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QUANTUM DOUBLE CONSTRUCTION FOR
GRADED HOPF ALGEBRAS

M.D. GOULD, R.B. ZHANG AND A.J. BRACKEN

A detailed proof of the quantum double construction is given for Zj -graded Hopf
algebras, and an explicit formula for the graded universal i2-matrix is obtained in
a general fashion.

1. INTRODUCTION

The quantum double construction [5, 9, 11] states that, given a Hopf algebra A
with a bijective antipode (and satisfying certain other mild conditions), there exists a
unique quasitriangular Hopf algebra (D(A),R) such that (1) D(A) contains A and its
dual A" as Hopf subalgebras; (2) the universal R matrix is the image of the canonical
element of A®A° under the embedding A<S)AO —> D{A) and (3) the linear mapping A®
A° —> D{A) given by a<g)& i—> ab is bijective. The importance of the construction is two-
fold. Firstly, it allows one to construct new Hopf algebras which are non-commutative
and non-co-commutative from non-commutative or non-co-commutative Hopf algebras;
and secondly it provides a constructive way of finding solutions of the quantum Yang-
Baxter equation which arises in a variety of areas in physics. The universal i2-matrix
for Uq(sl(m)) [6], is constructed in [12], and more recently, the universal iZ-matrices
for all the quantum groups [6] have been obtained in explicit form by Kirillov and
Reshetikhin [7].

Certain category-theoretical arguments indicate that the quantum double construc-
tion may be formally generalised to Z2-graded Hopf algebras, and recent research on
quantum supergroups [2, 3, 4, 8, 13, 15], especially the works on Uq(osp(l/2)) and
Uq(osp(2/2)) [4, 8, 13], have provided us with concrete examples. However, a detailed
discussion of the double construction in the graded case is still lacking, and in particular
an explicit formula for the graded universal il-matrix is not known in a general fashion.
The aim of the present paper is to give a systematic and detailed description of the
double construction of ^-graded Hopf algebras, and to construct the corresponding
graded universal .R-matrix explicitly. We hope that our proof will be readily accessible
by the mathematical physics community.
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The structure of the paper is as follows. In Section 2 we give the basic definitions
which will be needed in the remainder of the paper and present some examples of
graded Hopf algebras; in Section 3 we discuss the dual of a graded Hopf algebra and
prove certain technical results which are of crucial importance for the development of
the quantum double construction. In Section 4 we generalise the definition of quasi-
triangularity to graded Hopf algebras following [8] and then prove the quantum double
construction in detail. Finally in Section 5 we briefly summarise the main results of
the paper and also indicate how the quantum double construction applies for quantum
supergroups.

2. GRADED HOPF ALGEBRAS

To make the paper self-contained we give some basic definitions in this section. We
choose a fixed field K. A Z2 -graded vector space V over K is the direct sum of two
vector spaces,

V = V0@V1.

An element v G V is called homogeneous if v G Vo U Vi C V, otherwise it is inhomoge-
neous. To each element v G Vi C V, * = 0 or 1, we assign the gradation index [v] = i
and call v even if [v] = 0 and odd if [v] = 1. We refer to Vo and V\ as the even
and odd subspaces of V, respectively. The dual V* of a Zj-graded vector space V
admits a natural Z2-grading V* = Vo* 0 V2*»

 w h e r e Vi - H o m (V*,K)i » = 0,1 with
~H.om(kVi,K) representing the morphisms from Vi to K. For any x* G V*, v G V, we
shall denote x*(v) G K by {x*,v). Given two Z2-graded vector spaces V and W over
K, a linear mapping / : V —» W is said to be homogeneous of degree r G Z2, if

f(Vi)QWi+T ( m o d 2 ) , 1 = 0,1.

