On non-additive processes

ULRICH WACKER

Fakultät für Mathematik und Informatik der Universität Passau, Innstr. 27, D-8390 Passau, West Germany

(Received 16 April 1984)

Abstract. The aim of this paper is to introduce and study the class of boundedly non-additive processes. The main result is the decomposition in theorem (2.1) and theorem (3.1), which says that a boundedly non-additive process is the sum of a non-positive subadditive, a non-negative superadditive and an additive process. By this decomposition we can extend the mean and local ergodic theorems for super-additive processes of M. A. Akcoglu and U. Krengel to boundedly non-additive processes. At the end of this paper some examples are given.

1. Definitions

For $a = (a_i)$, $b = (b_i) \in \mathbb{R}^l$, $l \ge 1$ we set: $a \le b$ (a < b): $\Leftrightarrow a_i \le b_i$, $(a_i < b_i)$, for $1 \le i \le l$; $[a, b[:= \{u \in \mathbb{R}^l : a \le u < b\}$, $\prod ([a, b[]:= \prod_{i=1}^l (b_i - a_i); 0 = (0, 0, ..., 0), e = (1, 1, ..., 1); \mathbb{R}^l_+ \coloneqq \{a \in \mathbb{R}^l : a \ge 0\};$ $I_d \coloneqq \{[a, b[: a, b \in \mathbb{N}^l_0\}, \text{ with } \mathbb{N}_0 \coloneqq \{0, 1, 2, ...\}; \text{ and finally}$ $I_s \coloneqq \{[a, b[: a, b \in \mathbb{R}^l_+]\}.$

Let $\tau = (\tau_u)_{u \in I'}(I = \mathbb{N}_0^l \text{ or } \mathbb{R}_+^l)$ be a measurable semigroup of measure preserving transformations on a measure space (X, Q, P). For a Q-measurable function f we denote the equivalence class of all functions, which are a.s. equal to f, by \overline{f} . Let \mathcal{M} be the vector lattice of these equivalence classes, and let $T = (T_u)_{u \in I}$ be the semigroup of linear operators acting on \mathcal{M} by the relation $T_u \overline{f} = \overline{f}(\tau_u \cdot)$.

Let F be a set function defined on $I_d(I_s)$ with values in \mathcal{M} . We distinguish the following conditions:

(1.1) $T_u F_J = F_{J+u}$ whenever $J \in I_d(I_s)$ and $u \in \mathbb{N}_0^l(\mathbb{R}_+^l)$;

(1.2) if J_1, \ldots, J_n are disjoint sets in $I_d(I_s)$ and if $J = \bigcup_{i=1}^n J_i$ is also in $I_d(I_s)$ then $F_J \ge \sum_{i=1}^n F_{J_i}$;

(1.3) $\sup \{ \prod (J)^{-1} \int F_J dP : J \in I_d (I_s), \prod (J) > 0 \} = \gamma = \gamma(F) < +\infty,$

(1.4) $\int F^{+}_{[0, e]} dP < +\infty$, where f^{+} , f^{-} denote the positive and negative part of an $f \in \mathcal{M}$.

Definition (1.5). If F satisfies (1.1), we will say that F is a stationary process with discrete (or continuous) parameter. If F also satisfies (1.2), (1.3), and takes values in L_1 , F is called a superadditive process. If -F is a superadditive process, F is called a subadditive process. F is called an extended superadditive process if F satisfies (1.1), (1.2) and (1.4). If -F is an extended superadditive process, F is

called an *extended subadditive* process. F is called an *additive* process, if it is a superadditive and a subadditive process.

