55 s (· · ·).

and an increase in the concentration of the intermediate size droplets. In order to
obtain a better agreement with the experiment we would need to set K∗ ∼ O(10−2).
Thus, we conclude that in order to maintain reasonable range of value for the
parameter K∗ (which is expected to be of order unity), it is important to capture both
the inertial and viscous range scalings as in (2.10) for the eddy fluctuation velocity.

We can also study the effect of using a different breakup probability model
β(di, dj). We use a truncated normal distribution of Coulaloglou & Tavlarides (1977)
for simplicity. In this case it is assumed that the daughter droplet sizes for a parent
drop of diameter dj are normally distributed about a mean value, d̄= dj/21/3, i.e.

β(di, dj)=
1

s
√

2π
exp

[
−
(di − d̄)2

2s2

]
, (3.6)
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FIGURE 5. (Colour online) We depict the effect of changing the maximum diameter
size on the size distribution and breakage frequency. In (a) the symbols correspond to
the experimental data, t = 5 s (E) represents the initial condition where experiment and
simulation are matched, t= 15 s (∗), t= 35 s (@), t= 55 s (6), while the lines correspond
to the simulation using K∗= 0.2, t= 15 s (- - -, red), t= 35 s (-·-·) and t= 55 s (· · ·). The
green thick dashed line (- - -, green thick) corresponds to the case where de,max= 1.2di and
K∗ = 0.1 was used to calculate g(di). In (b) we compare the resulting breakup frequency
for the two cases, de,max = 1.2di (- - -, black) and de,max = di (——).

where s = dj/(3 × 21/3). This gives us a maximum probability for equal volume
breakup. We plot the resulting size distributions for K∗ = 0.2 in figure 4(b). We
observe a bump in the size distribution at d≈ 300 µm and a more rapid cutoff of the
large droplets as compared to figure 2(a). Additionally, we do not find an optimum
value of K∗ that minimizes (3.4), i.e. the error grows with increasing K∗. Hence, we
may conclude that the form of the particular droplet breakup probability distribution
is also important, though it plays a weaker role as compared to the effect of including
the viscous range for this particular wave breaking case.

We demonstrate the effect of an increase in the assumed maximum eddy size
allowed to break the droplets (upper limit of integration in (2.12)) in figure 5. We
find that for a maximum eddy size 20 % larger than the droplet size (de,max = 1.2di),
the fitted prefactor is reduced to K∗ = 0.1. Using this value of K∗ we see from
figure 5(a) that the steady-state size distribution is in good agreement with case
where de,max = di and K∗ = 0.2. Clearly, however, the resulting breakup frequency
shows some dependence on the upper cutoff of the integral (figure 5b).

3.2. Breakup of oil in a turbulent jet (Eastwood et al. 2004)
In order to begin testing the model when applied to a system with different flow
properties than the case for which K∗ was fitted, we consider the experiment by
Eastwood et al. (2004). Oil droplets of varying density, viscosity and interfacial
tension are injected continuously at the centreline in the fully developed region
of a turbulent water jet. The downstream evolution of the centreline velocity and
dissipation rate was well characterized and found to obey classic scalings of a
turbulent round jet,

U0

U(x)
=

1
Cu

(
x

Dj
−

x0

Dj

)
,

εDj

U3
0
=C

(
x

Dj
−

x0

Dj

)−4

, (3.7a,b)

where Cu = 4.08 and C= 36 are empirical constants. The virtual origin x0/Dj = 5.47
was found by fitting the experimental data with (3.7). The breakup and downstream
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Oil dmax (mm) We ρd (kg m−3) µd (Pa s) σ (N m−1)

Heptane 1.9 10 684 5.00× 10−4 4.8× 10−2

Olive oil 1.91 30 881 7.19× 10−2 2.0× 10−2

10 cSt silicone oil 1.92 20 936 9.70× 10−3 3.5× 10−2

50 cSt silicone oil 1.81 20 970 5.09× 10−2 3.7× 10−2

TABLE 1. Dispersed fluid properties.

evolution of oil droplets were tracked using digital image processing techniques
(Eastwood et al. 2004). The authors defined a characteristic droplet size dmax whose
number density n(dmax) can only change due to its own breakup but cannot increase
due to breakup of other (larger) droplets. This condition isolates the effect of the
breakup frequency on the evolution of the number density. Mathematically the
evolution of the size distribution can be tracked using (2.1), where for the size
dmax we can drop the first term in (2.2). Additionally for the quasi-one-dimensional
steady-state jet flow considered, we can write the PBE for the largest size as

∇x · [v(dmax, x)n(dmax, x)] =−g(dmax, x)n(dmax, x), (3.8)

where n(dmax, x) = N(dmax, x)/Vw, with Vw the volume of the interrogation window
and N(dmax, x) the total number of droplets measured in the window at x. The droplet
velocity v(dmax, x) can be approximated by the local mean velocity of the turbulent
jet, U(x). Equation (3.8) can then be written for the number of droplets N(dmax, x) as,

d
dx
[U(x)N(dmax, x)] =−N(dmax, x)g(dmax, x). (3.9)

The maximum diameter dmax represented the size where at least 80 % of the volume
of the distribution was contained in droplets smaller than dmax. The overall decay
of N(dmax, x) with downstream distance was found to be similar when this criterion
was enforced, thereby ensuring that the evolution of the largest size class is captured.
In order to validate our model with the experiments, we solve (3.9) using a fourth-
order explicit Runge–Kutta method (ode45 in MATLAB). Equation (2.17) is used to
calculate the breakup frequency g(dmax, x) with K∗= 0.2 for all the oils considered. A
summary of the physical properties of the different oils used for the simulation along
with the corresponding size dmax is provided in table 1.

We compare the model predictions with the experimental data in figure 6. We see
that the model does a good job of capturing the decay of the number of droplets for
the 50 cSt silicone oil and the olive oil cases. For heptane and 10 cSt silicone oil
the predicted decay is too rapid and K∗ = 0.2 appears not to be the optimal value,
while K∗ = 0.1 and K∗ = 0.15 are seen to give better agreement with the data. We
have not found any obvious parameter dependencies that could explain the different
K∗. So based on the argument that K∗ = 0.2 gives a good match for a majority of
the applications considered, we proceed to use this value for the LES test case in the
next section.