The mapping / is called a homomorphism of the Z2 -graded vector space W to the Z2-
graded vector space V if / is homogeneous of degree 0. An isomorphism of Z2-graded
vector spaces is a homomorphism which is one-to-one and onto. The tensor product
V ® W is again a Z2 -graded vector space with the naturally induced grading given by

V®W = (V®W)0@{V®W)1> (V®W)t= ® (Vk®Wt).
k+l=i (mod 2)

In the remainder of the paper, the twisting map T : V ® W —* W ®V will
frequently appear. It is defined for homogeneous elements v G V, w G W by
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and extends to all elements of V and W through linearity.
A Z2-graded algebra A over A" is a Z 2-graded vector space equipped with graded

vector space homomorphisms M : A ® A —» A and u : K —* A such that the
following diagrams

M

A®A M

are commutative, where A —* K ® A and A —* A ® K are the natural maps; M and
u are called the multiplication and unit of A, respectively. For convenience, we shall
write M(a ® b) as 06, V o, b 6 A, whenever this does not cause confusion.

A Z2-graded algebra A is called commutative if the following diagram commutes

A®A

where T : A® A —* A® A is the twisting map. Let A and B be Zj -graded algebras
with multiplications MA, MB, and units UA, UB, respectively. Then A ® B is also
a Z 2-graded algebra with unit u — UA ® V-B and multiplication M defined by the
composition

(1) A®B,

where I A '• A —> A and Ig : B —» B are the identity morphisms of A and B,
respectively, and T : A® B —> B ® A is the twisting morphism.

A homomorphism of Z2-graded algebras / : A —* B is a homoznorphism of Zj-
graded vector spaces such that the diagrams

MA

uA

A®A

B®B
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are commutative. A Z2-graded co-algebra C is a Z2-graded vector space with the
Z 2 -graded vector space homomorphisms A : C —> C ® C and e : C —* K such that
the following diagrams are commutative

C®C

c®c- C®C®C

C®K

where / : C —* C is the identity homomorphism, A and e are, respectively, called the
co-multiplication and co-unit of C. Note that the commutativity of the first diagram
is equivalent to (A ® /) • A = (/ ® A) • A, called the co-associativity of A.

We shall adopt Sweedler's Sigma notation [14] throughout the paper and write

A(c) = X)c(!)®c(2)' ( A ® / ) A ( C ) = X)CC1)®
(<=) (c)

In this notation, the co-unit property may be expressed as

(c) (c)

A Z2-graded co-algebra C is called co-commutative if the following diagram is
commutative

C®C

where T : C ®C —* C ® C is the twisting map. Let B, C be Z2-graded co-algebras
with co-multiplications Ag, Ac and co-units £#, ec, respectively, then B®C is also
a Z 2-graded co-algebra with co-multiplication given by the composition

B®C®B®C

and co-unit given by
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A homomorphism of Z 2-graded co-algebras / : A

' 2-graded vector spaces such that the diagrams

A®A

B is a homomorphism of

are commutative.

Let H be a Z2 -graded algebra with multiplication M and unit u, and at the
same time a Z 2-graded co-algebra with co-multiplication A and co-unit e. Then H is
called a Z2-graded bi-algebra provided that one of the following equivalent conditions
are satisfied:

(i) A and e are Z2-graded algebra homomorphisms;
(ii) M and u are Z2-graded co-algebra homomorphisms.

Further, if H admits a Z 2 -graded vector space homomorphism S : H —» H which
satisfies the following defining relation

(2) M • (I <g> 5) • A = M • (S ® / ) • A = u • e

then H is called a Z2-graded Hopf algebra, and S is called the antipode of H.

The antipode S has the following properties [1, 10, 14]

LEMMA 1. Let H bea Z2 -graded Hopf algebra and S its antipode; then

(1) SM = MT(S®S),
(2) Su = u,

(3) e-S = e,

(4) T-{S®S)-A = A-S,
(5) if H is commutative or co-commutative, then S • S = I,

where I: H —• H is the identity morphism and T : H®H—*H®His the twisting

morphism.

A fact which is important for later applications is that if the antipode S of a Z2-
graded Hopf algebra H is bijective, then H is also a Z2-graded Hopf algebra with the
opposite co-multiplication A' = T • A and the opposite antipode S' = S~1. We note
that all finite dimensional Z2-graded Hopf algebras possess bijective antipodes.

EXAMPLES: Finally we give some concrete examples of Z2-graded Hopf algebras.