For the next definition we need some further notation. We denote a set by the letter M, iff it is contained in I_d (I_s) and its elements are disjoint sets. For two sets M_1 , M_2 we write $M_1 \lhd M_2$, if every element in M_1 is the disjoint union of elements of M_2 . For $I \in I_d$ we set

$$M_I \coloneqq \{[u, u + e[: u \in I \cap \mathbb{N}_0^l]\}.$$

For $I \in I_d$ (I_s) and $\{I\} \lhd M_1 \lhd M_2$, we define

$$d''(M_1, M_2) := \sum_{I \in M_1} \left| F_I - \sum_{\substack{J \in M_2 \\ J \subset I}} F_J \right|$$
$$d^*(M_1, M_2) := \sum_{I \in M_1} \left(F_I - \sum_{\substack{J \in M_2 \\ J \subset I}} F_J \right) := \text{ for } * = +, -.$$

For $A = (M_i)_{1 \le i \le m}$, $m \in \mathbb{N}$, with $\{I\} = M_1 \lhd M_2 \lhd \cdots \lhd M_m$, where M_m consists only of finitely many elements, we define:

$$F_{I}^{*}(A) \coloneqq \sum_{i=1}^{m-1} d^{*}(M_{i}, M_{i+1}), \quad * = ", +, -.$$

Let $\tilde{A}(I)$ be the set of all such A. In the discrete parameter case we define

$$F_I^* \coloneqq \max \{F_I^*(A) \colon A \in \overline{A}(I)\}, \qquad * = ", +, -,$$

and

$$p(F) := \sup \left\{ \prod (I)^{-1} \int F_I'' dP : \prod (I) > 0, I \in I_d \right\}.$$

In the continuous parameter case we suppose that for every countable $K \subset \overline{A}(I)$, sup $\{F_I^*(A): A \in K\}$, * = ", +, -, is in L_1 and their integrals are uniformly bounded. Then $F_I^* \coloneqq \sup \{F_I^*(A): A \in \overline{A}(I)\}$, * = ", +, -, exists and is in L_1 . If this is satisfied for every $I \in I_s$ we define:

$$p(F) := \sup \left\{ \prod (I)^{-1} \int F_I'' \, dP : \prod (I) > 0, \, I \in I_s \right\}$$

Definition (1.6). A stationary process F is called *locally boundedly non-additive* if F_I^r is integrable for some I with $\prod (I) > 0$. It is called *boundedly non-additive* if p(F) is finite.

 $p(\cdot)$ is a seminorm on the vector space of all stationary, boundedly non-additive processes, with a common semigroup T. If we build the canonical quotient space relative to p, we obtain a Banach space, where two processes are identified iff their

$$p(F_{n_i}-F_{n_{i-1}}) < 2^{-i}, \quad i \ge 2.$$

Then the processes F^* , * = +, - defined by

$$F_{I}^{*} = \sum_{i=2}^{\infty} (F_{n_{i},I} - F_{n_{i-1},I})^{*} + F_{n_{1},I}^{*}, \qquad * = +, -; \qquad I \in I_{d} (I_{s}),$$

exist and they are non-negative superadditive processes. The equivalence class of *F*, which is defined by

$$F_I = F_I^+ - F_I^-, \qquad I \in I_d \ (I_s),$$

is the limit point of the sequence. Let F be a superadditive process, then we obtain the following relationship between the constants $\gamma(F)$ and p(F). In the discrete parameter case:

$$p(F) = \gamma(F) - \int F_{[0,e[} dP.$$

And in the continuous parameter case, if in addition sup $\{\prod (I)^{-1} \int |F_I| dP : I \in I_s, \prod (I) > 0\}$ is finite:

$$p(F) = \gamma(F) - s_F,$$

where s_F is defined by

$$s_F := \lim_{t \to 0^+} \prod ([0, t \cdot e[)^{-1} \int F_{[0, te[} dP_{te[}) dP_{te[}) dP_{te[}) dP_{te[} dP_{te[} dP_{te[}) dP_{te[} dP_{te[}) dP_{te[} dP_{te[} dP_{te[}) dP_{te[} dP_{te[}) dP_{te[} dP_{te[} dP_{te[}) dP_{te[} dP_{te[} dP_{te[}) dP_{te[} d$$

For the second equality see the proof of lemma (4.7) in [1].

2. The discrete parameter case

THEOREM (2.1). Let F be a stationary process with discrete parameter. Then

$$F = F^+ - F^- + G, \tag{2.1.1}$$

where G is defined by

$$G_I \coloneqq \sum_{u \in I \cap \mathbb{N}_0^l} F_{[u, u+e[}.$$
 (2.1.2)

Furthermore, F^+ and F^- are non-negative extended superadditive processes. If p(F) is finite, then F^+ and F^- are superadditive processes.