4. Application to large eddy simulation of jet in cross-flow
Large eddy simulations capture the large- and intermediate-scale turbulent

motions (depending on the grid resolution), and only require modelling of the
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FIGURE 6. (Colour online) Evolution of N(dmax, x) with downstream distance for the four
different oils in table 1. The symbols correspond to the experimental data of the different
oils; 50 cSt silicone oil (E), olive oil (6), 10 cSt silicone oil (@) and heptane (∗). The
different lines correspond to the model; 50 cSt silicone oil (——), olive oil (-·-·), 10
cSt silicone oil (· · ·) and heptane (- - -) with K∗ = 0.2. Also shown are the model for
heptane (––E––) with K∗ = 0.1 and 10 cSt silicone oil (· · ·E· · ·) with K∗ = 0.15.

unresolved subgrid-scale turbulence effects. While the cost of LES is higher than
Reynolds-averaged Navier–Stokes simulations, LES provides the ability to resolve
unsteady spatially fluctuating phenomena at least down to scales of the order of the
grid scale. In this work we will highlight this strength of LES in the context of
simulations of the evolution and transport of size distributions of polydispersed
oil droplets in water. We first describe the LES model equations, present the
simulation set-up for LES modelling of a jet in cross-flow and then present results
and comparisons with experimental data.

4.1. LES equations for Eulerian description of scalar transport
We adapt the code used by Yang, Meneveau & Shen (2014) and Yang et al. (2015)
for simulations of hydrocarbon plume dispersion in ocean turbulence to simulate here
a turbulent round jet with an imposed cross-flow and with oil droplets being released
near the source of the jet. Let x = (x, y, z) with x and y the horizontal coordinates
and z the vertical direction, and let u = (u, v, w) be the corresponding velocity
components. The jet and surrounding fluid are governed by the three-dimensional
incompressible filtered Navier–Stokes equations with a Boussinesq approximation for
buoyancy effects,

∇ · ũ= 0, (4.1)
∂ũ
∂t
+ ũ · ∇ũ=−

1
ρc
∇P̃−∇ · τ d

+

(
1−

ρd

ρc

)∑
i

(Vd,iñi)ge3, (4.2)

∂ ñi

∂t
+∇ · (ṽiñi)+∇ · πi = S̃b,i, i= 1, 2 · · ·Nd. (4.3)
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A tilde denotes a variable resolved on the LES grid, ũ is the filtered fluid velocity, ρd

is the density of the droplet, ρc is the carrier fluid (sea water) density, Vd,i = πd3
i /6

is the volume of a spherical oil droplet of size di, τ = (ũu− ũũ) is the subgrid-scale
stress tensor with deviatoric part, τ d

= τ − [tr(τ )/3]I where I is the identity tensor,
P̃ = p̃/ρr + tr(τ )/3 + |ũ|2/2 is the pseudo-pressure, with p̃ the resolved dynamic
pressure, ñi is the resolved number density of the droplet of size di and e3 is the
unit vector in the vertical direction. The filtered version of the transport equation for
the number density ñi(x, t; di) is given by (4.3). The term πi = (ṽini − ṽiñi) is the
subgrid-scale concentration flux of oil droplets of size di (no summation over i implied
here).

Closure for the SGS stress tensor τ d is obtained from the Lilly–Smagorinsky
eddy viscosity model (Smagorinsky 1963), τ d

ij = −2ντ S̃ij = −2(cs∆)
2
|S̃|S̃ij, where

S̃ij = (∂ ũi/∂xj + ∂ ũj/∂xi)/2 is the resolved strain rate tensor, ντ is the SGS eddy
viscosity and ∆ is the grid (filter) scale. The Smagorinsky coefficient cs is determined
dynamically during the simulation using the Lagrangian averaging scale-dependent
dynamic (LASD) SGS model (Bou-Zeid, Meneveau & Parlange 2005), which accounts
for spatial inhomogeneity. The SGS scalar flux πi is modelled using an eddy-diffusion
SGS model. We use the approach of prescribing a turbulent Schmidt and Prandtl
number, Prτ = Scτ = 0.4 (Yang et al. 2016). The SGS flux can then be parameterized
as πn,i =−(ντ/Scτ )∇ñi

The LES code with the LASD model has been used in a number of prior LES
studies (see Porté-Agel, Meneveau & Parlange 2000; Tseng, Meneveau & Parlange
2006; Yang et al. 2014). With the evolution of oil droplet concentrations being
simulated, their effects on the fluid velocity field are modelled and implemented in
(4.2) as a buoyancy force term (the last term on the right-hand side of the equation)
using the Boussinesq approximation. A basic assumption for treating the oil droplets
as an active scalar field being dispersed by the fluid motion is that the volume and
mass fractions of the oil droplets are small within a computational grid cell.

The droplet transport velocity ṽi is calculated by an expansion in the droplet time
scale τd,i= (ρd + ρc/2)d2

i /(18µf ) (Ferry & Balachandar 2001). The expansion is valid
when τd,i is much smaller than the resolved fluid time scales, which requires us to
have a grid Stokes number St∆,i= τd,i/τ∆� 1, where τ∆ is the turbulent eddy turnover
time at scale ∆. The transport velocity of droplets of size di, ṽi, is given by (Ferry
& Balachandar 2001)

ṽi = ũ+wr,ie3 + (R− 1)τd,i

(
Dũ
Dt
+∇ · τ

)
+O(τ 3/2

d,i ), (4.4)

where wr,i is the droplet terminal (rise) velocity, e3 is the unit vector in the vertical
direction and R = 3ρc/(2ρd + ρc) is the acceleration parameter. A more detailed
discussion of the droplet rise velocity in (4.4) can be found in Yang et al. (2016).

The term S̃b,i in (4.3) represents the rate of change of droplet number density due
to breakup and is modelled using (2.7) and (2.21) described in § 2. In implementing
the model, when evaluating the filtered source term, we use the filtered parameters
(e.g. grid-scale dissipation rate, etc.), that is to say, we assume g̃n≈ g̃ñ, and further
that ˜g(ε, . . .)≈ g(ε̃, . . .). This means that we neglect the subgrid correlations between
locally fluctuating dissipation rates at scales smaller than the grid scale and subgrid
fluctuations in the concentration field. The neglect of such subgrid-scale contributions
to the modelled source terms must be kept in mind, especially for applications at very
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FIGURE 7. (Colour online) Sketch of the simulation domain and dimensions.

high Reynolds numbers when the Kolmogorov scale is much smaller than the grid
scale where further refinements and new subgrid models may be required.

