X-RAY IMAGES OF SUPERNOVA REMNANTS

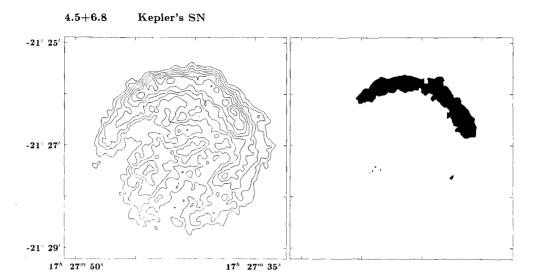
Frederick D. Seward

Harvard-Smithsonian Center for Astrophysics 60 Garden, Street, Cambridge, Massachusetts 02138

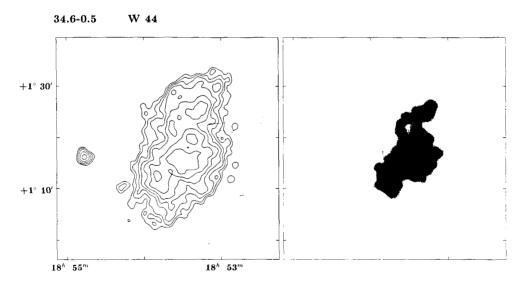
Einstein observations of supernova remnants have been reviewed and analyzed. Images of 44 galactic remnants have been reprocessed, merged when necessary, and collected into a catalog. Some bright remnants were viewed with both moderate and high resolution instruments (IPC with 1' resolution and HRI with 4" resolution). Some IPC images of nearby remnants have been separated into 2 energy bands, $0.2-0.6~\rm keV$ and $0.6-4.5~\rm keV$; whereas most images cover the band $0.2-4.5~\rm keV$. The catalog consists of 72 images of the 44 remnants.

These images will be published in the form illustrated here. Contour levels are spaced geometrically as indicated below the figures and show the faintest observable features. The pictures are more linear and generally show only the brighter regions. Images are available now, however, in FITS format, on magnetic tape and may be obtained by writing to the author.

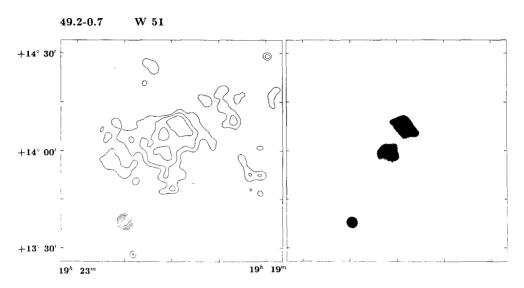
The x-ray morphology may be used to classify remnants. There are:


- 1) shell-like SNR with definite x-ray limb brightening.
- filled-center SNR, brightest at the center with little or no emission from the limb, x-ray spectra are suspected to be thermal, radio images are shell-like.
- 3) SNR with internal neutron star or bright synchrotron nebula indicating the presence of a hidden pulsar. Other data sometimes aid in this classification; e.g. a hard continuum x-ray spectrum or a center-bright radio morphology.
- 4) SNR dominated by a bright central source, probably an accretion-powered binary.
- 5) SNR with irregular morphology. None of the above categories apply, or data are too crude to determine the morphology.

The 44 remnants are listed here with a <u>preliminary</u> determination of the brightness as observed with the Einstein IPC.


Without the Einstein Observatory, these images of SNR would not exist. The observatory and imaging detectors were the result of the labors of R. Giacconi, H. Tananbaum, E. Schreier, L. Van Speybroeck, S. Murray, J.P. Henry, P. Gorenstein, F.R. Harnden, Jr., and D. Fabricant. Thanks also to J. Brody, M. O'Shaughnessy, and L. Whitton who assisted in the preparation of material for this catalog.