Proof. For $A \in \overline{A}(I)$ with $A = (M_i)_{1 \le i \le m}$ and $M_m \ne M_I$ we obtain

$$F_{I}^{*}(A) \leq F_{I}^{*}(A'), \quad * = ", +, -,$$

with $A' = (M_1, \ldots, M_m, M_I)$. Let $A^*(I)$ be the set of all $A \in \overline{A}(I)$ of the form $A = (M_1, \ldots, M_m, M_I)$. We obtain:

$$F_I^* = \sup \{F_I^*(A): A \in A^*(I)\}, \quad * = ", +, -.$$

So $\overline{A}(I)$ can be replaced by $A^*(I)$. First we show (2.1.1) and

$$F_{I}^{+} + F_{I}^{-} = F_{I}''$$
 for every $I \in I_{d}$. (2.1.3)

For every $A \in A^*(I)$ we obtain

$$F_{I}^{+}(A) - F_{I}^{-}(A) = F_{I} - \sum_{J \in M_{I}} F_{J}$$

Let $A_i \in A^*(I)$, $1 \le i \le N$. The last equality implies

$$F_I^+(A_1) \vee \cdots \vee F_I^+(A_N) = \left(\left(F_I - \sum_{J \in M_I} F_J \right) + F_I^-(A_1) \right)$$
$$\vee \cdots \vee \left(\left(F_I - \sum_{J \in M_I} F_J \right) + F_I^-(A_N) \right)$$
$$= \left(F_I - \sum_{J \in M_I} F_J \right) + F_I^-(A_1) \vee \cdots \vee F_I^-(A_N).$$

Hence

$$F_{I}^{+}(A_{1}) \vee \cdots \vee F_{I}^{+}(A_{N}) - F_{I}^{-}(A_{1}) \vee \cdots \vee F_{I}^{-}(A_{N}) = F_{I} - \sum_{J \in M_{I}} F_{J}.$$
 (2.1.4)

In the case $\{A_1, \ldots, A_N\} = A^*(I)$ we obtain (2.1.1). We further obtain

$$F_I^+ + F_I^- = 2F_I^- + \left(F_I - \sum_{J \in M_I} F_J\right)$$
$$= \left(2F_I^-(A_1) + \left(F_I - \sum_{J \in M_I} F_J\right)\right) \vee \cdots \vee \left(2F_I^-(A_N) + \left(F_I - \sum_{J \in M_I} F_J\right)\right)$$
$$= F_I''(A_1) \vee \cdots \vee F_I''(A_N) = F_I''.$$

By definition F^+ , F^- , and G satisfy (1.1), and we have $F^* \ge 0$ for * = ", +, -. Next we shall prove (1.2) for F^+ . For F^- the proof is the same.

Let I_j , $1 \le j \le n$, in I_d be disjont sets, such that $I = \bigcup_{i=1}^n I_i$ is also in I_d . Take

$$A_j^p \coloneqq (M_{1,j}^p, \ldots, M_{l_j,j}^p) \in A^*(I_j), \qquad 1 \le p \le N_{j_j}$$

such that $F_{I_j}^+ = F_{I_j}^+(A_j^1) \vee \cdots \vee F_{I_j}^+(A_j^{N_j})$. Put $l = \max l_{j,p}$. For $\vec{p} = (p_1, \ldots, p_n)$, $1 \le p_j \le N_j$, let $M_1^{\bar{p}} = \{I\}$, and for $1 \le k \le l$ let $M_{k+1}^{\bar{p}}$ be the collection of all sets in $\overline{M}_{k,j}^{p_j}$, $1 \le j \le n$, where we set $\overline{M}_{k,j}^{p_j} = M_{k,j}^{p_j}$, if $k \le l_{j,p_j}$ and $\overline{M}_{k,j}^{p_j} = M_{I_j}$ otherwise. Set $A^{\bar{p}} = (M_1^{\bar{p}}, \ldots, M_{l+1}^{\bar{p}})$, then we obtain

$$F_{I}^{+} \ge \max_{e \le \bar{p} \le \bar{N}} F_{I}^{+}(A^{\bar{p}}) \ge \sum_{j=1}^{n} F_{I_{j}}^{+},$$

with $\overline{N} = (N_1, \ldots, N_n)$, and (1.2) is proved.

