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Abstract

We develop an integration by parts technique for point processes, with application to the
computation of sensitivities via Monte Carlo simulations in stochastic models with jumps.
The method is applied to density estimation with respect to the Lebesgue measure via a
modified kernel estimator which is less sensitive to variations of the bandwidth parameter
than standard kernel estimators. This applies to random variables whose densities are not
analytically known and requires the knowledge of the point process jump times.
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1. Introduction

Kernel estimators for the density φF of a random variable F from a random sample
{F(k)}k=1,...,N of F have been introduced in [17] and [14]. More precisely in [17], finite
difference estimators of the form

φF (y) � 1

h
E[1[−h/2,h/2](F − y)] � 1

2Nh

N∑
k=1

1[−h,h](F (k) − y), y ∈ R+,

have been constructed and extended in [14] to estimators of the form

φF (y) � 1

Nh

N∑
k=1

K

(
F(k) − y

h

)
, (1.1)

where K : R → R+ is a kernel satisfying

∫ ∞

−∞
K(x) dx = 1.

The performance of kernel estimators is dependent on the choice of the bandwidth parameter
h, whose optimal value is a function of the number of samples, N , i.e. it should decrease as
N increases. It has been known since [17] that the optimal rate of decrease of h in the mean
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Integration by parts 807

square sense is N−1/4 for the finite difference estimator, while in [14] optimal values of h have
been obtained for kernel estimators in terms of N and K .

Conversely, integration by parts and related Malliavin calculus techniques can be used to
represent the density φF of F with respect to the Lebesgue measure as

φF (y) = ∂

∂y
P(F ≤ y) = E[W 1{F≤y}], (1.2)

under certain technical assumptions; see, e.g. Section 2.1 of [13] on the Wiener space, where
W is a random variable called a weight. This provides another way to estimate the density of F

with respect to the Lebesgue measure using Monte Carlo methods: denoting by {F(k)}k=1,...,N

a random sample distributed according to the law of F we have

φF (y) � 1

N

N∑
k=1

W(k) 1{F(k)≤y}, (1.3)

where {W(k)}k=1,...,N denotes independent random samples of W . The interest in (1.3),
compared to kernel estimators, is that it is independent of the value of a bandwidth parameter.
Note, however, that in addition to the samples of F , this estimator requires the knowledge of
the random path of the underlying stochastic process in order to evaluate W . Conversely, the
integrability of the weight W in (1.2) entails the existence of the density of F with respect to
the Lebesgue measure, thus excluding discrete random variables from this approach.

More generally, the Malliavin calculus has been applied to sensitivity analysis in continuous
and discontinuous financial markets (see [1], [2], [6], [7], [8], [10], and [11]) and in insurance
(see [16]), to express derivatives of the form ∂ E[f (Fζ )]/∂ζ as

∂

∂ζ
E[f (Fζ )] = E[Wζ f (Fζ )], (1.4)

where (Fζ ) is a family of random variables in ST depending on a parameter ζ ∈ R. Here,
Wζ is a weight independent of the function f , which need not be differentiable; in particular,
the estimation of the density, (1.3), corresponds to f = 1(−∞,0) and Fy = F − y, with W

independent of y. Note that in mathematical finance, each value of the bandwidth parameter h

in the finite difference
1

2h
E[f (Fζ+h) − f (Fζ−h)]

yields a different estimate of the corresponding sensitivity (also called ‘Greek’), see, e.g.
[5, p. 40], whereas (1.4) is again independent of a bandwidth parameter.

In Proposition 3.1, below, we derive a general integration by parts formula for point processes,
extending the results obtained in the Poisson case in [3], [8], [9], [15], and [16], with potential
application to sensitivity analysis and density estimation for stochastic models in finance,
insurance, and engineering. Using this integration by parts formula we obtain an expression
of the form (1.2)–(1.3) for the density of a random functional F with respect to the Lebesgue
measure:

φF (y) = E[W 1{F≤y}] � 1

N

N∑
k=1

W(k) 1{F(k)≤y} . (1.5)

This expression requires the knowledge of the characteristics (the Janossy densities) of the
underlying point process in order to compute the weight W , while the density of F may be
unknown or not analytically computable and thus requires estimating numerically.
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It turns out that the performance of the corresponding estimator (1.5) decreases when y is
large, in which case the term W 1{F≤y} has a large variance. This problem is tackled by a
localization procedure, which involves mixing (1.5) with a standard kernel estimate, i.e.

φF (y) = 1

η
E

[
K

(
F − y

η

)]
− E

[
Wf

(
F − y

η

)]

� 1

Nη

N∑
k=1

K

(
F(k) − y

η

)
− 1

N

N∑
k=1

W(k)f

(
F(k) − y

η

)
, (1.6)

where K is a kernel supported in [0, ∞) and

f (x) = 1[0,∞)(x)

(
1 −

∫ x

0
K(y) dy

)
, x ∈ R.