Classical examples of co-commutative graded Hopf algebras are the universal enveloping
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algebras of graded Lie algebras. Consider for example the universal enveloping algebra
U(g) of a simple basic classical Lie superalgebra g, which is a Z2-graded Lie algebra
over the complex number field C. Denote by A the familiar diagonal homomorphism
A : U(g) -> U(g) ® U{g) such that

A(o) = a ® 1+ 1 <g> a, V o £ j

(3) A(uv) = A(w)A(t>), V u, v G U{g)

and let the morphism e : U(g) —> K be defined by

e{\) = 1
e(a) = 0 , V a G g

(4) £(uv) = e(u)e(v), Vu,w G {/(</),

then U(g) constitutes a Z2-graded bi-algebra with co-multiplication A and co-unit e.

Introduce the gradation index [v] for homogeneous elements v G U(g) such that

{ 0 v even,

1 v odd,

and define 5 : U(g) —* U(g) by
(5) S(a) = -a, Vaeg; S{uv) = (-)MW5(t»)5(u)
for homogeneous elements of ?/(</) which extends to all U(g) by linearity. Then S gives

rise to an antipode on U(g), and thus turns it into a Z2-graded Hopf algebra. Note

that A' = T • A = A, and S2 = I.

The Z2-graded Hopf algebra U(g) admits one-parameter deformations leading

to non-commutative and non-co-commutative Z2-graded Hopf algebras, namely, the

quantum supergroups [2, 3, 8, 13] Uq(g) which are defined as follows.

Let cci, i = 1,2,... ,r, r = rank of g, be the simple roots of g. Denote by

H — {hai I * = 1,2,... , r} the vector space spanned by the Cartan generators hai

of g, and by ( , ) the invariant bilinear form on H* = ©J"=1Ca;. Define the matrix

A = (an) by

aij = 2(a,-,aj)l(ai,a{), if (a;,a<) ^ 0, Vj

and aij = (cti,aj), i f(ai ,Oi)=0, Vjf.

For a nonzero parameter q G C, we let

q(.<*i<ai)/2 (cti,ati) ^ 0

q otherwise,

f

l
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and consider the algebra generated by
to the following constraints

= g±fca<,eai,fai | t = 1,2,... ,r} subject

[Ki,Kj}=0, K^Kr^q^ej, KJa.tff
1 = q7

a« fa.

1 - O j

v=0
1-OiV

9.

i»=0 L ' 1i

where the notations are as follows. Define the gradation index

[hi] = 0, V*

r l _ \t l _ °> ai e v e n>
[Cai] - l/a,j - j^ a . o d d )

and for any u,v which are monomials in the simple and Cartan generators

[uv] = [u] + [v] (mod 2).

Then

l(-)

[eai,lai } = eQ./Qj. - (-fa<][Tai]fai?ai, et cetera

if at is even,

— Clij

, if a; is odd,

with
) (

I 1, n = 0,m.
It is a matter of straightforward manipulations to check case by case for all simple basic
classical Lie superalgebras that A : Uq(g) —» Uq(g) ® t/g(ff), with

A(eQj.) = eai ® g-""^2 + qh"i'2 ® eai

(6)
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defines an algebra homomorphism, which we call the co-multiplication on Uq(g). The
algebra homomorphism e : Uq(g) —» C denned by

(7) e(ea t ) = e ( / Q . ) = 0, e(qh~i) = e(l) = 1

determines a co-unit for Uq(g)\ and an antipode S : Uq(g) —» Uq(g) is defined by

S(eai) = -

(8.a)

which we extend to an algebra anti-homomorphism for all of Uq{g), so that

(8.b) S(uv) = (- l)M WS'(i»)S(»),

thus turning Uq(g) into a Z 2-graded Hopf algebra.

In the limit as q —» 1, Uq(g) reduces to U(g), the universal enveloping algebra of
the simple basic classical Lie superalgebra g, and equations (6), (7) and (8) reduce to
(3), (4) and (5), respectively.

3. T H E DUAL OF A GRADED H O P F ALGEBRA

In this section we study the dual of a graded Hopf algebra. The results proved here,
although technical, will be of crucial importance for the development of the quantum
double construction.