(2.1.3) implies $\gamma(F^+) + \gamma(F^-) = p(F)$, and this proves the last statement in theorem (2.1).

The decomposition (2.1.1) is minimal in the sense that for every decomposition $F = H^1 - H^2 + H$, with non-negative superadditive processes H_1 , H_2 and additive H, $F_I^+ \leq H_I^1$ and $F_I^- \leq H_I^2$, for $I \in I_d$, is satisfied. For equivalence classes mod P, $\lim_{n\to\infty} f_n = f$ a.s. means that $\lim_{n\to\infty} \tilde{f}_n = \tilde{f}$ a.s. is satisfied if \tilde{f}_n , \tilde{f} are representatives of f_n , f. Theorem (2.1) and theorem (2.5) in [1] yield:

THEOREM (2.2). Let F be a stationary process with discrete parameter, which satisfies $F_{[0,e]} \in L_1$ and $p(F) < +\infty$. Set $J_n := [0, n \cdot e[, n \in \mathbb{N}.$ Then

$$\lim_{n\to\infty}\prod (J_n)^{-1}F_{J_n}$$

exists a.s.

The theorem remains valid if $(J_n)_{n \in \mathbb{N}}$ is a regular family of sets with $\lim_{n \to \infty} J_n = \mathbb{P}_0^l$, as defined in [1]. If (X, Q, P) is a finite measure space, then we can replace the condition $p(F) < +\infty$ by the existence of the time constant of one of the processes F^+ and F^- in (2.1.1). E.g. we can suppose $\gamma(F^-) < +\infty$. Then, by theorem (2.5) in [1], $\lim_{n\to\infty} \prod (J_n)^{-1} F_{J_n}^-$ and $\lim_{n\to\infty} \prod (J_n)^{-1} G_{J_n}$ exist a.s. and are in L_1 . By a truncation argument like that in [4, p.188] the existence of $\lim_{n\to\infty} \prod (J_n)^{-1} F_{J_n}^+$ follows from theorem (2.5) in [1]. Together these prove the last statement. Let F be a stationary process with discrete parameter on a probability space (X, Q, P) with $F_{[n,k[} \in L_1$ for $[n, k[\in I_d]$. Y. Derriennic [2] proved that $(1/N)F_{[0,N[}$ converges a.s. and in L_1 , if the following two conditions are satisfied:

(a) there is a sequence $(h_k)_{k \in \mathbb{N}} \subset L_1$, $h_k \ge 0$, with $\sup_{k \ge 1} ||h_k||_1 < +\infty$ and

$$F_{[0,n+k[}-F_{[0,n[}-F_{[n,n+k[}\leq T^n h_k \qquad (T=T_1),$$

for every n and k,

(b)
$$\inf_{N\geq 1} (1/N) \int F_{[0,N[} dP > -\infty.$$

From this result the Shannon-McMillan-Breiman theorem follows at once (see [2]).

If we replace $\sup_{k\geq 1} ||h_k||_1 < +\infty$ by $\sup_{k\geq 1} h_k \in L_1$ in (a), then F is boundedly non-additive. The question arises as to whether all processes which satisfy (a) and (b) are boundedly non-additive.

3. The continuous parameter case

THEOREM (3.1). Let F be a stationary process with continuous parameter which satifies $p(F) < +\infty$. Then

$$F = F^+ - F^- + G, \tag{3.1.1}$$

where F^+ and F^- are non-negative superadditive processes and G is additive.

