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Abstract, The aim of this paper is to introduce and study the class of boundedly
non-additive processes. The main result is the decomposition in theorem (2.1) and
theorem (3.1), which says that a boundedly non-additive process is the sum of a
non-positive subadditive, a non-negative superadditive and an additive process. By
this decomposition we can extend the mean and local ergodic theorems for super-
additive processes of M. A. Akcoglu and U. Krengel to boundedly non-additive
processes. At the end of this paper some examples are given.

1. Definitions
For a = (a,), b = (ft,) eR1, /> 1 we set:

a < b (a<b): <=>a,<fc,, (ai<bi), for 1 </ '< / ;
ia,b[-{ueu':asu<b}, fl ([a, *>[):= IlL, (b,-a,);
0 = (0,0,. . . ,0), e = ( l , l , . . . , l ) ; U'+:= {a eU1: a >0};
Id := {[a, b[: a, b e < } , with No:= {0, 1, 2 , . . .} ; and finally
Is:={[a,b[:a,beU'+}.

Let T = (TU)U £ / .(7 = N'O or M+) be a measurable semigroup of measure preserving
transformations on a measure space (X, Q, P). For a Q-measurable function / we
denote the equivalence class of all functions, which are a.s. equal to /, by / Let M
be the vector lattice of these equivalence classes, and let T = (Tu)ue/ be the semigroup
of linear operators acting on Ji by the relation Tuf = f(ru-).

Let F be a set function defined on Id (7J with values in Ji. We distinguish the
following conditions:

(1.1) TuFj = FJ+u whenever Je Id (Is) and weN'0(M
l
+);

(1.2) if Ji, • ••, Jn are disjoint se.ts in Id (Is) and if J = U"=i •?• 1S a^so m I* (D

(1.3)
(1.4) { F[Ot e[ dP < +oo, where / + , / " denote the positive and negative part of an

feM.

Definition (1.5). If F satisfies (1.1), we will say that F is a stationary process with
discrete (or continuous) parameter. If F also satisfies (1.2), (1.3), and takes values
in L,, F is called a superadditive process. If - F is a superadditive process, F is
called a subadditive process. F is called an extended superadditive process if F
satisfies (1.1), (1.2) and (1.4). If - F is an extended superadditive process, F is
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called an extended subadditive process. F is called an additive process, if it is a
superadditive and a subadditive process.

For the next definition we need some further notation. We denote a set by the
letter M, iff it is contained in Id (Is) and its elements are disjoint sets. For two sets
M|, M2we write M, o M2, if every element in Mx is the disjoint union of elements
of M2. For I e Id we set

M, := {[M, U + e[: u e / n N'o}.

For I e Id (Is) and {/}<JW,< M2, we define

d"{MuM2):= I F,- I
JeM2

d*(MuM2):= F,)i for* = + , - .

For A = (M,) l s i s m , meN, with {/} = M, < M2 <
only of finitely many elements, we define:

< Mm, where Mm consists

FUA):= I d*(M,Ml+1), = ",+,-•

Let /4(/) be the set of all such A In the discrete parameter case we define

p(F) := sup {n (/)"' J F", dP:U (/) >0, / e /„}.

and

In the continuous parameter case we suppose that for every countable Kcz A(I),
sup {Ff(A): Ae K}, * =", +, - , is in L, and their integrals are uniformly bounded.
Then FJ := sup {Ff(A): A e A(I)}, * = ", +, - , exists and is in L^JLthis is satisfied
for every / e 7S we define:

Definition (1.6). A stationary process F is called locally boundedly non-additive if F",
is integrable for some I with [] U)>0. It is called boundedly non-additive if p(F)
is finite.

p( •) is a seminorm on the vector space of all stationary, boundedly non-additive
processes, with a common semigroup T. If we build the canonical quotient space
relative to p, we obtain a Banach space, where two processes are identified iff their
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difference is additive. This can be seen easily. The only non-trivial part is the
completeness of the quotient space. Let {F^}neN be a Cauchy sequence in the quotient
space, and Fn a representative of F'n. If {n,} increases fast enough we have

Then the processes F*, * = +, - denned by

Ff=i(Fnhl-FHl_u,)* + F*uI, * = + , - ; Je/„(!,),
i = 2

exist and they are non-negative superadditive processes. The equivalence class of
F, which is denned by

F, = F+-F1, / e /„( / , ) ,

is the limit point of the sequence. Let F be a superadditive process, then we obtain
the following relationship between the constants y(F) and p(F).
In the discrete parameter case:

p(F) = y(F) - j Fi0,e[dP.

