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Abstract . An iterative method for the construction of planetary theories has been developed in 
order to determine the high order perturbations with respect to the masses. These perturbations 
are indeed needed to enlarge the validity span of analytical theories up to some million years. The 
application to the simplified Sun-Jupiter-Saturn problem gives a solution accurate over several ten 
million years. Throughout the study of the four outer planets we meet with convergence difficulties 
especially in the determination of fundamental frequencies. One of the results of this study is it 
shows evidence of long period terms with large amplitude in the mean longitudes: 12 000" in 
Saturn longitude, 20 000" in that of Uranus. 

1. Introduction 

The long period evolution of the planetary orbits can be studied either by the 

construction of analytical planetary theories or by the numerical integration of the 

equations of motion. 

The numerical integration of the motion of planets has been especially developed 

since 1984 with the integration of the 5 outer planets over 5 million years (Kinoshita 

and Nakai, 1984), over 214 million years (Applegate et al, 1986) over 100 million 

years (Milani et al, 1987; Nobili et al, 1989). A three million year integration was 

recently performed for all the planets by (Quinn et al, 1991). 

The most recent analytical constructions were performed at the Bureau des 

Longitudes or in connection with it: Bretagnon (1974 and 1984), Duriez (1979), 

Laskar (1988 and 1990). 

Up to now general planetary theories have been developed to the first and second 

order with respect to the planetary masses. 

The aim of this paper is to study the contribution of the perturbations of the 

3rd order and of higher orders in the planetary solutions. These perturbations are 

especially important in the case of planets such as Jupiter, Saturn, Uranus and 

Neptune. They, particularly, modify the frequency ÇQ by 1% (see Laskar 1988). 

Moreover, to the third order with respect to the masses before integration, long 

period terms are found in the semi major axes. By integration of the mean motion, 

connected to the semi major axis by the third law of Kepler, we get long period 

perturbations of very large amplitude in the mean longitudes. 

2. M e t h o d for the Construction of Solutions 

Just as in the case of secular variation theories (see Bretagnon, 1982) one can build 

up the right hand members of the Lagrange equations either by approximations 

order after order with respect to the planetary masses, or by an iterative method. 

In the methods of construction order after order with respect to the masses, we 

have to determine the second derivatives of the Lagrange equations with respect to 

all the elements in order to get the 3rd order perturbations, the third derivatives for 

the 4th order perturbations . . . This brings great complexity in the computations. 
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Besides it is necessary to reach a very high order, since the third order perturbations 

modify the frequency ge ( = 28".23 per year) by 0".3, those of the 4th order by some 

0".01. 

Therefore we preferred to determine the high order perturbations by the iterative 

method as described in (Bretagnon, 1990). In this method, the solutions have been 

developed in Fourier series where the Φ arguments are represented by a linear 

combination of the mean longitudes Xj = Xj0 + Ujt, of the i/>j arguments linked 

to the system in eccentricity and of the 9j arguments linked to the system in 

inclination : 

8 8 8 

* = Σ riJi + Σ Wi+Σ m& w 

j=5 j=5 j=5 
The summation is made here for j — 5 to 8 corresponding to the system of the four 

planets Jupiter, Saturn, Uranus and Neptune. 

For the planet i, the variables a , A, k = e cos τετ, ft — e sin t r , q = sin | cos Ω and 

ρ = sin I sin Ω are here developed in the form : 

ai = ai0 + A**}I cos Φ* -f ] Π φ AQ>j cos Φ 

A; = Aio -f ni01 -f bni t + 5 $ . }i sin Φ* #φ , * sin Φ 

-Σΐ=5χΜΜ*
 COSJPk + Σ * = 5 Μ*,ν>* cos^fc -f Σ φ · cos Φ* 

+ Σ φ 6 Φ ^ * , Φ COS Φ 

Λί = Σ& = 5 ****** s i n ^* + Efc = 5 Afi.̂ fc s i n V>* + Σφ* s i n Φ * 

+ Σ * s i n * 
<H - Σ * = 5 ^ ^ € ° 8 ^ * + Σ α = Β ^ . ^ C 0 S ^ * + Σ φ · 6 φ * ^ , φ · COS Φ* 

+ Σ φ ^ φ ^ , φ cos Φ 

PI = Σ*=5Μ<*^* sin f̂e -f Σ * = 5 ^ , * * s i n # * + Σ φ * ^ < , φ · sin Φ* 

+ Σ φ ^ , * s i n φ 

In these expressions, argument Φ* corresponds to the case when all the Vj of formula 

1 are equal to zero, that is to say to the long period terms. 

In 2, εφ has been defined by : 

8 8 8 
ε Φ = sign ( ] T Vj + ^ lj + ^ τη,· ) (3) 

j=5 j=B j=5 

Matrices (Aifc) and (μ**) represent the matrices of the eigenvectors of the La-

grange Laplace solution. 