Proof. Fix $I \in I_s$. As F is boundedly non-additive, there is a countable set $K = \{A_1, \ldots\} \subset \overline{A}(I)$ with

$$F_I^* = \sup \{F_I^*(A) : A \in K\}, \quad * = ", +, -.$$

Put $f_N^* := F_I^*(A_1) \vee \cdots \vee F_I^*(A_N)$. We obtain $f_N^* \uparrow F_I^*$ and $f_N'' = f_N^+ + f_N^-$. Hence

$$F_I'' = F_I^+ + F_I^-, (3.1.2)$$

Put $g_N \coloneqq F_I - f_N^+ + f_N^-$, and let G be defined by $G_I \coloneqq \lim_{N \to \infty} g_N$. Now we will show, that F^* , G and -G satisfy (1.2). Together with (3.1.2) this implies that the F^* are superadditive processes. Let I_1, \ldots, I_m be disjoint sets in I_s such that $\bigcup_{i=1}^m I_i = I$. Take $K_i = \{A_1^i, A_2^i, \ldots\} \subset \overline{A}(I_i)$ with

$$F_i^* = \sup \{F_i^*(A) \colon A \in K_i\}, \qquad 1 \le i \le m.$$

U. Wacker

Put $f_N^{*,i} = F_{I_i}^*(A_1^i) \vee \cdots \vee F_{I_i}^*(A_N^i)$. By the same argument as in the proof of theorem (2.1), we obtain $B_1^N, \ldots, B_M^N \in \overline{A}(I)$ with

$$F_I^*(B_1^N) \vee \cdots \vee F_I^*(B_M^N) \geq \sum_{i=1}^m f_N^{*,i}.$$

So for every $N \in \mathbb{N}$, $F_I^* \ge \sum_{i=1}^m f_N^{*,i}$ is satisfied, and (1.2) is proved for F^* , * = ", +, -. It remains to prove

$$G_{I} = \sum_{i=1}^{m} G_{I_{i}}.$$
 (3.1.3)

Let $A_j = (M_1^j, \ldots, M_{K_j}^j)$ and $A_j^i = (M_{1,i}^j, \ldots, M_{K_{j,h}^j}^j)$, $1 \le i \le m$, $j \in \mathbb{N}$. For $1 \le i \le m$ let M_i^N be the collection of all intersections of sets in $M_{K_{j,h}^j}^j$ and in $M_{K_j}^j$, $1 \le j \le N$. Let M_N be the collection of all these intersections. We set

$$Z_N^i = \sum_{J \in M_i^N} F_J$$
 and $Z_N = \sum_{J \in M_N} F_J$.

Because $\sum_{i=1}^{m} Z_{N}^{i} = Z_{N}$ is satisfied, (3.1.3) follows from

$$Z_{N}^{i} \rightarrow G_{I_{i}} \text{ and } Z_{N} \rightarrow G_{I}.$$
By $M_{i}^{N} \triangleleft M_{K_{j,b}i}^{j}$ and $M_{N} \triangleleft M_{K_{j}}^{j}$ for $1 \leq j \leq N$, we obtain
$$A_{j,N}^{i} \coloneqq (M_{1,i}^{j}, \dots, M_{K_{j,b}i}^{j}, M_{i}^{N}) \in \bar{A}(I_{i})$$

$$(3.1.4)$$

and

$$A_{j,N} \coloneqq (M_1^j,\ldots,M_{K_l}^j,M_N) \in \bar{A}(I).$$

Put $h_N^{*,i} = F_{I_i}^*(A_{1,N}^i) \vee \cdots \vee F_{I_i}^*(A_{N,N}^i)$ and $h_N^* = F_I^*(A_{1,N}) \vee \cdots \vee F_I^*(A_{N,N})$, * = +, -. We obtain $F_{I_i}^* \ge h_N^{*,i} \ge f_N^{*,i}$ and $F_I^* \ge h_N^* \ge f_N^*$. This implies $Z_N^i = F_{I_i} - h_N^{+,i} + h_N^{-,i} \to G_{I_i}$ and $Z_N \coloneqq F_I - h_N^+ + h_N^- \to G_I$, and (3.1.4) is proved. \Box

We will call a process F bounded, if

$$b(F) \coloneqq \sup \left\{ \prod (I)^{-1} \int |F_I| \, dP: \, I \in I_s, \prod (I) > 0 \right\}$$

is finite.

THEOREM (3.2). Let F be a bounded and locally boundedly non-additive process. Set $J_t = [0, t \cdot e[, t \in \mathbb{Q}]$. Then

$$\lim_{t\to 0^+} \prod (J_t)^{-1} F_{J_t}$$

exists a.s.