As shown in Section 6, this estimator combines the advantages of Malliavin-type estimators,
(1.5), and kernel estimators, (1.1), in that it is little sensitive to values of the bandwidth parameter
h, while at the same time it does not present the above mentioned variance problem. Relation
(1.6) can be viewed as the point process analog of a result proved in [12] on the Wiener
space, see Theorem 2.1 therein. The optimization results of [12], in terms of the kernel K

and the bandwidth parameter h, also apply here and are used in the numerical simulations; see
Section 6.3.

We proceed as follows. In Section 2 we review some properties of point processes, and in
Section 3 we establish the integration by parts formula (Proposition 3.1), which will be our
main tool for density estimation. In Section 4 we present an application of the integration by
parts formula to the computation of sensitivities, in particular, for functionals of the form

F =
∫ T

0
h(t) dXt, (1.7)

where h is a C1 function and

Xt =
Nt∑

k=1

Yk, t ∈ R+,

is a compound log-normal renewal process with random marks (Yk)k≥1 independent of
(Nt )t∈R+ . These results are used in Section 5 to construct a modified kernel density estimator.
Simulations and comparisons of different methods for density estimation are presented in
Section 6 for functionals of the form of (1.7) with h(t) = e−rt , t ∈ [0, T ]. Such functionals
can be used to express risk reserve processes for insurance portfolios in which the accumulated
amount of claims occurring in the time interval (0, t] is given by Xt ; see, e.g. [16].

2. Point processes

Let

Nt =
∞∑

k=1

1[Tk,∞)(t), t ∈ R+, (2.1)

be a point process with an increasing sequence of jump times (Tk)k≥1, generating the filtration
(Ft )t∈R+ on a probability space (�, F , P). Set T0 = 0 and let the interjump times of (Nt )t∈R+
be denoted by τk := Tk − Tk−1, k ≥ 1.
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Definition 2.1. Let T > 0. We denote by ST the subspace of L2(�, FT ) made of functionals
of the form

F = f0 1{NT =0} +
∞∑

n=1

1{NT =n} fn(T1, . . . , Tn), (2.2)

where f0 ∈ R and fn is C2 and symmetric in n variables on [0, T ]n, n ≥ 1, T > 0.

The set of F ∈ ST for which (2.2) is finite is denoted by S
f
T and is dense in Lp(�, FT ),

p ≥ 1. The expectation of F equals

E[F ] = jT ,0f0 +
∞∑

n=1

1

n!
∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)jT ,n(t1, . . . , tn) dt1 · · · dtn, (2.3)

where jT ,n : R
n+ → R+, n ≥ 1, are nonnegative symmetric functions on [0, T ]n called the

Janossy densities and jT ,0 ∈ R+; see [18], [4, Section 5.3], and the references therein. In other
terms, we have

P(T1 ∈ dt1, . . . , Tn ∈ dtn, NT = n) = jT ,n(t1, . . . , tn) dt1 · · · dtn,

0 ≤ t1 < t2 < · · · < tn ≤ T . We turn to some examples of point processes and their Janossy
densities.

Example 2.1. (Poisson processes.) In the case of Poisson processes with arbitrary deterministic
intensity λ(t) we have

jT ,n(t1, . . . , tn) = λ(t1) · · · λ(tn) exp

(
−

∫ T

0
λ(t) dt

)
,

i.e. for the standard Poisson process with intensity λ > 0 we have

jT ,n(t1, . . . , tn) = λne−λT , t1, . . . , tn ∈ [0, T ].
Example 2.2. (Renewal processes.) A point process (Nt )t∈R+ as defined in (2.1) is called a
renewal process with interoccurrence time distribution function Z(x) and density z(x) if the
random variables τk = Tk − Tk−1, k ≥ 1, are independent and identically distributed (i.i.d.)
with

Z(x) = P(τk ≤ x) =
∫ x

0
z(y) dy, x ∈ R+, k ≥ 1.

Since the sequence (τk)k≥1 is i.i.d., for 0 ≤ t1 < t2 < · · · < tn ≤ T , we have

P(T1 ∈ dt1, . . . , Tn ∈ dtn, NT = n)

= P(τ1 ∈ dt1, t1 + τ2 ∈ dt2, . . . , tn−1 + τn ∈ dtn, τn+1 > T − tn)

= z(t1)z(t2 − t1) · · · z(tn − tn−1)(1 − Z(T − tn)) dt1 · · · dtn;
hence, the Janossy densities jT ,n(t1, . . . , tn) are given by

jT ,n(t1, . . . , tn) = z(t1)z(t2 − t1) · · · z(tn − tn−1)

∫ ∞

T −tn

z(s) ds (2.4)

for 0 ≤ t1 < · · · < tn ≤ T . The value of jT ,n(t1, . . . , tn) on (t1, . . . , tn) ∈ [0, T ]n is obtained
by symmetrization, i.e.

jT ,n(t1, . . . , tn) = jT ,n(t(1), . . . , t(n)), t1, . . . , tn ∈ [0, T ],
where (t(1), . . . , t(n)) denotes the sequence (t1, . . . , tn) in ascending order; see [4, Section 5.3].
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3. Integration by parts

Definition 3.1. Given w ∈ C1([0, T ]), let Dw denote the gradient operator defined on F ∈ ST ,
of the form of (2.2), and given by

DwF = −
∞∑

n=1

1{NT =n}
n∑

k=1

w(Tk)
∂fn

∂tk
(T1, . . . , Tn).