Let A be a Zj-graded algebra over the field K, M and u be its multiplication
and unit, respectively. Denote by A* the dual of A regarded as a Z2-graded vector
space, and define

(9) A° = {a* G A* I Ker(a') contains a co-finite Z2-graded ideal},

where a Z2-graded ideal / C A is assumed to be two-sided, that is,

al C / , IaCI, Va£A

and it is co-finite if dim (A/ / ) < +00. If A" ^ (0), then it has the structure of a Z2-
graded co-algebra with co-multiplication M*\AP and co-unit U*\A° , where M* : A* —>

(J4 ® A) and u* : A* —> K are the Z2 -graded vector space homomorphisms induced
from M : A (g> A —> A and u : K -* A, respectively [1, 14].
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If for any 0 / s E y l there exists x* € A" such that (x*,a) ^ 0, we say that A"

is dense in A*. This occurs if and only if for any non-zero a £ A there is a co-finite
Z2-graded ideal I of A which excludes a [1, 14]; and in this case, we call A a proper

algebra.

For a Z2-graded Hopf algebra A we denote by Aa its underlying Z2-graded al-
gebra. Then A" = (Aa)° is a Z2-graded co-algebra because of the above discussion.
Since the dual of a Za -graded co-algebra is an algebra with the same gradation, we
conclude that

LEMMA 2 . If A is a Z2 -graded Hopf algebra, with multiplication M, unit u, co-
multiplication A, co-unit e and antipode S, then A" is also a Z2 -graded Hopf algebra
with multiplication M", unit u°, co-multiplication A", co-unit t° and antipode S"
such that

M° = A*\Ao, tt" = e'U-

(10) A° = M*\Ao, eo = u*\Ao, S° = S'\Ao.

We shall call the graded Hopf algebra A proper if its underlying graded algebra
Aa is proper, that is, A" is dense in A*.

When S is bijective, (S")"1 : A° -* A" exists and this guarantees that A" is also
a graded Hopf algebra with the opposite co-multiplication Ao = T • A° and opposite
antipode So = (S"1)*^" = (S")'1, or more explicitly, Ao and So are defined by the
following equations

(11) (Ao(a'),

(12) {So(a*),b) = (a*, S-\b)), Vfl'e A", b, c G A,

while the multiplication, unit and co-unit remain the same as in Lemma 2. For
uniformity of notation we let Mo = M", uo = u° and eo = e°.

Now let us consider the tensor products A" <g> A and A ® A". They inherit
graded Hopf algebra structures from those of A and A". For example, the natural
co-multiplication for A" ® A, which we denote by A : A" ® A —> A" ® A <g> A" <S> A, is
given by

(13.a) A = (/<8)r<g)7)(Ao<8)A),

and the natural co-multiplication for A ® A" is A' : A ® A" —* A ® A° ® A ® A" given
by
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(To avoid cumbersome notation we have in (13) used the same symbol / to denote
the identity homomorphisms of both A and A", and T for both the twisting maps
A <g> A" ->• A" (g> A and A" ® A -> A ® A". We shall keep this convention in the
remainder of the paper.) However, in this section we are mainly interested in A" ® A
and A ® A" as graded vector spaces, and we have the following

PROPOSITION 1 . Let A be a. "Li-gradedHopf algebra, with a bijective antipode
S. The homomorphism of Z2 -graded vector spaces \x: A" ® A—* A® A" given by the
composition

( S t r ® J W s o ® J ) A T (/®a®Sfr)A'
(14) A°®AK ^ > ' A°®A^A®AoK —» ; A® A"
defines an isomorphism between the Z2 -graded vector spaces A" ® A and A® A" with

the inverse morphism fi~1 : A® A" —* A" ® A given by the composition

(Str ® / ) A T ( i ® Str)(i(»S)A

(15) A®A°y — > ' A®A°^A°®AK '-^ ' A" ® A,

where Str is defined by

Str(a*®b) = . Str(T(a* ®b)) = (a*,b), V a* € A", b G A.
PROOF: We only need to prove the proposition for homogeneous elements of A

and A°, since it can be trivially generalised to the inhomogeneous elements through
linearity. Denote by v the composite morphism (15). For homogeneous elements we
have

tl{a' ®b)= Yl (
(a*), (6)

(16) x (_)[--]w+[»(i)]m+[.'][*(,)i+i»(1)][»(,)]> o . € A.t b e At

1/(6® a*) = Y, Ki)>6(i)Xa(3)>S-1 (t(S)))a(2) ® 6(2)

(17) x (_)l6(i)l+I6(3)]+(K»)J+[6(i)006(i)l+I6(.)0, a* e i » , l e A.