The breakup rate gi is evaluated using the fits that depend on the local Reynolds
number expressed in terms of the local rate of dissipation. From the SGS model, the
local rate of dissipation at the LES grid scale is given by

ε(x, t)= 2(cs∆)
2
|S̃|S̃ijS̃ij. (4.5)

In order to capture a range of sizes the number density is discretized into Nd = 15
bins for droplets between d1 = 20 µm up to dNd = 1 mm. The droplet size range is
discretized according to

di+1 = 2pdi, i= 1, 2, . . . ,Nd, (4.6)

where, p = 0.403. We then solve Nd separate transport equations for the number
densities ñi(x, t; di) with i= 1, 2, . . . ,Nd.

The equations (4.1) and (4.2) are discretized using a pseudo-spectral method on a
collocated grid in the horizontal directions and using centred finite differencing on
a staggered grid in the vertical direction (Albertson & Parlange 1999). The velocity
field is advanced using a fractional-step method with a second-order Adams–Bashforth
scheme for the time integration. The transport equations for the droplet number
densities, equation (4.3), are discretized as in Chamecki, Meneveau & Parlange
(2008), Yang et al. (2014) and Yang et al. (2015), by a finite-volume algorithm
with a bounded third-order upwind scheme for the advection term (Gaskell & Lau
1988). This approach prevents the appearance of negative local concentrations that
tend to occur when using spectral methods. Information between the finite-volume
and pseudo-spectral grids is exchanged using a conservative interpolation scheme
developed by Chamecki et al. (2008).

4.2. Simulation set-up
A sketch of the simulation domain is shown in figure 7. We simulate a turbulent
jet with imposed cross-flow aiming to reproduce the experiments of Murphy et al.
(2016), who studied a turbulent oil jet in cross-flow and measured droplet size
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distributions using a submersible digital inline holography technique. The experiments
were carried out in a 2.5 m× 0.9 m× 0.9 m acrylic tank. The injection nozzle was
connected to a carriage, driven by a stepper motor to generate desired cross-flow
speeds. The injection nozzle had a Dexpt = 4 mm diameter orifice and was located at
a distance of 0.14 m from the bottom of the tank. The oil was injected at a flow rate
of Q= 1.9 l min−1, (i.e. an injection velocity of Uj,expt = 2.5 m s−1) and the carriage
was towed at a speed of Uc= 0.15 m s−1. In the experiments performed, the number
of droplets was measured using a holocam fixed at the centre of the tank in the
horizontal plane, and at a vertical distance of 0.47 m from the nozzle exit. It thus
sampled different sections of the jet in the cross-stream direction in the course of its
evolution. Numbers of droplets in various size bins were measured at two times, at
t= 3.4 s and t= 6.9 s. Additionally, the total oil distribution calculated by summing
over five time measurements was recorded. As the nozzle in the experiments moved
with a constant speed of 0.15 m s−1, this corresponds to a downstream location of
measurement at x = 0.76 m and x = 1.3 m respectively, in a frame moving with
the jet nozzle (as will be done in the simulation). The total oil concentration at
the measurement location height corresponds to the sum of the number of droplets
measured as a function of downstream distance. In the experiments, the droplet
size distributions were measured in three realizations of the experiments, hence
the resulting size distribution and droplet concentrations were not fully statistically
converged but the shape of the size distribution (relative size distribution) was well
captured in the measurements.

As shown in figure 7, the simulations are performed in a rectangular box of size
(Lx,Ly,Lz)= (2, 0.781, 1) m in which the jet is stationary but a constant inflow (cross-
flow) velocity is prescribed. The domain size is chosen to mimic the experimental set-
up and the length is sufficiently large to capture the complete turning of the jet. The
cross-flow is imposed along the x direction while the jet is pointed in the z direction.
In order to handle the inflow and outflow conditions at the two boundaries in the x
direction within the code that uses a Fourier-series-based pseudo-spectral method, we
specify a fringe zone that starts at x= 1.666 m, which damps out the velocity towards
the inflow value. The simulations use a grid with Nx × Ny × Nz = 384 × 150 × 384
points for spatial discretization, and a timestep 1t=0.0002 s for time integration. The
resolution in the horizontal directions is 1x=1y= 5.2 mm, and is 1z= 2.6 mm in
the vertical direction for the finite difference method. Since the latter can be regarded
as requiring approximately twice as much resolution for the same accuracy, we regard
the overall numerical resolution to be approximately 5.2 mm.

The injected jet is modelled in the LES using a locally applied vertically
upward pointing body force, since at the LES resolution used in the simulation
it is not possible to resolve the small-scale features of the injection nozzle. The
applied force is spatially smoothed in a region over three grid points in x, y and
z using a super-Gaussian smoother (of order 5 and width σG = 1x) centred at
(x, y, z)= (0.25, 0.39, 0.85) m.

The resulting injection velocity is controlled by the strength of the imposed body
force. Since the details of the nozzle cannot be resolved, the body force is applied at a
location downstream of the real nozzle, where the jet in the experiment is expected to
have grown to a scale at which the numerical grid is sufficient to resolve at least the
mean velocity profile. Using a classical round jet without cross-flow for calibration,
the force is chosen such that the resulting centreline velocity in the LES matches the
mean centreline velocity expected for the experiment at that location. More details
are provided in appendix B. The location where the body force is applied is found to
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ρd (kg m−3) νd (m2 s−1) σ (N m−1) ρc (kg m−3) Γ

864 1.02× 10−5 1.9× 10−2 1018.3 10.5

TABLE 2. Physical properties of fluids used in the simulation.