Sketch of the proof. We can assume $\int F''_{[0,r,e[} dP < +\infty, \text{ for an } r > 0$. Let $J = [0, a[\subset [0, r \cdot e[\text{ with } a = (a_i) > 0$. Let b_i be the largest integer $n \le r/a_i$ and let $c = (b_i \cdot a_i)$. We obtain

$$\left(\prod_{i=1}^{l} b_{i}\right) \int F''_{J} dP \leq \int F''_{[0,c[} dP \leq \int F''_{[0,re[} dP.$$

This and $[0, r \cdot e] \subset [0, 2c]$ imply

$$\prod (J)^{-1} \int F_J'' \, dP \leq \prod ([0, c[)^{-1} \int F_{[0, re[}'' \, dP \leq 2^l \prod ([0, r \cdot e[)^{-1} \int F_{[0, re[}'' \, dP.$$

296

So

$$\sup \left\{ \prod (J)^{-1} \int F_J'' \, dP : J \in I_s, \prod (J) > 0, J \subset [0, r \cdot e] \right\}$$

$$\leq 2^l \prod ([0, r \cdot e])^{-1} \int F_{[0, r \cdot e]}'' \, dP < +\infty$$

is proved, and we obtain the decomposition (3.1.1) for all $I \subseteq [0, r \cdot e[$. By additivity and stationarity we extend G to all $I \in I_s$. We obtain a bounded additive process, for which the existence of

$$\lim_{\substack{t\to 0+\\t\in \mathbf{Q}}}\prod_{t\in \mathbf{Q}}(J_t)^{-1}G_{J_t} \quad \text{a.s.}$$

is proved in [1]. It remains to prove $\lim_{t\to 0+,t\in Q} \prod (J_t)^{-1} F_{J_t}^* = 0$ a.s. for * = +, -. This can be done in almost the same manner as in the proofs of theorem (4.2), lemma (4.7) and lemma (4.8) in [1].

THEOREM (3.3). Let F be a boundedly non-additive process with continuous parameter for which

 $\sup \{|F_{[a,b[}|:[a, b] \subset [0, e[and the coordinates of a and b are rational\}\$ is integrable. Set $J_t = [0, t \cdot e[, t \in \mathbb{Q}.$ Then

$$\lim_{\substack{t\to\infty\\t\in\mathbf{Q}}}\prod_{t\in\mathbf{Q}}(J_t)^{-1}F_{J_t}$$

exists a.s.

The theorem can be proved by a reduction to a discrete case following the proof of theorem (2.5) in [1]. Both theorems remain valid if $\{J_t\}_{t \in \mathbf{Q}}$ is a regular family of sets. One can define stationary processes indexed by more general sets than intervals, and it seems that the results carry over to that setting.

5. Examples

In this section we give some examples of non-additive processes, which appear in percolation on a lattice. These processes are given by a family of r.v.'s $F = (F_{I_1}, I \in I_d)$, where $(F_{I_1}, \ldots, F_{I_n})$ has the same distribution as $(F_{I_1+u}, \ldots, F_{I_n+u})$, for all $I_1, \ldots, I_n \in I_d$, $u \in \mathbb{N}_0^d$. As in the 1-parameter case (see [3]) we can pass to an equivalent process \tilde{F} with sample space \mathbb{R}^{I_d} , which is a stationary process, defined as in definition (1.5).

Let the graph L be given by a lattice of dimension $d \ge 2$, where the set E of sites is \mathbb{Z}^d . Two points in \mathbb{Z}^d are neighbours if their Euclidean distance is 1. The bonds connect any two neighbours. The set of bonds will be denoted by K. All bonds are unoriented. Further let $\{U_{l_b} \ l \in K\}$ be a set of non-negative i.i.d. r.v.'s with a finite mean see [5].