And in the continuous parameter case, if in addition sup {fl (/) ' I |F; | dP: I e /„
rT(/)>0} is finite:

p(F) = y(F)-sF,

where sF is defined by

5F:= limIl([O,r-e[r1 F[0>Ie[ dP.
t-*0+ J

For the second equality see the proof of lemma (4.7) in [1].

2. The discrete parameter case
THEOREM (2.1). Let F be a stationary process with discrete parameter. Then

F=F+-F~+G, (2.1.1)

where G is defined by

Furthermore, F+ and F~ are non-negative extended superadditive processes. Ifp(F)
is finite, then F+ and F~ are superadditive processes.

Proof. For AeA(I) with A = (M,),s j s m and Mm ^ M, we obtain

FT(A)sFT(A'), * = " , + , - ,

with A' = (M,, . . . ,Mm,M;) . Let A*(I) be the set of all AeA(I) of the form
A = (M, , . . . , Mm, M,). We obtain:
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So A(/) can be replaced by A*(I). First we show (2.1.1) and

F7 + F7 = F'/ for every I e Id. (2.1.3)

For every AeA*(I) we obtain

F7(A)-F7(A) = F , - I Fj.
JeM,

Let At € /4*(/), 1 s i < TV. The last equality implies

F7(A.) v • • v F7(A,v)

V ( Y F , - I Fj)+FJ(AN))
\ \ JeM, I I

I FJ)+F7(Al)v-vFJ(AN).

Hence
F 7 ( A 1 ) v - v F 7 ( A J V ) - F 7 ( A , ) v - v F 7 ( A N ) = F / - ^ F , (2.1.4)

In the case {A,,. . . , AN} = A*(I) we obtain (2.1.1). We further obtain

-,- i ft)

JeM,

By definition F+, F~, and G satisfy (1.1), and we have F* a 0 for * =", +, - . Next
we shall prove (1.2) for F+. For F~ the proof is the same.

Let Ij, 1 s_/< n, in Id be disjont sets, such that / = U"=i h is a l s o ' n h- Take

AJ := (Mij, . . . , Ml) eA*(Ij), 1 s p < N,,

such that F^ = FT/Aj) v • • • v F7(A/'). Put / = max /,-„. For p = (p , , . . . ,pn) , 1 </^ <
N,, let Mf = {/}, and for l<fc</ let Mjf+I be the collection of all sets in M£j7,
1 < j < «, where we set M ^ = M^.", if k<llp. and M^. = M/y otherwise. Set Ap =
{M[,..., Mf+1), then we obtain

F7> max F7(A^)>I F%,

with N = (NU ..., Nn), and (1.2) is proved.
(2.1.3) implies y(F+) + y(F~) = p(F), and this proves the last statement in theorem

(2.i). a

The decomposition (2.1.1) is minimal in the sense that for every decomposition
F = Hl — H2 + H, with non-negative superadditive processes Hx, H2 and additive
H, F+, < H) and F7 < H), for / € Id, is satisfied. For equivalence classes mod P,
limn^oo/n = / a.s. means that limn^oo/n = / a.s. is satisfied if/„, / are representatives
of/n,/ Theorem (2.1) and theorem (2.5) in [1] yield:
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THEOREM (2.2). Let F be a stationary process with discrete parameter, which satisfies
F[0>e[e L, and p(F) < +00. Set Jn := [0, n • e[, n e N. Then

exists a.s.

The theorem remains valid if (Jn)n£N is a regular family of sets with lim,,^ Jn = Pl
0,

as denned in [1]. If (X, Q, P) is a finite measure space, then we can replace the
condition p(F) < +00 by the existence of the time constant of one of the processes
F+ and F~ in (2.1.1). E.g. we can suppose y(F~)<+oo. Then, by theorem (2.5) in
[1], l i m ^ ^ n (Jn)~

lFjn and limbec]! Un)~
lGJn exist a.s. and are in L,. By a trunca-

tion argument like that in [4, p.188] the existence of lrmn_oon (•JB)~1f!/n follows
from theorem (2.5) in [1]. Together these prove the last statement. Let F be a
stationary process with discrete parameter on a probability space (X, Q, P) with
F[nk[e Lx for [n, fc[e Id. Y. Derriennic [2] proved that (1/N)F[O M converges a.s.
and in L,, if the following two conditions are satisfied:

(a) there is a sequence (hk)ksNc Lu hk>0, with supfc&1 \\hk\\,<+oo and

F[_0,n + kl - F[0,n[ ~ -F[n,n + fc[ ̂  T"hk ( T = 7~, ),

for every n and fc,

I F[Ot(b) inf (1/N) F[0,N[dP>-oo.
N>l J

From this result the Shannon-McMillan-Breiman theorem follows at once (see [2]).
If we replace supt;,| \\hk\\, <+oo by sup^ai hke L, in (a), then F is boundedly

non-additive. The question arises as to whether all processes which satisfy (a) and
(b) are boundedly non-additive.

3. The continuous parameter case
THEOREM (3.1). Let Fbe a stationary process with continuous parameter which satifies
p(F)<+oo. Then

F=F+-F+G, (3.1.1)

where F+ and F~ are non-negative superadditive processes and G is additive.

Proof. Fix / e Is. As F is boundedly non-additive, there is a countable set K =
{A1,...}«=A(J)with

FJ = sup{Ff(A): AeK}, * = " , + , - .

Put / t , :=Ff( /4 , )v • -vF?(AN). We obtain fl^Ff and f"N =/%+/„. Hence

F'; = F t + F7, (3.1.2)

Put gN '•= F, -fti+fjj, and let G be defined by G, := limA,_co gN. Now we will show,
that F*, G and -G satisfy (1.2). Together with (3.1.2) this implies that the F* are
superadditive processes. Let / , , . . . , /m be disjoint sets in Js such that U7=i h = J-
Take Kt = {A\, A\,.. .}<= A(7,) with

): AeK,}, l < i < m .
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Put/&' = Ff_(A\) v • • • v F*(A'N). By the same argument as in the proof of theorem
(2.1), we obtain Bf, . . . B% e A(I) with

So for every NeN,Ff ^I™=1 /ft' is satisfied, and (1.2) is proved for F*, * =", +, - .
It remains to prove

m

C,= IG,. (3.1.3)
i=i

Let Aj = (M{, ...,MJ
K.) and Aj = ( M J

M , . . . , MJ
K.J, l < i < m , j e N . For l < i < m

let Mf be the collection of all intersections of sets in MJ
Kji_, and in AfKj, 1 s ^ < TV.

Let MN be the collection of all these intersections. We set

Z'N= I F J a n d ZN = I F , .
JsMt Je\lN

Because Xjl, Z'N = ZN is satisfied, (3.1.3) follows from

Z'N^Gh and ZN-*G,. (3.1.4)

By M ^ o M^.., and MN <i MJ
K. for 1 < ; s TV, we obtain

A',N := (M{,,, . . . , MJ
Kj ,„ Mf) e

and

A,N := (M{,.... MJ
Kj, MN) e

Put / i f t ' ^ F ^ A i . ^ v - v F ^ A W . N ) and h% = F ^ A , ^ ) v • • v Fl(AN,N),
* = + , - . We obtain F,*>Aft1'>/^' and F?>h%>ff,. This implies Z'N =
F7, - hV + h^^ G,. and ZN := F, - h+

N + h~N^Gh and (3.1.4) is proved. •

We will call a process F bounded, if

J{ J ,I dp- /6/J,
is finite.

THEOREM (3.2). Lef F be a bounded and locally boundedly non-additive process. Set
J, = [0, t-e[, teQ. Then

\imU(J,)~lFj,
(-.0+

exists a.s.

Sketch of the proof. We can assume J F['Orc[ dP<+oo, for an r>0. Let J =
[0, a[<=[0, r-e[ with a = (a,)>0. Let fcf be the largest integer n<r/a{ and let
c = (&,-• a,). We obtain

A *>.) J FJ dP < j Ffo,c[ dP s J F['o,re[ dP.