Re=
UJDJ

νc
We=

2ρc〈ε〉
2/3d5/3

σ
UJ (m s−1) DJ (mm) Dexpt (mm)

12 500 10 1.6 7.8 4

TABLE 3. Simulation parameters.

be 38.2 mm downstream (i.e. above) of the experimental nozzle’s virtual origin (see
appendix B), while the injection velocity in the simulation is determined to be Uj,sim=

1.6 m s−1, i.e. lower than that in the experiment owing to the fact that the centreline
velocity has already decayed at the simulated injection point. A uniform cross-flow
of Ucross = 0.15 m s−1 is imposed at the inflow boundary in order to simulate a jet
in cross-flow. The droplet number density fields are initialized to zero everywhere.
Oil droplets of size d = 1 mm are injected at the jet source after a delay of 1 s to
allow the flow to be established. The number density transport equation for the bin
corresponding to the largest droplets (i=Nd with di = 1 mm) contains a source term
on the right-hand side which represents injection with a specified volume flow rate
that matches the experimental value of Q = 1.9 l min−1 as in Murphy et al. (2016).
The source is distributed over two grid points in the z direction with weights 0.25
and 0.75 and over three grid points in the x and y directions centred at x= 0.245 m,
y= 0.385 m with weights 0.292 for the centre and 0.177 for the neighbouring points.
The physical properties of the oil and the simulation parameters are given in tables 2
and 3. The Weber number (We) has been calculated using the near-nozzle dissipation
〈ε〉 = 30 m2 s3 and the injection droplet size d= 1 mm.

The jet in cross-flow is simulated for a total of 26 s, corresponding to 13 × 104

timesteps. The oil droplets are released after t= 1 s giving sufficient time for the jet
to become fully turbulent. Starting from t= 12 s, 350 three-dimensional snapshots of
the entire simulation domain are recorded for statistical analysis with an interval of
0.04 s (200 timesteps) between each snapshot.

4.3. Results
In figure 8 we show contour plots of instantaneous number density in logarithmic
scale (log10(ñi)) for four representative droplet sizes on the mid y-plane as a function
of x and z. The largest droplet size is in figure 8(a) and the smallest one is in
figure 8(d). The spatial distributions of the number densities for different droplet
sizes show distinct qualitative behaviours. The plumes of the smaller droplets appear
significantly more dispersed than those of the larger sizes, showing some presence
also in the bottom portions of the domain and clear effects of vertical column vortices.
The largest droplets are more concentrated towards the upper portions of the overall
plume (consisting of all size bins) as expected from their larger rise velocity.

Figure 9 shows the time-averaged number density fields of the various droplet sizes
at the mid y-plane. The maximum concentration for each bin size occurs in the near-
nozzle region where the energy dissipation is also the highest and thus the breakup
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FIGURE 8. (Colour online) Contour plots of instantaneous concentration fields at the
midplane of the jet. The concentration is plotted in logarithmic scale. Panel (a) is the
concentration of the droplet of size 1000 µm, (b) for d = 432 µm, (c) for d = 107 µm
and (d) for d= 20 µm.

rate is fastest. The larger droplets are more buoyant, having a larger rise velocity and
thus their average plume has a higher inclination angle with respect to the cross-flow
direction.

To make a quantitative comparison with the experiments we compare droplet size
distributions measured at the two cross-stream locations indicated in figure 7. The
measurement locations are centred at a vertical distance of 42 cm above the nozzle
(see appendix B). The width of the bins used in the experiments is not necessarily
the same as that used in the simulation. In order to make comparisons with the
experiments, we define a number density normalized by the bin width, i.e.

n∗i =
ñi

δdi
, (4.7)

here ñi is the number of droplets per m3 of fluid in bin i, δdi= (1/2)(di+1− di−1) for
i = 2 to 14, δd1 = d2 − d1 and δd15 = d15 − d14. This normalization ensures that the
result is conceptually independent of the discretization of the size range, i.e. the bin
width. The simulated number density fields are averaged in time and the normalized
time-averaged number density n∗i in each bin is obtained.

Since the experimental data are not fully converged statistically, a comparison of
the average total oil concentration (integrated over all bins) between experiment and
simulation yielded differences of factors of 1.4 and 3.7 at downstream locations
corresponding to x = 0.76 m and x = 1.3 m respectively, in this case. Therefore,
here we focus the comparison between experiment and simulation on the shape of
the resulting size distribution rather than the total concentration. In particular, we
normalize the size distribution for both the experiment and the simulation by the
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FIGURE 9. (Colour online) Time-averaged concentration fields at the midplane of the jet
plotted in logarithmic scale. Panel (a) is the concentration of droplets of size 1000 µm,
(b) shows the concentration field for d = 432 µm, (c) shows the concentration field for
d= 107 µm and (d) shows the concentration field for d= 20 µm.

total volume concentration (n̄∗i × Vi) summed over the entire size range, where Vi

is the volume of a droplet of size di, as defined earlier. We define the relative size
distribution, N∗i according to

N∗i =
n∗i∑

j

(n∗j Vj)δdj

. (4.8)

Figure 10 depicts the log of the total volume-averaged concentration of oil,
log10(

∑
i ñiVi). The black squares show the locations of the measurement volumes

used to obtain the size distributions. We compare the relative size and volume
distributions obtained from the simulations with the experimental data in figures 11–13.
Panel (a) depicts the relative size distribution and (b) shows the relative volume
defined by N∗i Vi, where Vi is the volume of a particular bin. The data reported in the
experiment represent an average over three realizations recorded during 1 s. In the
simulation, the nozzle is fixed, and so the measurement at t= 3.4 s for the experiment
translates to a window between x= 0.76–0.91 m. We chose a region from y1= 0.37 m
to y2 = 0.4 m and z1 = 0.56 m to z2 = 0.59 m for our measurement volume. We can
see that the simulation captures the overall relative size volume distribution at this
location, although the experimental data have large scatter. The number density for
the smallest droplet sizes are higher in the simulation than in the experiment, and
we do not observe the dip seen in the experimental data. The higher number density
for the smaller sizes seen in the LES results may be due to the fact that the breakup
probability function favours the formation of small droplets according to the model
equation used for P(di, dj). The reported data are not statistically converged and
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FIGURE 10. (Colour online) Contour plot of the logarithm of the averaged total volume
concentration of oil showing the measurement location at x= 0.76 m and x= 1.3 m.
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FIGURE 11. (Colour online) Comparison of LES model at x= 0.76 m for mono-dispersed
injection (- -E-) and bi-dispersed injection (- -E· · ·), and experimental data from (Murphy
et al. 2016) measured at the corresponding time (∗). (a) Relative size distribution from
LES, (b) relative volume distribution.

the experiment can only measure droplets with diameter larger than approximately
20 µm.