Let C1
0([0, T ]) denote the space of w ∈ C1([0, T ]) such that w(0) = w(T ) = 0. In

the sequel we assume that jT ,n ∈ C1([0, T ]n), n ≥ 1. Next, we state the definition of the
divergence operator.

Definition 3.2. Given w ∈ C1
0([0, T ]) and G ∈ ST , let

D∗
wG = G

∫ T

0
w′(t) dNt − GDw log |GjT,NT

(T1, . . . , TNT
)|, (3.1)

with the convention that 0/0 = 0.

Fix p, q > 1 satisfying 1/p + 1/q = 1 and let Domp(Dw) and Domq(D∗
w) be respectively

defined as the sets of functionals F ∈ Lp(�, FT ) and F ∈ Lq(�, FT ), for which there exists
(Fn)n∈N in S

f
T converging to F in Lp(�, FT ) and Lq(�, FT ), respectively, and such that

(DwFn)n∈N and (D∗
wFn)n∈N respectively converge in Lp(�, FT ) and Lq(�, FT ). In the next

proposition we extend the integration by parts formulas of [3] and [16] to the setting of point
processes.

Proposition 3.1. Let w ∈ C1
0([0, T ]). The operators Dw and D∗

w are closable and can be
extended to their closed domains Domp(Dw) and Domq(D∗

w) with the duality relation

E[GDwF ] = E[FD∗
wG], F ∈ Domp(Dw), G ∈ Domq(D∗

w). (3.2)

Proof. For any F ∈ S
f
T , we have

E[DwF ] = −
∞∑

n=1

1

n!
∫ T

0
· · ·

∫ T

0

n∑
k=1

w(tk)
∂fn

∂tk
(t1, . . . , tn)jT ,n(t1, . . . , tn) dt1 · · · dtn

=
∞∑

n=1

1

n!
∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)

n∑
k=1

∂

∂tk
(w(tk)jT ,n(t1, . . . , tn)) dt1 · · · dtn

=
∞∑

n=1

1

n!
∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)jT ,n(t1, . . . , tn)

×
( n∑

k=1

w′(tk) +
n∑

k=1

w(tk)
∂ log jT ,n

∂tk
(t1, . . . , tn)

)
dt1 · · · dtn

= E

[(∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
)

)
F

]
;
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hence, for all F, G ∈ S
f
T , we obtain

E[GDwF ] = E[Dw(FG) − FDwG]

= E

[
F

(
G

∫ T

0
w′(t) dNt − GDw log jT ,NT

(T1, . . . , TNT
) − DwG

)]

= E[FD∗
wG].

Now, let (Fn)n∈N and (F̃n)n∈N be two sequences in S
f
T converging to the same F in

Lp(�, FT ) such that both (DwFn)n∈N and (DwF̃n)n∈N have limits denoted by U and V

in Lp(�, FT ). For all G ∈ S
f
T , we have

|〈U − V, G〉L2 | = lim
n→∞ |〈DwFn − DwF̃n, G〉L2 |

=
∣∣∣ lim
n→∞〈Fn − F̃n, D

∗
wG〉L2

∣∣∣
≤ ‖D∗

wG‖Lq lim
n→∞ ‖Fn − F̃n‖Lp

= 0;
hence, U = V , P-almost surely . This shows that Dw can be extended to F ∈ Domp(Dw) by
letting

DwF = lim
n→∞ DwFn

for any sequence (Fn)n∈N ⊂ Domp(Dw) converging to F in Lp(�, FT ), and such that
(DwFn)n∈N converges in Lp(�, FT ). A similar argument applies to D∗

w and allows us to
extend the duality relation (3.2) to all F ∈ Domp(Dw) and G ∈ Domq(D∗

w).

We note the following.

Assertion 3.1. Let F ∈ ST such that F ∈ Lp(�, FT ), respectively F ∈ Lq(�, FT ), and
DwF ∈ Lp(�, FT ), respectively D∗

wF ∈ Lq(�, FT ).

Proof. It suffices to approximate F , written as in (2.2), by the truncated sequence

Fm = f0 1{NT =0} +
m∑

n=1

1{NT =n} fn(T1, . . . , Tn), m ≥ 1,

and to note that (DwFm)m≥1 and (D∗
wFm)m≥1 are convergent in Lp(�, FT ) and Lq(�, FT ),

respectively.

This remark allows us to prove the following lemma, whose hypotheses will apply in the
sequel.