Therefore

x (_

(18) x (_)

where
] + [6(4)]) (mod 2).
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The first bracket on the far right-hand side of (18) can be eliminated by using the
defining relation (2) of an antipode, leading to

* ® b) = Y, (a(2) ® a(3)>

The bracket on the right-hand side of the above equation can again be eliminated in
the same way and we arrive at

(a.),(6)

( 1 9 ) = a* <g> b, a* e A", b e A.

In a similar way we can prove that

Hi/(b®a*) = b®a*, a'eA", b G A,

thus completing the proof of the proposition. D

The isomorphism \i : A" ® A —> A ® A" actually defines a graded co-algebra
isomorphism between A" ® A and A ® A". In particular,

LEMMA 3 .

(20) A'-/x = 0i® M )-A.

PROOF: Let a* 6 A", b € A be homogeneous elements. Then

(o.).(i)

x 6(2) ® o(*2) ® 6(5)

with v = ([i(1)] + [6(2)] + [bw]) ([a(*5)] + [6(9)]) + [afo]([6(1)] + [6(a)]) (mod 2).

The second and third brackets on the right-hand side of the above equation can be
combined and eliminated together leading to

o* ® 6) = a(s)

X (_

= A-/i(a*®&).
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The above calculations can be generalised straightforwardly to inhomogeneous elements
of A and A" through linearity, thus proving the lemma. D

Another technical result which will be useful later is

LEMMA 4 .

(21) iL{So®S) = [S®So)TiT
x T.

P R O O F : Let

/i1 = (Str <g>J®2)(So<g>/®s)A,

1*2 = (I®2 ® Str) • A'.

Then for homogeneous elements a* £ A°, b € A, we have

T • (Mi • (So <g> S)(a* ® 6) = T • (Str ® I®2) • (S o ® I®8) • ( / <g> T ® / )
x (So ® 5O <g> S ® 5) • (T • Ao ® T • A)(a* (» 6)

where the fourth relation of Lemma 1 has been used. Using this relation again we can
show that

H • (So <g> 5)(o* <g> b) = /x2 • T • m(So <8> S)(a* ® 6)

= (5 ® 5.) ^ <«?!,,6(1)) W,, , S-1 (i( s )))6(2) ® ^ j t -
(o.).(fc)

Comparing the far right-hand side of the above equation with equation (17) we imme-
diately see that

f*(So 9 S)(a* ®b) = (S®So)T- ^ • T(a* ® 6), a* GA°,b£ A,

and this holds for inhomogeneous elements of A" and A as well, due to linearity of the
homomorphisms. U

We want to emphasise that Proposition 1 and Lemmas 3 and 4 hold only for
graded Hopf algebras with bijective antipodes. In the next section we shall show that
every proper graded Hopf algebra with a bijective antipode can be embedded in a
quasitriangular graded Hopf algebra.
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4. T H E QUANTUM DOUBLE CONSTRUCTION

In this section we generalise Drinfeld's quantum double construction for ordinary

Hopf algebras to the graded case. But before doing so we first introduce the notion of

a quasitriangular graded Hopf algebra.

Following [8], we call a Z 2-graded Hopf algebra A quasitriangular if there exists

an invertible element R G (A ® A)o C A ® A such that

(22) RA{a) = A'(a)R, Wa£A

a n d

(23) (A®I)R = R13R2s, (I ® A)R = RuRu,

where A' = T • A and we have adopted the standard notation that

•R12 =

•His =

(24) R23 =

where R = 2] <»i ® &«, o.{, 6; G A.

If R further satisfies the property that RT(R) = 1A ® 1A> then A is said to be

triangular.