This and [0, r- e[c [0, 2c[ imply

< n ([0, c[)-' | F5,.r.t d P ^ 2 ' n ([O, r- e[)-' | F['0,re[ dP.J
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So f f

sup | n ( J ) " j F'}dP: J e /„ II CO > 0, J <= [0, r- e [ |

<2']l([0, r-e[)""' Ff'o , e [dP<+oo

is proved, and we obtain the decomposition (3.1.1) for all I <= [0, r- e[. By additivity
and stationarity we extend G to all I e Is. We obtain a bounded additive process,
for which the existence of

lim n (J,) 1GJt a.s.

is proved in [1]. It remains to prove lim,_0+ ( e Q f] (J,)~lFi[i = 0 a.s. for * = +,—. This
can be done in almost the same manner as in the proofs of theorem (4.2), lemma
(4.7) and lemma (4.8) in [1]. D

THEOREM (3.3). Let Fbe a boundedly non-additive process with continuous parameter
for which

sup {|F[(M,[| :[a, fc[<=[0, e[ and the coordinates of a and b are rational}

is integrable. Set J, = [0, t- e[, t e Q. Then

lim [I i
I-+0O

IEQ

exists a.s.

The theorem can be proved by a reduction to a discrete case following the proof
of theorem (2.5) in [1]. Both theorems remain valid if {/,},eQ is a regular family of
sets. One can define stationary processes indexed by more general sets than intervals,
and it seems that the results carry over to that setting.

5. Examples
In this section we give some examples of non-additive processes, which appear in
percolation on a lattice. These processes are given by a family of r.v.'s F = (Fh I eld),
where ( F 7 l , . . . , Fln) has the same distribution as (F,i+U,... Fln+U), for all / , , . . . , / „ €
Id, u € NQ . As in the 1-parameter case (see [3]) we can pass to an equivalent process
F with sample space R1*, which is a stationary process, defined as in definition (1.5).

Let the graph L be given by a lattice of dimension d a 2, where the set E of sites
is Zd. Two points in Zd are neighbours if their Euclidean distance is 1. The bonds
connect any two neighbours. The set of bonds will be denoted by K. All bonds are
unoriented. Further let { Uh le K} be a set of non-negative i.i.d. r.v.'s with a finite mean
see [5].

Example (4.1). We suppose d=2. For a fixed 0 < n < + o o let En:=Zx
{k e Z: |fc| < n +1}. Let the graph Ln be given by the set of sites En and the set of
all bonds of L whose end points are in En. For / < n +1 we define

M'm-={(m,p):\p\^l}.

For a path w consisting of a connected string w , , . . . , wm of bonds, put Uv = X 7= i ̂ , -
Let Wmumz be the set of all paths connecting M'm, to M'mr Put

X'mum2(x):=mf{Uw(x): we Wmumi}, m,<m2.
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For / = 0, X = {X'mum2) is a subadditive process. For l=n, X is a superadditive
process. For 0< /< n, X'o'm is bounded by

m l m

2 L L ^*(O,'-0,0,0)"'" X -^i-l,i~^O,m>
7 = 0 i^1 — / i = l

msN, so in this case X is a boundedly nonadditive process.

Example (4.2). We suppose d>2 and ||l/;||co=: C<+oo, (leK). For / e / d let L,
be the subgraph of L, whose set of sites is E, = Zd (~l I, and whose set of bonds K,
contains exactly all bonds of L whose end points are in E,. Let SL, be the set of
all connected subgraphs of L,, having the set of sites E,, and which contain no
circuit. We define pointwise:

F,(x):=infl £ U,{x): IC is the set of bonds of a graph Ve SL, \, I e Id.

We will now show that F is a boundedly non-additive process. As F is non-negative,
this statement follows by (2.1.1) and (2.1.3) from: F^(x)^C U (I), uniformly in x.
To prove this fix I e Id and x e X. Let A = (Mf),si«m e A(I). Suppose

I F;.(X)<F;W,

for a 7 with 1 <j< m - 1 and a / e M,. Let, for / ' e Id and xeX, L(I\ x) e SL,. be
a graph with set of sites E{I\ x) and set of bonds K(P, x), which satisfies

Fr(x) = I U,(x).

We complete the graphs L(J\ x), Jye Mj+U / ' c 7, to an element of SLj. The set of
bonds of this graph may be denoted\\)y K\ By the definition of F, we obtain

So we obtain:
(FJW- I F,.(x))+<C-card(/r\ U K(J\x)).

J'^J Taj

The number of new bonds we use for all completions like those described above is
smaller than [] (I) and they all are different; so F^(x)< C Y\ (/) is proved.
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