Lemma 3.1. Let p ≥ 1 and assume that there exists a c0 > 0 such that

j
1−p
T,n (t1, . . . , tn)

∣∣∣∣∂jT ,n

∂tk
(t1, . . . , tn)

∣∣∣∣ ≤ cn
0 , (3.3)

k = 1, . . . , n, t1, . . . , tn ∈ [0, T ]n, n ≥ 1. Then Dw log jT ,NT
(T1, . . . , TNT

) ∈ Lp(�, FT ).
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812 N. PRIVAULT AND X. WEI

Proof. From (2.3) we have

‖Dw log jT ,NT
(T1, . . . , TNT

)‖p
Lp

=
∞∑

n=1

1

n!
∫ T

0
· · ·

∫ T

0

∣∣∣∣
n∑

k=1

w(tk)
∂jT ,n

∂tk
(t1, . . . , tn)

∣∣∣∣
p

|jT ,n(t1, . . . , tn)|1−p dt1 · · · dtn

≤ ‖w‖p∞c0T ec0T ;

hence,

Dw log jT ,NT
(T1, . . . , TNT

) ∈ Lp(�, FT ),

and log jT ,NT
(T1, . . . , TNT

) ∈ Lp(�, FT ) follows in the same way.

We now turn to the calculation of Dw log jT ,NT
(T1, . . . , TNT

) for examples of point processes
satisfying (3.3) for all p ≥ 1.

Example 3.1. (Poisson processes.) In the case of a Poisson process with arbitrary deterministic
intensity λ ∈ C1

b(R+) we have

log jT ,NT
(T1, . . . , TNT

) =
∫ T

0
log λ(t) dNt −

∫ T

0
λ(t) dt

and

Dw log jT ,NT
(T1, . . . , TNT

) = −
∫ T

0
w(t)

λ′(t)
λ(t)

dNt .

Example 3.2. (Renewal processes.) In this case, (2.4) yields

Dw log jT ,NT
(T1, . . . , TNT

)

= −w(TNT
)z(T − TNT

)

1 − Z(T − TNT
)

−
NT∑
k=1

w(Tk)
z′(Tk − Tk−1)

z(Tk − Tk−1)
+

NT −1∑
k=1

w(Tk)
z′(Tk+1 − Tk)

z(Tk+1 − Tk)

=
∫ T

0
w(t)

(
z′(TNt+1 − TNt )

z(TNt+1 − TNt )
− z′(TNt − TNt−1)

z(TNt − TNt−1)

)
dNt

− w(TNT
)
z′(TNT +1 − TNT

)

z(TNT +1 − TNT
)

− w(TNT
)z(T − TNT

)

1 − Z(T − TNT
)

=
∫ T

0
(w(t − τNt ) − w(t))

z′(TNt − TNt−1)

z(TNt − TNt−1)
dNt − w(TNT

)z(T − TNT
)

1 − Z(T − TNT
)

.

Example 3.3. (Log-normal renewal process.) In this example the interarrival times are i.i.d.
according to the log-normal distribution with parameter σ > 0, i.e.

z(x) = exp(−(log x)2/2σ 2)

σx
√

2π
, x > 0.

https://doi.org/10.1239/jap/1189717546 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717546


Integration by parts 813

In other terms Tk − Tk−1 = eσξk , where (ξk)k≥1 is an i.i.d. sequence of standard Gaussian
random variables, and

Dw log jT ,NT
(T1, . . . , TNT

)

=
NT∑
k=1

w(Tk)

Tk − Tk−1

(
1 + log(Tk − Tk−1)

σ 2

)
−

NT −1∑
k=1

w(Tk)

Tk+1 − Tk

(
1 + log(Tk+1 − Tk)

σ 2

)

− w(TNT
) exp(−(log(T − TNT

))2/2σ 2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))

=
NT∑
k=1

w(Tk)

Tk − Tk−1
(1 + σ−1ξk) −

NT −1∑
k=1

w(Tk)

Tk+1 − Tk

(1 + σ−1ξk+1)

− w(TNT
) exp(−(log(T − TNT

))2/2σ 2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))

= −w(TNT
) exp(−(log(T − TNT

))2/2σ 2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))
+

NT∑
k=1

(w(Tk) − w(Tk−1))
1 + σ−1ξk

Tk − Tk−1

= −w(TNT
) exp(−(log(T − TNT

))2/2σ 2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))
+

∫ TNT

0
w′(s)1 + σ−1ξ1+Ns

τ1+Ns

ds.

In the simulations of Section 5 we will take w(t) = t (T − t), t ∈ [0, T ]. In this case we have

∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
)

= TNT
exp(−(log(T − TNT

))2/2σ 2)

(1 − Z(T − TNT
))σ

√
2π

+
NT∑
k=1

(T − 2Tk)

−
NT∑
k=1

(T − Tk − Tk−1)(1 + σ−1ξk)

=
(

exp(−(log(T − TNT
))2/2σ 2)

(1 − Z(T − TNT
))σ

√
2π

− 1

)
TNT

− σ−1
NT∑
k=1

(T − Tk − Tk−1)ξk.