We shall refer to R as the graded universal .R-matrix. It has been proved in [4, 8]

that

THEOREM 1 . The universal R-matrix satisfies the graded Yang-Baxter equation

(25) R12R13R23 — R2sR

PROOF: For completeness we repeat the proof here. It follows from the first equa-
tion of (23) and the fact that R £ (A <g) A)o, the even component of the graded tensor
product A ® A, that

Using (22) we have

R12(A ® I)R = [(T • A ® I)R]Ri2;

which immediately leads to the graded Yang-Baxter equation (25).
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We want to emphasise that throughout the paper, the product rule for elements
belonging to the tensor product of two Z 2-graded algebras is defined by the composition
(1) and generalises to higher rank tensor products iteratively. Therefore, the graded
Yang-Baxter equation (25) is essentially different from the ordinary Yang-Baxter equa-
tion although they look the same ostensibly.

Now we turn to the quantum double construction for graded Hopf algebras. We
shall prove the construction in four steps. Let us first of all define a formal product

(26) 6a',

such that for elements a* £ A", b 6 A

(6j + b2)a* = 6xa* + b2a*, 6(a* + a*) = ba\ + 6a*.

Vb,blyb2GA, a\a\,a*2eA°.

Denote the linear span of the elements of the form (26) by D(A). Then D(A) is a
Z 2 -graded vector space with its gradation naturally induced from A and A" such that
for homogeneous elements b € A, a* 6 A0, [ba*] = [b] + [a*] (mod 2).

Consider the Z 2 -graded vector space homomorphism ij> : A ® A" —* D(A) defined
by

(27) if>{b ® a*) = 6a*, b e A, a* e A".

It is quite obvious that ip defines a Z 2-graded vector space isomorphism between
A ® A" and D{A). Now we introduce on D(A) the multiplication M : D(A)®D{A) ->
D(A) defined by the composition
(28)

D(A)®D(A) ^ ^ T 1 A®A°®A ® A" / ^ ? / A®A® A°®A" MA^A° A®A°^ D(A)

where fi : A" ® A —> A® A" is defined by (14) and MA and MA° are respectively the
multiplications of A and A°. More explicitly, given homogeneous elements 6a*, de* G
D(A), where 6, d G A and a*, c* £ A" are also homogeneous, we have

M{ba*®dc')=

(29) x (_)

where 6d(s) and ofgjC* are the ordinary products in A and A", respectively. It can

be easily proved using (29) that M is associative, that is, the following diagram is

commutative
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D{A)®D(A)
M

D(A).
Let u : K —» A and e : A —» K be the unit and co-unit of the Zj -graded

Hopf algebra J4 respectively. Then e £ A" is the identity element of A". Define the
homomorphism u : K —> i?(j4.) by

(30) u{k) = u(Jb)e, ib £ K.

It immediately follows from the relations

/x(a* ® 1^) = \A ® a*> M(E ® 6) == 6 ® e, Va* £ J4°, 6 £ J4,

where y. is defined by (14) and the definition of M that the following diagram

'D{A)®D{A)

{A)®KK®D{A)

*D{A)

is commutative. Therefore, we have

PROPOSITION 2 . D(A) constitutes a Z2-graded algebra with multiplication
M and unit u defined by (28) and (30), respectively.

For computational purposes, it is very useful to extend the definition of the formal
product (26) by defining

(31) a*b = 4>fi(a*®b), Va* £ A°, b £ A

so that we also have a*b £ D(A), V a* £ A", b £ A. Now the multiplication on D(A)
can be interpreted as

(32) M{ba* ® dc*) = b(a*d)c\ ba\ dc* £ D(A)

where a*d is expressed as a sum of terms of the form ot^j, a; £ A, fc £ A" through
(31), and the multiplication of a,-/?? by 6 from the left and c* from the right is taken
to be
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This interpretation of M is fully consistent with the original definition (28), and the

associativity of M now becomes an obvious fact.

Let us further define the Z2-graded vector space homomorphism A : D(A) —*

D(A) ® D(A), by the composition

(33) D{A) * l i A® A" £ A® A" ® A® A0' *2* D{A) ® D(A),

where A' is denned by (13), and the homomorphism e : D(A) —> K by

(34) D(A) "C A®A°'^? K®K-+K

where eo = •U*|A° is the co-unit of A". Then

PROPOSITION 3 . The Z2-graded algebra. D{A) together with A and e consti-
tutes a Z2 -graded bi-algebra..

PROOF: Note that

') - A ' - ^ " 1 ,A') -

where I : D(A) —* D(A) and IA®A° • A® A" —* A® A" are the identity morphisms
of D(A) and A ® A", respectively. Since A' is co-associative, we see that

(A®I)A= (I® A) A.