In order to explore the sensitivity of the results to the assumed initial size
distribution at the injection point, we perform a second simulation in which instead
of placing the entire volume injection rate into a single bin at 1 mm, it is distributed
equally among the two largest bins. As shown in figure 11 (circles with dot dashed
line), the results for droplets smaller than 400 µm are the same and are quite robust
to details of the injection distribution at the large droplets.

Figure 12 shows the normalized size distribution at t = 6.9 s for the experiment
corresponding to a window of x = 1.285–1.435 m for the simulation. We see that
the relative size and volume distribution is well matched for this later time, now
also including the smaller droplets. Finally, figure 13 shows the total normalized
size distributions for the experiment. The total size distribution was measured in
the experiment using data from 5 time instances corresponding to a spatial window
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FIGURE 12. (Colour online) Comparison of LES model at x = 1.3 m (- -E-), and
experimental data from (Murphy et al. 2016) measured at the corresponding time (∗).
(a) Relative size distribution from LES, (b) relative volume distribution.
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FIGURE 13. (Colour online) Comparison of LES model averaged over a spatial window
of x = 0.76–1.66 m and experimental data from (Murphy et al. 2016) (∗). (a) Relative
size distribution from LES, (b) relative volume distribution.

x = 0.76–1.66 m in the simulation. We see that the model captures the relative size
and volume distributions well.

We can track the plume paths of the different droplet sizes by calculating the
centroid of the plume in the axial direction for each droplet size as a function of
cross-stream distance. We can see from figure 14(a) that as the jet moves farther
downstream, the centroid for the larger droplets moves above the smaller ones, with
the difference in height being related to the difference in rise velocities as noted
already. The centroid evolution for the smallest droplets shown (20 and 107 µm) is
indistinguishable. The rise velocities for these droplet sizes are very small (3× 10−5

and 9× 10−4 m s−1, respectively) and their trajectories and plume centroids are thus
dominated (equally for both droplet sizes) by mean flow and turbulence, but not
appreciably by buoyancy.

We can also examine the concentration distribution of the different sizes along
the axial direction at different cross-stream locations. In figure 14(b) we plot
the concentration distribution at x = 1 m. We can see that the concentration is
peaked more towards the top end of the plume. This trend can be attributed to
the counter-rotating vortex pair generated due to the jet in cross-flow (Cortelezzi
& Karagozian 2001). This results in droplets being moved from the bottom of the
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FIGURE 14. (Colour online) (a) Evolution of centroid of various droplet plumes.
(b) Logarithm of the concentration profile as function of height at a downstream distance,
x = 1 m and transverse position y = 0.385 m. The lines are d = 1000 µm (––E––), d =
432 µm (-·-·), d= 107 µm (- - -) and d= 20 µm (——).

plume towards the top, leading to a higher concentration at the top end. We can
also confirm that the plume of smaller droplets is wider than that of larger droplets,
showing that the smaller droplets are more dispersed by the turbulence.

The simulation showcases the importance of including the viscous range of scales
in the formulation of the breakup frequency. The Kolmogorov scale in the near-nozzle
region, close to the injection location (x = 0.125 m and z = 0.14 m) where 〈ε〉 =
30 m2 s−3 can be calculated as η = (ν3/〈ε〉)1/4 ≈ 13 µm. Droplets smaller than ≈
10η= 130 µm would lie in the viscous range. Further downstream at the y-mid-plane,
where the average dissipation has decayed to 〈ε〉≈ 0.1 m2 s−3, η≈ 60 µm. Thus most
of the droplet size range is in the viscous range. Earlier models that assumed that all
the sizes were in the inertial range would predict incorrect breakup frequencies for
these droplets as it would overestimate the eddy fluctuation velocity at the scale of
the droplet. This highlights the importance of having a framework that can smoothly
transition between droplets in the inertial and viscous range.

In order to characterize the ‘typical size’ of droplets, one may evaluate the widely
used Sauter mean diameter, denoted as d32, that expresses the mean diameter of
the polydisperse oil by taking into account the volume to surface area ratio of the
distribution. It is calculated directly from the distribution using the formula,

d32 =

∑
i

ñid3
i∑

i

ñid2
i

. (4.9)

Using the mean concentrations from the LES, the d32 value can be computed at
various locations of the flow. Figure 15 shows d32 as a function of the downstream
distance x at three heights. Clearly the mean droplet size decreases as the jet flow
evolves along the downstream direction of the cross-flow due to droplet breakup,
although the rate of change diminishes and appears to reach a stationary scale of
about d32 ≈ 300 µm at large distances away from the nozzle.

Another scale often used is the Hinze (maximum) diameter, dmax∼ 〈ε〉
−2/5(σ/ρc)

3/5,
by assuming that droplet coalescence does not occur (Kolmogorov 1949; Hinze 1955)
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FIGURE 15. (Colour online) Average d32 diameter as function of downstream distance x
at various plume heights. The lines correspond to z= 0.55 m (——), z= 0.50 m (- - -) and
z= 0.45 m (· · ·).

and using Kolmogorov scaling. Since here the dissipation rate varies greatly from
one location to the next, it requires us to first compute the average dissipation. It
is computed as the time average of ε according to (4.5) from the LES. Typical
values are 〈ε〉 ≈ 0.6 m2 s−3 at x = 0.3 m and z = 0.29 m near the nozzle, and
〈ε〉 ≈ 0.001 m2 s−3 at x = 0.75 m and z = 0.56 m further downstream. Accordingly,
using ρc = 1018.3 kg m−3 and σ = 1.9 × 10−2 N m−1 (see table 1), we obtain
dmax = 1 mm near the nozzle while dmax = 18 mm far from the nozzle. The latter
value is consistent with the fact that far from the nozzle breakup becomes far less
frequent and the distribution has acquired an equilibrium value. The results show that
the Hinze scale at a particular location in which the flow has large differences in
dissipation rates from one location to another (as is usually the case in turbulent shear
flows) cannot be used to determine the typical local droplet scale that is, instead,
influenced mostly by upstream events. Note that at a few grid points from the nozzle
exit, where the dissipation 〈ε〉 ≈ 30 m2 s−3 the Hinze diameter, dmax = 300 µm. The
dissipation in a turbulent flow is highly intermittent, a property that is captured in
the current study and is discussed further subsequently. Hence, we prefer to continue
the discussion of the median diameter d32 and its variability in the next section.