4. Sensitivity analysis

Let I = (a, b) be an open interval of R and consider the derivative

∂

∂ζ
E[f (Fζ )] = E

[
∂Fζ

∂ζ
f ′(Fζ )

]
, ζ ∈ (a, b), (4.1)

where (Fζ )ζ∈(a,b) is a family of random variables differentiable in a parameter ζ and f is a C1

function on R. This expression can be approximated by finite differences as

1

2h
E[f (Fζ+h) − f (Fζ−h)],

while (4.1) fails when f is not differentiable, e.g. when f = 1[0,∞).
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814 N. PRIVAULT AND X. WEI

Proposition 4.1, below, provides an expression for this derivative without using finite dif-
ferences or requiring the differentiability of f . This formula will be applied in Section 5 to
numerical simulations that will be compared to the results given by kernel estimates.

In the sequel and in Propositions 4.1, 4.2, and 4.3 we consider a family (Fζ )ζ∈(a,b) of random
functionals, continuously differentiable in Domp(Dw) in the parameter ζ ∈ (a, b), such that,
for some n0 ∈ N,

DwFζ �= 0 a.s. on {NT ≥ n0},
where w is a given element of C1

0([0, T ]) and the function f : R → R is assumed to satisfy
f (Fζ ) ∈ Lp(�, FT ) for all ζ ∈ (a, b).

Proposition 4.1. Assume that

1{NT ≥n0}
∂ζ Fζ

DwFζ

∈ Domq(D∗
w), ζ ∈ (a, b). (4.2)

Then we have

∂

∂ζ
E[f (Fζ ) | NT ≥ n0] = E[Wζ f (Fζ ) | NT ≥ n0], ζ ∈ (a, b),

where the weight Wζ is given by

Wζ = D∗
w

(
1{NT ≥n0}

∂ζ Fζ

DwFζ

)
, ζ ∈ (a, b).

Proof. Assuming that f ∈ C∞
b (R) we have, from Proposition 3.1,

∂

∂ζ
E[1{NT ≥n0} f (Fζ )] = E

[
1{NT ≥n0} f ′(Fζ )

∂Fζ

∂ζ

]

= E

[
1{NT ≥n0}

∂ζ Fζ

DwFζ

Dw(f (Fζ ))

]

= E

[
f (Fζ )D

∗
w

(
1{NT ≥n0}

∂ζ Fζ

DwFζ

)]
.

The extension to the general case is obtained from the bound
∣∣∣∣ ∂

∂ζ
E[fn(Fζ ) 1{NT ≥n0}] − E[Wζ f (Fζ )]

∣∣∣∣ ≤ ‖f (Fζ ) − fn(Fζ )‖Lp‖Wζ 1{NT ≥n0} ‖Lq ,

and an approximating sequence (fn)n∈N of smooth functions.

In the next proposition we focus on a sufficient condition for (4.2) to hold. These conditions
can be checked using (2.2).

Proposition 4.2. Assume that Fζ ∈ ST , ζ ∈ (a, b), and let 1/q ′ + 1/p′ = 1/q, p′ < q ′, such
that ∂ζ Fζ ∈ Dom2q ′(Dw), DwFζ ∈ Dom2q ′(Dw), and (DwFζ )

−1 ∈ L2q ′
({NT ≥ n0}). Then

(4.2) holds and we have

∂

∂ζ
E[f (Fζ ) | NT ≥ n0] = E[Wζ f (Fζ ) | NT ≥ n0], ζ ∈ (a, b),
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where the weight Wζ is given by

Wζ = 1{NT ≥n0}
DwFζ

(
∂ζ Fζ

(∫ T

0
w′(t) dNt − Dw log |∂ζ Fζ jT ,NT

(T1, . . . , TNT
)| + DwDwFζ

DwFζ

)

− Dw∂ζ Fζ

)
, (4.3)

and belongs to Lq(�, FT ).

Proof. Since Fζ ∈ ST we have, from (3.1),

D∗
w

(
1{NT ≥n0}

∂ζ Fζ

DwFζ

)

= 1{NT ≥n0}
∂ζ Fζ

DwFζ

(∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
)

)

− Dw

(
1{NT ≥n0}

∂ζ Fζ

DwFζ

)

= 1{NT ≥n0}
DwFζ

(
∂ζ Fζ

(∫ T

0
w′(t) dNt − Dw log |∂ζ Fζ jT ,NT

(T1, . . . , TNT
)| + DwDwFζ

DwFζ

)

− Dw∂ζ Fζ

)
.