SNR Included in Catalog


	a	IDC D-4-		
D	Common	IPC Rate	Т	Comments
Remnant	Name Kanlan	$\frac{(c/s)}{7.2+0.4}$	Type	Comments
$\frac{1}{2}$ $\frac{4.5+6.8}{4.5+6.8}$	Kepler	7.3 ± 0.4	shell	SN 1604
2 6.4-0.1 3 11.2-0.3	W 28	3.2 ± 0.4	full	
3 11.2-0.3	-	1.00 ± 0.1	shell	
4 21.5-0.9		$0.49 \pm .05$	synchrotron	
5 27.4+0.0 5A	Kes 73	$1.07{\pm}0.1$	central source	
5A	1E1838-049	0.00 (00		not resolved
6 29.7-0.2	Kes 75	$0.22 \pm .03$	synchrotron	
7 31.9 + 0.0	3C 391	$0.24{\pm}.03$	irregular	
8 33.7 + 0.0	Kes 79	$0.44{\pm}.05$	irregular	
9 34.6-0.5	W 44	$3.3 {\pm} 0.3$	full	
10 39.2-0.3	3C 396	$.06 \pm .01$	irregular	
11 39.7-2.0	W 50	1.6 ave.	central source	
11A	SS433_	1.2 ave.	. ,	variable
12 41.1-0.3	3C 397	$0.75{\pm}0.1$	irregular	
13 43.3-0.2	W 49B	$0.67 \pm .06$	full	
14 49.2-0.7	W 51	0.9	irregular	
15 53.6 - 2.2	3C 400.2	$0.80{\pm}0.1$	full	
16 65.3 + 5.7	GKP	-	-	incomplete data
17 68.8 + 2.6	CTB 80	$0.17{\pm}.03$	central source	
17A	$1\mathrm{E}1951{+}327$	$0.14 \pm .01$		
18 74.3-8.5	Cyg Loop	$620{\pm}40$	shell	
19 74.9 + 1.2	CTB 87	$.040 \pm .01$	synchrotron	
20 78.2 + 2.1	W 66	>0.6	_	incomplete data
21 82.2 + 5.3	W 63	0.3	irregular	
22 109.2-1.0	CTB 109	5.2±0.4	central source	
22A 100.2 1.0	1E2259+586	1.1 ± 0.1	-	7s period
23 111.7-2.1	Cas A	61 ± 2	shell	periou
24 119.5+9.8	ČTA 1	0.9	full	
$\frac{25}{25}$ $\frac{120.1+1.4}{120.1+1.4}$	Tycho	$22.3{\pm}1$	shell	SN 1572
26 130.7+3.1	3C 58	$0.35 \pm .04$	synchrotron	21, 10,12
27 132.7+1.3	HB 3-	2.6	irregular	
		2.0	niegulai	in commiste data
28 160.4+2.8	HB 9	004		incomplete data
29 184.6-5.8	Crab	684	synchrotron	SN 1054
29A	PSR 0531+21	-	-	"age" 1240 yr
30 189.0 + 3.0	IC 443	12.8	irregular	
31 260.4-3.4	Pup A	230	shell	
32 263.8-1.7	m Vela~SNR	490	irregular	
32A263.5-2.7	PSR 0833-45	2.1	-	"age" 13000 yr
33 290.1-0.8	MSH 11-61A	$0.47{\pm}0.1$	full	0 ,
34 291.0-0.1	MSH 11-62	$0.22{\pm}.05$	synchrotron	
35 292.0 + 1.8	MSH 11-54	$9.1{\pm}1.0$	irregular	
36 296.1-0.7	_	3.1	shell	
37 296.5 + 10.0	PKS 1209-52	$\frac{3.1}{2.6}$	shell	
38 315.4-2.3	RCW 86	8.5 ± 1.0	shell	
39 320.3-1.2	MSH 15-52	$2.40{\pm}0.2$	synchrotron	
39A	PSR 1509-58	$0.30 \pm .04$	v	"age" 1550 yr
40 326.3-1.8	MSH 15-56	1.0	irregular	
41 327.1-1.1	-	$.085 \pm .02$	irregular	
42 327.4+0.4	Kes 27	0.40 ± 0.1	full	
42 327.4+0.4 43 327.6+14.5	SNR 1006	0.40 ± 0.1 11.1 ± 1.0	shell	
	RCW 103		shell	
44 332.4-0.4	Tr () 103	$9.3{\pm}1.0$	anen	

HRI, contour intervals are a factor of 1.3 in brightness.

IPC, contour intervals are a factor of 1.4 in brightness.

IPC, contour intervals are a factor of 1.5 in brightness.

IPC, contour intervals are a factor of 1.5 in brightness.