4.4. Analysis of droplet size distribution variability in LES
As mentioned earlier, LES enables us to diagnose variability of the droplet size
distributions and number density transport that RANS cannot obtain, since the latter
only predicts time or ensemble average values. In order to illustrate this capability of
LES, we now ask what is the inherent variability of typical droplet sizes as well as
that of other practically relevant quantities.

We plot a time signal and histograms of the d32 diameters at different plume
locations in figure 16. We can see that there is a high variability of the diameter
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FIGURE 16. (Colour online) Representative time signals (left panels) and histograms (right
panels) for the Sauter mean diameter, d32 at two downstream locations on the centreline.
Dotted lines denote mean values.
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FIGURE 17. (Colour online) Representative time signals (left panels) and histograms (right
panels) of log10(ε) at two downstream locations on the centreline. ε is in m2 s−3. Dotted
lines denote mean value.

about the time-averaged mean value. This variability can be observed in LES since
we are solving for three-dimensional time-dependent number density fields for each
bin and so d32 can be evaluated at any grid point at any timestep. At x = 0.75 m,
where the averaged d32 diameter is approximately 800 µm, we see a variability
from 300 µm to 1000 µm. The probability density function (PDF) also shows
non-Gaussianity, with two peaks, clearly showing that the average values of d32

do not provide a complete description. The peak near 900 µm is affected by the
discrete bins. This scale corresponds to the first bin considered in the summation
corresponding to d= 1 mm.

Recall that in LES the breakup time scale depends upon the local value of
dissipation, which is also known to be highly intermittent in turbulent flows. In
order to illustrate the (grid-scale-averaged) dissipation intermittency, in figure 17 we
show time signals of the logarithm of dissipation as well as histograms. The histogram
of the logarithm of dissipation is reminiscent of Gaussian (log-normality) but with
a non-Gaussian highly asymmetric tail and some outliers at very low dissipation,
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FIGURE 18. (Colour online) Representative time signals (left panels) and histograms (right
panels) of total surface area of the oil per cubic metre of fluid at two downstream
locations on the centreline. Atot is in m2 m−3. Dotted lines denote mean values.

corresponding possibly to laminar regions outside the plume. This highly variable
quantity then determines the local time scale of droplet breakup in the LES model.

Next, we consider a property that is crucial in determining reaction rates for
processes that occur on the droplet surface such as bio-degradation. The total rate
of bio-degradation will depend on the total surface area of the oil available for
microorganisms to act upon. Given the instantaneous concentration of droplets in
each bin, the instantaneous total surface area available for surface reactions can be
evaluated according to

Atot(x, t)=
Nd∑
i=1

ñi(x, t)(πd2
i ). (4.10)

Representative signals and histograms of Atot(x, t) are shown in figure 18, again at the
two locations x = 0.75 m and x = 0.9 m at z = 0.56 m and the plume centre in the
transverse direction.

We can see from the panels in figure 18 that there is a high variability of the total
area about the mean of approximately 30 m2 per cubic metre of water at x= 0.75 m
and about 16 m2 per cubic metre of water at x= 0.9 m (even though one may expect
smaller droplet sizes to be associated with an increase in total surface area, further
downstream the total oil concentration has also decreased due to turbulent transport
thus leading to the smaller area there). The root mean square of the surface area
distribution is quite significant, of similar order of magnitude to the mean area.

It is also instructive to examine time signals and statistics of the breakup source
term for each droplet size, S̃b,i, normalized by the concentration. This normalization
can be interpreted as an inverse time scale for the droplet breakup, i.e. it tells
us the inverse of the time taken for the number of droplets in any given bin to
change appreciably over its existing value, at any given scale. In figure 19 we
show representative signals of S̃b,i(x, t)/ñi(x, t) in logarithmic scale, as well as its
histograms at two locations. As can be seen from the right panel of figure 19(a),
the average values are around 0.5 s−1, with very large variability about this value. It
means that it takes about 2 seconds for the local breakup to appreciably change the
local concentration of droplets of size 20 µm but occasionally the breakup can be
far more rapid.
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FIGURE 19. (Colour online) Representative time signals (left panels) and histograms (right
panels) of log10(S̃b,i/ñi) for d= 20 µm plotted at two downstream locations of the plume
at a fixed height. The values of S̃b,i/ñi are given in 1/s. Dotted lines denote mean values.

Finally, we document the breakup source term by plotting it in linear units for
different droplet sizes, at two different locations as shown in figure 20. We can see
that the time signals for the source term are highly intermittent, with the largest
size (i.e. 15th bin) acting as a source for the smaller ones (negative source term in
its transport equation). Further downstream at x = 1.56 m, figure 20(b) shows much
smaller frequencies indicating a decreased breakup of the largest droplets. Some of
the intermediate bins display both positive and negative values, as some intermediate
droplet sizes act as both sources and sinks at different locations along the plume (for
example see panel for S̃b,7/ñ7 in figure 20c).

We still see a significant variance in the volume median diameter (d32) at this
location despite the magnitude of the normalized source terms for the larger droplets
being small. Clearly, the turbulent nature of the flow prevents us from solely relying
on the averaged quantities to provide us with a complete view of the droplet size
distribution in this flow, while LES contains significant amount of new information
regarding the fluctuations, at least down to the grid scale.

5. Conclusions
Prediction of droplet size distributions in a turbulent flow is essential for

understanding the dynamics of many types of multiphase flows. We have proposed a
method to couple LES with a population balance equation to study the evolution of
polydisperse oil droplets in turbulence. We use the method of classes to discretize the
droplet size range into contiguous subclasses and consider the case of round droplets
at relatively low volume fraction for which coalescence can be neglected. Using a
jet in cross-flow as a flow application inspired by previous studies on deep-water oil
spills, the model can be used to predict the turbulent transport of droplets of various
sizes while accounting for breakup due to the turbulent flow field.