In order to apply Proposition 4.1 we need to check the domain condition

1{NT ≥n0}
∂ζ Fζ

DwFζ

∈ Domq(D∗
w),

which is satisfied by Remark 3.1, provided that Wζ , as defined in (4.3), belongs to Lq(�, FT ).
By Hölder’s inequality we have

‖Wζ ‖Lq ≤ ‖(DwFζ )
−1‖2

L2q′
({NT ≥n0})‖∂ζ Fζ DwDwFζ ‖Lq′

+ ‖(DwFζ )
−1‖

Lq′
({NT ≥n0})

×
∥∥∥∥∂ζ Fζ

∫ T

0
w′(t) dNt + ∂ζ Fζ Dw log jT ,NT

(T1, . . . , TNT
) + Dw∂ζ Fζ

∥∥∥∥
Lp′

≤ ‖(DwFζ )
−1‖

L2q′
({NT ≥n0})‖∂ζ Fζ ‖L2q′

×
(∥∥∥∥

∫ T

0
w′(t) dNt

∥∥∥∥
L2p′

+ ‖Dw log jT ,NT
(T1, . . . , TNT

)‖
L2p′ + ‖Dw∂ζ Fζ ‖L2p′ + ‖DwDwFζ ‖L2q′

)
,

which, together with Lemma 3.1, completes the proof.

In the case of a Poisson process with deterministic intensity λ ∈ C1(R+) we have

Wζ = 1{NT ≥n0}
(

∂ζ Fζ

DwFζ

(∫ T

0
w′(t) dNt −

∫ T

0
w(t)

λ′(t)
λ(t)

dNt + DwDwFζ

DwFζ

)
− Dw∂ζ Fζ

DwFζ

)
.
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In general, we assume that the Janossy densities jT ,n are known in order to compute the weight
Wζ , while the density of F may not be analytically computable or may be unknown as in the
following example.

Now consider a compound point process of the form

Xt =
Nt∑

k=1

Yk, t ∈ R+,

where (Yk)k≥1 is a sequence of random marks independent of (Nt )t∈R+ , such that there exists
c2 > 0 such that Yk ≥ c2 > 0 a.s., k ≥ 1. We make the additional assumption that

jT ,n(t1, . . . , tn) ≤ cn
0 , t1, . . . , tn ∈ [0, T ]n,

k = 1, . . . , n, n ≥ 1.

Proposition 4.3. Consider two C1 functions g : (a, b) → R and h : [a, b] × [0, T ] → R such
that ∂h/∂t does not vanish on [a, b] × [0, T ], and let

Fζ = g(ζ ) +
∫ T

0
h(ζ, t) dXt = g(ζ ) +

Nt∑
k=1

Ykh(ζ, Tk), ζ ∈ (a, b).

Let α > 0 and

w(t) = tα(T − t)α, t ∈ [0, T ].
Then (4.2) holds whenever n0 ≥ 2α and we have

∂

∂ζ
E[f (Fζ ) | NT ≥ n0] = E[Wζ f (Fζ ) | NT ≥ n0], ζ ∈ (a, b).

where the weight Wζ belongs to Lq(�), ζ ∈ (a, b).

Proof. We have

∂ζ Fζ = g′(ζ ) +
∫ T

0

∂h

∂ζ
(ζ, t) dXt,

which belongs to Lp(�) for all p ≥ 1. Since the gradient Dw does not act on Yk , k ∈ N, these
random variables can be considered as constants in the integration by parts formula (3.2) and
we have

DwFζ = −
∫ T

0
w(t)

∂h

∂t
(ζ, t) dXt .

Moreover, there exists a c1 > 0 such that

∣∣∣∣∂h

∂t
(ζ, t)

∣∣∣∣ ≥ c1 > 0, (ζ, t) ∈ [a, b] × [0, T ];
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hence, for any p′, q ′ such that 1/q ′ + 1/p′ = 1/q, we have

‖(DwFζ )
−1‖2q ′

L2q′
({NT ≥n0})

= E

[
1{NT ≥n0}

∣∣∣∣
∫ T

0
w(t)

∂h

∂t
(ζ, t) dXt

∣∣∣∣
−2q ′]

= E

[ ∞∑
n=n0

1

n!
∫ T

0
· · ·

∫ T

0

jT ,n(t1, . . . , tn)

| ∑n
k=1 Ykt

α
k (T − tk)α(∂h(ζ, tk)/∂t)|2q ′ dt1 · · · dtn

]

≤ 22αq ′

(c1c2)2q ′

∞∑
n=n0

2ncn
0

n!
∫ 1/2

0
· · ·

∫ 1/2

0

( n∑
k=1

tαk

)−2q ′

dt1 · · · dtn

≤ 22αq ′

(c1c2)2q ′

∞∑
n=n0

cn
0

n!
(

1

4αq ′ + 2n

∫
{∑n

k=1 t2
k ≤1/4}

( n∑
k=1

t2
k

)−αq ′

dt1 · · · dtn

)

= 22αq ′

(c1c2)2q ′

∞∑
n=n0

cn
0

n!
(

1

4αq ′ + 2n+1πn/2

�(n/2)

∫ 1/2

0
rn−1−2αq ′

dr

)

= (c1c2)
−2q ′

∞∑
n=n0

cn
0

n!
(

1 + 21+4αq ′
πn/2

�(n/2)(n − 2αq ′)

)
,

which is finite whenever n0 > 2αq ′ > 2α; hence, we can apply Proposition 4.2.