We may express

(35) A(6a*) = A(6)Ao(a'), V ba* e D(A)

where A(6)A,,(a*) is defined in the usual way, that is

A(6)Ao(a*) = (if, ®t)(IA ®T®IAo). (A(6) ® Ao(o*)).

With (35) we immediately see that

(I®e)-~A(ba*)=ba* ®u(l), (e® I) • A(6o*) = «(1) ® ba\ V 60* e D(A),

thus D(A) together with A and e forms a Z2 -graded co-algebra. What remains to be
shown is the fact that A and e are also graded algebra homomorpbisms. Consider A
first. We want to prove that

(36) A(6a*dc*) = A(6a*)A(dc'), ba', dc' 6 D{A).
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In view of (35) and (32), this is equivalent to showing that

(37) A(a*6) = Ao(o')A(6), a* e A", b e A.

Now A(o*6) = A • ij> • /x(a* ® 6)

= (V> ® 1>) • A ' • n(a* ® b),

from which we obtain, using Lemma 3,

A(a*6) = (V> ® rj>) • (fi ® n)A(a* ® 6)

= Ao(a*)A(6).

Similarly, in order to show that e is a Z2-graded algebra homomorphism, it sufHces to
demonstrate that

(38) e(a*b) = eo{a*)e(b), a* £A°,b£ A .

Assume both a* 6 A" and 6 6 A are homogeneous, then

e(o'6)=
(a.).(fc)

= e o(a ')e(6).

Thus by linearity e : D(A) —> if indeed defines a Z2-graded algebra homomorphism,

and this completes the proof of the proposition. u

Finally we define 5 : D(A) —> D(A) by the composition

(39) D(A) ^A®A° T(^fo) A" ® A ^ D(A),

and show that

PROPOSITION 4 . 5 defines an antipode for the Z2-graded bi-algebra D{A),

thus turning it into a Z2 -graded Hopf algebra.

PROOF: Let 60* e D(A) with both a* 6 A" and be A homogeneous. Then

= E
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Generalising the above calculations to inhomogeneous elements linearly we see that

(40) M(S®l)A = ue

and in a similar way we can show that

(41) M-(7(8)5)-A = tt-e.

Equations (40) and (41) are necessary and sufficient to guarantee that 5 indeed gives

rise to an antipode for D(A). D

It is instructive to show that S defines a Z2-graded algebra anti-homomorphism,

that is, for homogeneous element d\, d2 £ D(A),

(42) 5(dxd2) = {-)[dl][d']S(d2)S(d1).

To do this, it sufficies to demonstrate that

(43) S(a*b) = (-)[a']lb]S(b)So(a*),

where a* G A" and 6 G A are homogeneous. Now

~S(a*b) = V> • fi • T{S ® So) • ij)-1 ••>!> • fi(a* ® 6)

= ip • Vi(So ®S)T- /x(a* ® b ) .

Using Lemma 4, that is, the relation

/x • (So ® 5) = (5 ® So) • T • p-1 • T

we immediately see that

S(a*b) = V>(5 ® So) • T(a* <g> 6)

= (-)[a*][b]S(b)So(a*),

thus completing the proof.

Another important fact is that there exist natural embeddings of A and A" in

D{A). Define ~A, J* C D(A) by

(44) A = {a = ae \ a G A}, ~A~° = {a* = lAa* \ a' G A"},

then A and A" are Z2-graded Hopf subalgebras of D(A), as can be easily seen. Also,
A and A" are respectively isomorphic to A and A" via the isomorphisms

<p : A -» ~A, <po: A° - f i °

defined by

(45) <p(a) = a, <po(a*) = a*, V a G A, a* G A".
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We call D(A) together with Z2 -graded vector space homomorphisms

M : D(A) ® D(A) -* D(A), U.K-+ D(A),

5 : D(A) -» D(A) ® D(A), e : D(A) -» K,

S : D(A) -» D(A),

the double of the Z2-graded Hopf algebra A. Summarising the results obtained above,
we have

THEOREM 2 . Tie double of a Z2-graded Hopf algebra A with a nontrivial A"
is a Z2 -graded Hopf algebra containing A and A" as Z2 -graded Hopf subalgebras.