We follow the general procedure of Konno, Aoki & Saito (1982), Prince & Blanch
(1990) and Tsouris & Tavlarides (1994) in which the breakup is modelled as due to
collision of turbulent eddies with droplets. Previous models assumed the droplet size
to be in the inertial range of turbulence and use Kolmogorov scaling (K41) for the
velocity increment valid for the inertial range. For many applications the droplet size
range can lie in the viscous subrange. We have thus proposed a model that includes
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FIGURE 20. Time history of S̃b,i normalized by concentration for different droplet sizes at
z= 0.56 m on the centreline. (a,b) represent the droplet of size 1000 µm at two different
x locations, (c) is the time history for d= 432 µm and (d) is for d= 20 µm. Dotted lines
denote mean values.

the effect of the viscous range of scales of turbulence using a generalized structure
function approach to characterize the eddy fluctuation velocity. The formulation
contains an adjustable parameter K∗ that has been fitted using experimental data. To
reduce computational cost, we parameterize the breakup frequency in terms of the
various (locally changing) non-dimensional parameters, and provide practical fits that
enable rapid calculation.

The population equation along with the breakup model is then implemented in an
LES framework. LES enables us to accurately simulate turbulent shear flows like jets
and plumes and study the advection and breakup of, for example, oil droplets in these
flows. We tested the formulation by comparing the size distributions of oil droplets
obtained at different locations along the plume with the experimental data of Murphy
et al. (2016) and obtained good agreement for the relative droplet size distribution.

Finally, we used the LES results to quantify various new properties of the
distribution as it refers to the inherent variability of turbulence. We show how
the LES provides information on the variability of the median diameter, the total area
available for surface reactions and illustrate the highly non-Gaussian properties of the
source (reaction) terms in the transport equations for each bin of droplet concentration
fields.
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FIGURE 21. (Colour online) The fit is represented by the dashed lines whereas the
numerically computed integrals are the various symbols for Γ = 10.5.

Clearly, additional follow-up studies are required to explore in more detail various
relevant aspects such as the possible effects of the initial size distribution assumed at
the nozzle exit (here we assumed a single droplet size at the injection), the effects of
different breakup probability models (β(di, dj)), the effects of changing grid resolution
in LES, the possible effects of various subgrid-scale models for the momentum and
scalar fluxes and many other possible extensions such as combining with Lagrangian
models for the subgrid-scale velocity gradient fluctuations (Johnson & Meneveau
2018).
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Appendix A. Fits for breakup frequency integral
In this section we discuss the fit for the integral in the equation for the breakup

frequency derived in (2.17).

gf (Re,Oh, Γ )=
∫ 1

0
r−11/3

e (re + 1)2
(

1+
(

reRe
γ2

)−2
)−1/3

Ω(Oh, Re, Γ ; re) dre. (A 1)

As it would be computationally intensive to evaluate an integral at every grid point
for every timestep we develop an empirical form of the integral as a function of the
two non-dimensional parameters Re and Oh, for discrete values of Γ . We begin by
plotting the integral gf for a wide range of Reynolds Re and Ohnesorge Oh numbers
for a fixed value of Γ = 10.5. This is shown in figure 21 as the symbols for different
Oh numbers. The value of Γ is chosen based on the physical properties of the oil in
Murphy et al. (2016). We can see that we have a power law behaviour for higher Re
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Variable Coefficients

xk k= 1 k= 2 k= 3 k= 4

a 2.374 19.88 2.788 0.07416
c 1.41 0.245 5.178 0.83
d 5.313 0.4541 0.4981 0.4219
e 0.415 41.09 0.5088 0.4604

TABLE 4. Case Γ = 10.5.

Variable Coefficients

xk k= 1 k= 2 k= 3 k= 4

a 2.392 26.76 2.877 0.1244
c 0.5446 0.3776 12.67 1.462
d 4.172 0.5492 0.5079 0.4879
e 0.4113 55.94 0.5125 0.7182

TABLE 5. Case Γ = 5.45.

with a sharp cutoff for the small Re. The cutoff location is a function of the Ohnesorge
(Oh) number. This suggests that we could fit gf using two power laws to capture the
two extremes. The fit equation can be written as

G(Rei,Ohi)= axb
+ cxd

− e, (A 2)

where G = log10(gf ), x = log10(Re) and a, b, c, d, e are functions of Oh. We use
Matlab’s curve fitting toolbox to carry out the fitting procedure. The toolbox uses
a Levenberg–Marquardt algorithm to provide the best fit for the data. We find that
the coefficient b can be fixed at b= 0.45. The other coefficients can be expressed as
functions of the Ohnesorge number using the following fits as a function of y=Oh:

a(y)= a1 exp(−a2y)+ a3 exp(−a4y),
b= 0.45,

log10[−c(y)] =
c1y−c2

1+ c3yc4
,

d(y)=−
d1y−d2

1+ d3y−d4
,

log10[e(y)] = e1 exp(−e2 log10(y+ 1))+ e3 exp(−e4 log10(y+ 1)).


(A 3)

The coefficients in (A 3) for the particular value of Γ chosen, are given in table 4
for Γ = 10.5 and in table 5 for Γ = 5.45. The fit is valid for droplet Reynolds number
less than 104 and for 0.0066Oh62. We numerically evaluate the integral in (A 1) and
compare it with the algebraic fit from (A 3) in figure 21 for four Oh numbers. The fit
is plotted using the dashed lines of different colour, while the numerically evaluated
integral is represented by the symbols. We see that we have good agreement in the
parameter range considered.

We can use the same methodology for a different value of Γ . As an example, we
show in figure 22 the fit for the breakup integral for Γ = 5.45, based on the oil
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FIGURE 22. (Colour online) The fit is represented by the dashed lines whereas the
numerically computed integrals are the various symbols for Γ = 5.45.
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FIGURE 23. (Colour online) The fit is represented by the dashed lines computed by
interpolating between Γ1 = 5.45 and Γ2 = 10.5. The symbols represent the numerically
computed integral for Γ = 8.

properties from Johansen et al. (2013). We see that we can obtain a good fit for
different values of Γ . The coefficients for intermediate Γ values can be obtained by
interpolating the function G(Ohi, Rei) between the two cases. For example, to obtain
gf for Γ = 8 we first linearly interpolate G from Γ1 = 5.45 and Γ2 = 10.5 as,

G(Rei,Ohi; Γ )=G(Rei,Ohi; Γ1)+
G(Rei,Ohi; Γ2)−G(Rei,Ohi; Γ1)

Γ2 − Γ1
(Γ − Γ1). (A 4)

The integral can then be obtained as gf = 10G. The results from the interpolation for
Oh= 0.042, 0.09, 0.35 and 1 are shown in figure 23. We see that even with a simple
linear interpolation we can obtain satisfactory results.