In practice we can choose n0 = 1 provided that α ∈ (0, 1
2 ). Note that at least four jumps

can be required in other situations; see e.g. Proposition 3.2 of [1] in the Poisson case.
For example, taking h(ζ, t) = e−ζ t , the weight Wζ corresponding to the sensitivity

∂

∂ζ
E[1{NT ≥n0} f (Fζ )] = E[1{NT ≥n0} Wζ f (Fζ )]

with respect to the parameter ζ > 0 is given on {NT ≥ n0} by

Wζ = − 1

ζ
+

∫ T

0 w(t)te−ζ t dXt∫ T

0 w(t)e−ζ t dXt

−
∫ T

0 te−ζ t dXt

ζ
∫ T

0 w(t)e−ζ t dXt

(∫ T

0 w(t)(ζw(t) − w′(t))e−ζ t dXt∫ T

0 w(t)e−ζ t dXt

−
∫ T

0
w′(t) dNt + Dw log jT ,NT

(T1, . . . , TNT
)

)
.

5. Density estimation

In this section we apply the above results to the computation of the conditional density
φF (· | NT ≥ n0) of a random variable F with respect to the Lebesgue measure, written as the
derivative

φF (y | NT ≥ n0) = − d

dy
E[f (F − y) | NT ≥ n0], y ∈ R,

with f = 1(0,∞), i.e. we take Fζ = F − ζ , ζ ∈ R.
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5.1. Kernel estimators

The standard kernel estimator of the density φF with respect to the Lebesgue measure is
given by

φF (y) � 1

h
E

[
K

(
F − y

h

)]
� 1

Nh

N∑
k=1

K

(
F(k) − y

h

)
, (5.1)

where K is a continuous positive function such that∫ ∞

−∞
K(x) dx = 1.

5.2. Malliavin estimators

Taking Fy = F − y, Proposition 4.2 yields the following corollary.

Corollary 5.1. Assume that F ∈ ST and let 1/q ′ + 1/p′ = 1/q, p′ < q ′, such that DwF ∈
Dom2q ′(Dw) and (DwF)−1 ∈ L2q ′

({NT ≥ n0}). Then we have

∂

∂y
E[1{NT ≥n0} f (F − y)] = E[W 1{NT ≥n0} f (F − y)]

for f bounded and measurable on R, where

W = 1{NT ≥n0}
DwF

(∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
) + DwDwF

DwF

)
(5.2)

belongs to Lq(�).

In particular, taking f = − 1[0,∞) we obtain

φF (y | NT ≥ n0) = − d

dy
E[1[0,∞)(F −y) | NT ≥ n0] = − E[W 1[0,∞)(F −y) | NT ≥ n0],

(5.3)
y ∈ R, where the weight W is independent of y and of any bandwidth parameter. Here the
condition {F > y} in (5.3) with y > 0 actually ensures the integrability of W 1[0,∞)(F − y)

on {NT ≥ 1}. This yields the estimate

φF (y | NT ≥ n0) � − 1{NT ≥n0}
N P(NT ≥ n0)

N∑
i=1

W(i) 1[0,∞)(F (i) − y).

For the case in which F = ∫ T

0 h(t) dXt , the relation

DwDwF =
∫ T

0
w(t)

(
∂h

∂t
(ζ, t)w′(t) + ∂2h

∂t2 (ζ, t)w(t)

)
dXt

yields

W = 1{NT ≥n0}∫ T

0 w(t)(∂h(ζ, t)/∂t) dXt

×
(∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
)

−
∫ T

0 w(t)((∂h(ζ, t)/∂t)w′(t) + (∂2h(ζ, t)/∂t2)w(t)) dXt∫ T

0 w(t)(∂h(ζ, t)/∂t) dXt

)
. (5.4)
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5.3. Modified kernel estimators

When DwF is close to 0, the value of W becomes large, due to the division by DwF in
(5.4); hence, when y is small the term W 1[0,∞)(F − y) is allowed to be nonzero for small
values of F , and it has a large variance. A variance reduction technique called localization has
been introduced by Fournié et al. [10] to deal with related problems on the Wiener space. Here
we apply a similar procedure to construct a modified kernel estimator using Malliavin weights.
For this we will consider a decomposition of the form

1[0,∞) = f + g,

where g is a C1 function. In the following proposition we obtain an analog of Theorem 2.1 of
[12], via a somewhat simpler argument, under the hypotheses of Proposition 4.1.