From now on, we shall assume that the Z2-graded Hopf algebra A is proper, that
is, A" is nontrivial and dense in A*. Construct a homogeneous basis {a, | a = 1,2, . . .}
for A and the corresponding dual basis { a * | j = l , 2 , . . . } for A" such that

(a*, ot)=S.tt Vs,t.

Define

(46) R=J2a-®a*.£ A® A",

then we have the following

THEOREM 3 . Let A be a proper Z2 -graded Hopf algebra. Then

(47) H = (<p ® <po)R £ D(A) ® D(A)

defines a universal R-matrix for the double D(A) and thus turns it into a quasitrian-
gular Z2-graded Hopf algebra.

PROOF: TO prove the theorem we have to show that R satisfies all the properties
of a universal .R-matrix. Let us firstly demonstrate that R is invertable with

R'1 = (S ® I)R.

We have

(S®I)RR = ̂ S(at)ap ® a^-)^11*'1

p.*

M- (S®I) • A(at)<8io* = lc<g»lD,

where l c = w(l)e is the identity element of D(A). In exactly the same way we can
prove that
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thus, (S ® l)R is the double-sided inverse of R.
Secondly we show that R satisfies equation (22). Since A" is dense in A* , we have

the following completeness relations

;, b)a. = b,

These relations allow us to write RA(E), 5 € A C D(A) as

(48) $>

* (-;).(»)

where O^M) and Op(2) are the components of Ao(o*) = Sfo*) a»(i) ® °p(2)

(49) a;(2)6(2) = + • ii (a;(2) ® 6(2)) e D{A).

Using (49) we obtain

x (_
= E K(2).

and inserting this into (48) we arrive at

(50) = T • A(6)

In a similar way we can show that

(51)
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Since A and T • A are Z2-graded algebra homomorphisms, equation (50) and (51)
ensure that

(52) R~A(d) = TA(d)R VdeD(A).

Finally we consider

t,u,v

Thus

(53) (

and in the same way we can show that

(54)

Therefore R indeed gives rise to a universal .R-matrix, and it follows from Theorem 1
that R satisfies the graded Yang-Baxter equation. D

5. CONCLUSION

We have proved in detail the double construction for Z2-graded Hopf algebras
which states that for every proper Z2 -graded Hopf algebra A there exists a quasitri-
angular Z2-graded Hopf algebra D{A) which contains A and A" as Z2-graded Hopf
subalgebras and its universal .R-matrix is given by equation (47).

To apply the construction to the quantum supergroups in a direct way, we can
follow a similar procedure to that set up in [12]. Let Uq(g) be a quantum supergroup
and denote by Uq(b+) the Z2-graded Hopf subalgebra of Uq(g) generated by Ea{ =
qhi/2eai, hai, i = 1,2,... , r . Find a basis {Et \ t = 1,2,...} for Uq(b+) such that
Eai, hai, V i are basis elements, then construct (Uq(b+))° and a basis {£)« | t =

1,2,...} for (Uq(b+))° which is dual to {Et | t = 1 ,2 , . . .} . Denote by <n, pi £ {Dt \

t = 1,2,...} the elements dual to Eai and hai, respectively. The quantum double
D(Uq(b+)) is a quasitriangular Z2-graded Hopf algebra with the universal .R-matrix

t

which can be identified with Uq(g) itself via the isomorphism

(55)
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where A,- and %i a r e constants. These constants can be uniquely determined by con-
sidering the commutation relations

Eaipj - PjEai, Eai(Tj - <TjEai, et cetera

in D(Uq{b+)), where pjEai et cetera are evaluated according to the rule prescribed in
(31).

However, it must be pointed out that the existence of the isomorphism (55) is
entirely due to the peculiar structure of Uq(g). In the limit as q —» 1, this isomorphism
breaks down.

The universal .R-matrices for Uq{osp[l/2)) [8] and Uq(osp(2/2)) [8, 13] have been
constructed explicitly. Also the techniques developed by Kirillov and Reshetikhin [7]
can be generalised to quantum supergroups to yield explicit expressions for the universal
i2-matrices; results will be published in a separate publication.
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