In order to quantify the speed-up obtained by using the fits compared to the integral,
we can calculate the CPU time per simulation timestep for each case. We find that the
LES with the fits is 60 times faster than a LES with the breakup frequency calculated
with the numerical integration of the integral at every grid point and timestep. This
speed-up is more pronounced when the grid is refined. The fits are calculated using
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FIGURE 24. (a) Variation of the mean centreline velocity with axial distance in LES of jet
without cross-flow using imposed body force. (b) Half-width of jet plotted as a function
of axial distance. In both cases the symbols represent the simulated data, and the solid
line represents the fit. The length scales in both plots are normalized with respect to the
simulation diameter dsim = 7.8 mm.

vectorized operations that are fast and efficient even on fine grids. The integral on the
other hand has to be evaluated at every grid point as the integrand is a function of
position.

Appendix B. Specifying the jet injection velocity in coarse LES
In this section we explain how the magnitude of the vertical jet velocity is

determined so as to ensure that LES reproduces relevant quantities from the
experiment. As it would be computationally expensive to resolve the small-scale
structures within the nozzle in our LES, the injected jet is modelled using a locally
acting body force. The jet in the experiment has a diameter of dexpt = 4 mm while
the effective grid spacing of the LES is 5.2 mm. In order to properly resolve the
turbulent inflow in the nozzle, much finer grids would be required in that region. In
the LES model we take the view that we simulate a ‘coarser’ jet injection process
which matches the experiments further downstream where the jet has already grown
to a specified length scale and the jet centreline velocity and turbulence fluctuations
have decreased. We match the length scales and centreline velocity at a particular
downstream location where the jet has already grown sufficiently to match what the
simulation can begin to resolve.

We calibrate the computational set-up on a jet without cross-flow and refer to well-
established jet scaling laws and known correlations. First we verify that the simulated
jet with an imposed smoothed vertical force reproduces well-known behaviours. We
examine the centreline velocity U0(z) and the half-width of the jet (r1/2) defined as,

〈U(z, r1/2(z), 0)〉 = 1
2 U0(z), (B 1)

where z is the distance downstream from the nozzle exit or simulated injection point.
A simulation is run using the same resolution and all other relevant parameters as in
the cross-flow simulation except the cross-flow, with a vertical body force that results
in a given maximum jet velocity Uj,sim in the region where the force is applied. We
plot the centreline velocity and the half-width from our simulation in figure 24. We
can see that we recover the linear growth of the inverse centreline velocity as well

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.649


Population balance modelling in a large eddy simulation framework 735

as the linear scaling for the half-width. More specifically, the centreline velocity for
a turbulent jet decays linearly with z (Hussein, Capp & George 1994) and can be
written as

Uj

U0(z)
=
(z− z0)

Bd
, (B 2)

where B is the velocity decay coefficient and Uj is the jet injection velocity. We
capture the decay of the jet centreline velocity, as shown in figure 24. The slope of
this line is the inverse of the product of the velocity decay constant B times the nozzle
diameter, which in the simulation is assumed to be the diameter, dsim, of an ‘effective
nozzle’. Using a known value for B, namely B ≈ 6 (Hussein et al. 1994), we can
deduce dsim≈ 7.8 mm. We note that the ‘effective simulation diameter’ is almost twice
the experimental jet diameter dexpt.

Regarding the linear growth of the jet, the spreading rate can be determined as the
slope S,

S=
dr1/2

dz
. (B 3)

By fitting the figure with a straight line, we obtain S = 0.102 which matches the
experimental values of Hussein et al. (1994) and Xu & Antonia (2002) very well.

Next, we choose to position the body force at a location where the experimental jet
is expected to have achieved the half-width equal to the simulated jet’s inflow radius,
that is we require that r1/2,expt = dsim/2. The applied force is spatially smoothed in
a region over three grid points in x, y and z using a super-Gaussian smoother (of
order 5 and width σG = 1x) centred at zm as shown by the sketch. We recall that
r1/2,expt(zm) = S(zm − z0), where z0 is the virtual origin of the experimental nozzle.
Using the value dsim = 7.8 mm found above, we solve for zm − z0 and find zm − z0 =

dsim/(2S)= 38.2 mm, i.e. we apply the force 38.2 mm above the location of the real
nozzle’s virtual origin.

The last parameter to determine is the jet centreline velocity, Uj,sim, at location
z = zm. The simulated injection jet velocity will be set equal to the experimental
centreline velocity at that location, thus reproducing the mean flow of the jet as the
most basic condition to be met at that location, where the LES grid resolution is
just sufficient to resolve a jet’s mean velocity profile. Using the classical scaling, the
centreline velocity at zm in the experiment may be obtained by

U0,expt(zm)=
Uj,exptBdexpt

zm − z0
. (B 4)

Setting Uj,sim =U0,expt(zm) and replacing zm − z0 = r1/2,expt/ S= dsim/(2S) we obtain

Uj,sim =
2SUj,exptBdexpt

dsim
. (B 5)

Substituting dsim=7.8 mm, S=0.102, B=6 and Uj,expt=2.5 m s−1 we can calculate
Uj,sim ≈ 1.6 m s−1.

The body force magnitude is adjusted in the LES so as to achieve this value of
the maximum velocity in the region where the body force is applied. With this value
enforced, we obtain the desired linear growth of the jet width and the inverse linear
decay of centreline velocity matching those of a classical turbulent round jet.

To determine the corresponding location to measure the size distribution for the
simulation, we note that for a classical round jet z0≈ 4d (Hussein et al. 1994; Xu &
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zML

zm

z0

47 cm

dsim

dexpt

5.4 cm

1.6 cm

FIGURE 25. (Colour online) Sketch depicting the nozzle placement in LES (at vertical
position zm = 54 mm downstream of the experimental nozzle), the virtual origin of the
experiment (assumed to be at z0 = 16 mm = 4dexpt downstream of the nozzle), and
the measurement location (at a height of zML = 470 mm above the experimental nozzle
position – in the experiment with cross-flow, there is additional displacement in the
horizontal direction).

Antonia 2002). We can then calculate zm= dsim/2S+ 4d≈ 54.2 mm. The measurement
volume for the experiment was located at a height of 47cm from the nozzle in the
vertical direction. Therefore the measurement location for the simulation is at a
vertical distance of zML− zm≈ 42 cm from the applied force position (see figure 25).
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