Example (4.1). We suppose d=2. For a fixed $0 \le n \le +\infty$ let $E_n := \mathbb{Z} \times \{k \in \mathbb{Z} : |k| < n+1\}$. Let the graph L_n be given by the set of sites E_n and the set of all bonds of L whose end points are in E_n . For l < n+1 we define $M_m^l := \{(m, p) : |p| \le l\}.$

For a path w consisting of a connected string w_1, \ldots, w_m of bonds, put $U_w = \sum_{i=1}^m U_{w_i}$. Let W_{m_1,m_2}^l be the set of all paths connecting $M_{m_1}^l$ to $M_{m_2}^l$. Put

$$X_{m_1,m_2}^l(x) \coloneqq \inf \{ U_w(x) \colon w \in W_{m_1,m_2}^l \}, \qquad m_1 < m_2.$$

For l=0, $X = (X_{m_1,m_2}^l)$ is a subadditive process. For l=n, X is a superadditive process. For 0 < l < n, $X_{0,m}^{lm}$ is bounded by

$$2\sum_{j=0}^{m}\sum_{i=1-l}^{l}U_{((j,i-1),(j,i))}+\sum_{i=1}^{m}X_{i-1,i}^{l}-X_{0,m}^{l},$$

 $m \in \mathbb{N}$, so in this case X is a boundedly nonadditive process.

Example (4.2). We suppose $d \ge 2$ and $||U_l||_{\infty} =: C < +\infty$, $(l \in K)$. For $I \in I_d$ let L_I be the subgraph of L, whose set of sites is $E_I = \mathbb{Z}^d \cap I$, and whose set of bonds K_I contains exactly all bonds of L whose end points are in E_I . Let SL_I be the set of all connected subgraphs of L_I , having the set of sites E_I , and which contain no circuit. We define pointwise:

$$F_I(x) \coloneqq \inf \left\{ \sum_{l \in K'} U_l(x) \colon K' \text{ is the set of bonds of a graph } L' \in SL_I \right\}, \qquad I \in I_d.$$

We will now show that F is a boundedly non-additive process. As F is non-negative, this statement follows by (2.1.1) and (2.1.3) from: $F_I^+(x) \le C \prod (I)$, uniformly in x. To prove this fix $I \in I_d$ and $x \in X$. Let $A = (M_i)_{1 \le i \le m} \in \overline{A}(I)$. Suppose

$$\sum_{\substack{J' \subset J\\ J' \in \mathcal{M}_{l+1}}} F_{J'}(x) \leq F_J(x),$$

for a j with $1 \le j \le m-1$ and a $J \in M_j$. Let, for $I' \in I_d$ and $x \in X$, $L(I', x) \in SL_{I'}$ be a graph with set of sites E(I', x) and set of bonds K(I', x), which satisfies

$$F_{I'}(x) = \sum_{l \in K(I';x)} U_l(x).$$

We complete the graphs $L(J', x), J' \in M_{j+1}, J' \subset J$, to an element of SL_J . The set of bonds of this graph may be denoted by K'. By the definition of F, we obtain

$$F_J(x) \leq \sum_{l \in K^{\vee}} U_l(x).$$

So we obtain:

$$\left(F_{J}(x)-\sum_{\substack{J'\subset J\\J\in M_{j+1}}}F_{J'}(x)\right)^{+}\leq C\cdot \operatorname{card}\left(K'\setminus\bigcup_{\substack{J\subset J\\J'\in M_{j+1}}}K(J',x)\right)$$

The number of new bonds we use for all completions like those described above is smaller than $\prod (I)$ and they all are different; so $F_I^+(x) \le C \prod (I)$ is proved.

Acknowledgements. This paper contains a part of my dissertation written under the direction of Prof. U. Krengel; I want to thank Prof. U. Krengel for his guidance and encouragement.

REFERENCES

- M. A. Akcoglu & U. Krengel. Ergodic theorems for superadditive processes. J. Reine Ang. Math. 323 (1981), 53-67.
- [2] Y. Derriennic. Un theoreme ergodique presque sous-additif. Ann. Prob. 11 (1983), 669-677.
- [3] A. del Junco. On the decomposition of a subadditive stochastic process. Ann. Prob. 5 (1981), 298-302.

- [4] J. F. C. Kingman. Subadditive processes. In Lecture Notes in Mathematics 539, 167-223. Springer-Verlag: Berlin-Heidelberg-New York, 1976.
- [5] R. T. Smythe & J. C. Wierman. First-Passage Percolation on the Square Lattice. Lecture Notes in Mathematics 671, Springer-Verlag: Berlin-Heidelberg-New York, 1978.