Proposition 5.1. Assume that F ∈ ST and let 1/q ′ + 1/p′ = 1/q, p′ < q ′, such that
DwF ∈ Dom2q ′(Dw) and (DwF)−1 ∈ L2q ′

({NT ≥ n0}), and let f be a function on R such
that f (0) = 1, f (x) = 0, x < 0, and 1(0,∞) f ′ ∈ L2((0, ∞)). We have, for all η > 0,

φF (y | NT ≥ n0)

= − E

[
Wf

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]
− 1

η
E

[
1{F>y} f ′

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]
, y ∈ R,

(5.5)

where W is given by (5.2).

Proof. Letting g = 1[0,∞) −f we have

φF (y | NT ≥ n0) = − d

dy
E[1[0,∞)(F − y) | NT ≥ n0]

= − d

dy
E

[
f

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]
− d

dy
E

[
g

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]

= − E

[
Wf

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]

− 1

η
E

[
1{F>y} f ′

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]
, y ∈ R,

where W is given by (5.4).

Letting K(x) = − 1(0,∞)(x)f ′(x), this leads, by Monte Carlo approximation, to a family
of corrected kernel estimators

φF (y | NT ≥ n0) � 1{NT ≥n0}
N P(NT ≥ n0)

N∑
i=1

(
1

η
K

(
F(i) − y

η

)
− W(i)f

(
F(i) − y

η

))
,

depending on η > 0. Note that (5.5) is an equality, whereas the standard kernel estimate

φF (y | NT ≥ n0) � 1

η
E

[
K

(
F − y

η

) ∣∣∣∣ NT ≥ n0

]
, y ∈ R,

is only an approximation.
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The method for the determination of an optimal kernelf : R → R and a bandwidth parameter
η > 0 by minimization of

E

[
1{NT ≥n0}∩{F>y}

(
Wf

(
F − y

η

)
− 1

η
1{F>y} f ′

(
F − y

η

))2]
, y ∈ R,

as in [12, p. 446], also applies here and yields

f (x) = 1[0,∞)(x)e−λx, x ∈ R,

and ηopt = ‖W‖−1
L2({NT ≥n0}), for any λ > 0. Note that the criterion of optimality for η is not

linked to the number of samples N , as is the case for the optimal decrease in N−1/4 of the
kernel estimator bandwidth parameter h.

6. Numerical results

Our results are illustrated by Monte Carlo density estimations with 10 000 samples for the
random variable

Fr := α(r)

∫ T

0
e−rt dNt,

where (Nt )t∈R+ is a log-normal renewal process and T = 5, σ = 0.3, and α(r) = exp((1 +
r)2 − 1) is a parameter chosen to enhance the readability of the simulation graphs. Clearly
the law of Fr has a Dirac mass at y = 0, and we are interested in the values of the density on
R \ {0} with respect to the Lebesgue measure.
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Figure 1: Kernel estimations of φFr with 10 000 samples and r = 0.2.
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6.1. Kernel estimators

We start by comparing several kernel estimators in Figure 1, with

K(x) = π

2
1[−1/2,1/2](x) cos(πx)

and η = 1, 0.1, 0.01.

6.2. Malliavin estimator

For the Malliavin method we use (5.3), where the weight W given by

W = − 1{NT ≥n0}
rα(r)

∫ T

0 w(t)e−rt dNt

(∫ T

0
w′(t) dNt − Dw log jT ,NT

(T1, . . . , TNT
)

+
∫ T

0 w(t)(rw(t) − w′(t))e−rt dNt∫ T

0 w(t)e−rt dNt

)

is independent of y and of any bandwidth parameter. The result of this estimation is shown in
Figure 2.

The graph labeled ‘exact value’ has been obtained using finite differences with 107 samples.
We can check, in Figure 2, that although the Malliavin estimator, (5.3), yields more precise
values than the kernel estimator, (5.1), when y is large, it behaves badly for small values of y

due to a higher variance of W 1[0,∞)(F − y) in this situation. This phenomenon is dealt with
by the modified kernel estimator introduced in Section 5 by localization.
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Figure 2: The probability density of Fr for r = 0.2 (Malliavin method with 10 000 samples).
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Figure 3: Modified kernel estimates of φFr with 10 000 samples and r = 0.2.

6.3. Modified kernel estimators

Figure 3 shows the result of the modified kernel estimation for η = 1, 0.2, 0.01, for
comparison with the standard kernel estimate of Figure 1. The modified kernel estimator
does depend on a parameter called η, but it appears more stable and less sensitive to variations
of η than standard kernel estimators are sensitive to the value of the bandwidth parameter h. In
our setting we found ηopt = 0.1963 by Monte Carlo simulation and we used the optimal kernel
K(x) = 1(0,∞)(x)e−x .

7. Conclusion

Both Malliavin and modified kernel estimators are consistent. The performances of kernel
estimators are dependent on the choice of a bandwidth parameter η. The results of the Malliavin
method are independent of η but may be degraded as the weight variance increases. In the
examples considered in this paper, the latter performs better than the other estimators.
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