Let us introduce the frequencies gj and 8j and the phases ßj and : 

tj=9jt + ßj ej = 8jt-röj. (4) 

The frequencies gj and 5j- are determined at each iteration when the Lagrange 

equations are integrated. Phases ßj and 6j and the quantities and Nk of the 

formula 2 constitute the integration constants of the system of variables k, ft, σ, 

p. The other integration constants are Ato and n̂ o- The mean value of the semi 

major axis is obtained by : nf 0af 0 = / ( l + rrn) where mi is the mass of the planet 

i in solar mass unit. 

(2) 
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T A B L E I 

Ampl i tude o f the long period terms in the longitudes of Jupiter and Saturn. T h e unit is 

the arcsecond. 

Argument Period £ # * , 5 

V>5 - 54 069 - 5 078 12 487 

2 V>5 - 2 V>6 27 034 - 3 2 6 800 

3 ψι - 3 φ* 18 023 - 1 3 32 

2ψβ - 2 06 

11993 25 - 6 1 

ΘΒ — 0β 49 777 19 - 4 6 

+ 6̂ - 2 06 15 411 10 - 2 6 

^5 - 3 + 2 06 9 816 - 5 11 

3. Study of the Sun-Jupiter-Saturn System 

The method used for the construction of the right hand members and for the 

integration of the equations was set up on the occasion of the study of the simplified 

system : Sun-Jupiter-Saturn. The construction of the right hand members of the 

Lagrange equations is made by handling Fourier series according to the methods 

developed by (Chapront et al, 1974). 

The Lagrange equations are expressed in closed form in function of the true 

longitudes (Chapront et al, 1975). The method used for the integration of the 

variables k, h, q, ρ is of the Krylov-Bogolioubov type, and is the one developed in 

(Bretagnon, 1990). 

3.1. L O N G P E R I O D TERMS IN THE SEMI M A J O R A X E S AND IN THE LONGITUDES 

We know, from the Poisson theorem, that there are no secular terms at the first 

and second order of the masses in the semi major axes. On the contrary these terms 

come up from the third order (see Duriez, 1978). When a general theory is dealt 

with, these terms appear in the form of long period terms of the third order before 

integration (Bretagnon and Simon, 1990). Their frequency being proportional to 

the planetary masses, they give, after integration, second order terms in the semi 

major axes and, by the 3rd Kepler law, terms of the first order with respect to the 

masses in the longitudes. These periodic terms have a very large amplitude. The 

amplitude of the highest term is 4 times greater than that of the great inequality 

2 λδ — 5 λβ of a 900 year period. We give the most important ones in table I, as well 

as their period in years. 

3.2. D E T E R M I N A T I O N OF THE FUNDAMENTAL FREQUENCIES 

The good convergence of the long period terms of the semi major axis and the 

longitude required many iterations. 

Throughout these iterations the fundamental frequencies were determined very 

precisely. We found : 
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g5= 4.026 83"± 8 10~ 5 

£6=27.996 22"±13 10" 5 

II 

II 
5 5 = 0. 

s 6 = - 2 6 . 0 3 6 08"±8 10~ 5 
II (5) 

The uncertainties were evaluated from the results of the last iterations. They are 

confirmed by comparison of the solution to a numerical integration of the Sun-

Jupiter-Saturn system over 600 000 years. On that time span, the greatest discrep-

ancies between the general theory and the numerical integration do not exceed 5" 

for the longitudes, 10~ 5 for the k and h variables, 2 1 0 ~ 6 for the q and ρ variables. 

The simplified problem which has been dealt with in this paragraph is obviously 

too far from the real problem to be used for the precise determination of the real 

frequencies from the values given in 5. 

We recently undertook an extension of this work to the system formed by the Sun 

and the 4 outer planets. One of the consequences is a very important increase of 

the size of the Fourier series representing the solutions. 

The arguments Φ of the formula 1 are indeed linear combinations, no longer 

with 6 components, but with 12 : 4 mean longitudes, 4 ψ arguments and 4 θ 

arguments. The Fourier series before integration are computed in arrays able to 

contain 2 1 7 = 131072 terms, the solutions keeping only several thousand terms. 

For the level of precision which is now used, a complete iteration requires 1 hour 

computation on a C R A Y Y - M P . 

4.1. L O N G P E R I O D TERMS IN THE M E A N LONGITUDES 

Just as in the preceding study, we meet long period terms of large amplitude in the 

mean longitudes. 

We give the amplitudes and periods of the most important terms of the lon-

gitudes for Jupiter and Saturn in table II, and for Uranus and Neptune in table 

Just as for Jupiter and Saturn, the long period terms of Uranus and Neptune 

have a very large amplitude. For comparison, let us remind that the most important 

short period term of 4200 years period has an amplitude of 3000" in the longitude 

of Uranus and 2000" in that of Neptune. 

The convergence is very slow all along the iterations and the amplitudes of 

tables II and III have now uncertainties of several arcseconds and even of many 

times ten arcseconds for the argument φζ — ψ$ — 0Q + θγ of period 2 million years 

in the longitudes of Jupiter and Saturn. 

In the longitudes of the four outer planets can be found terms of large ampli-

tude and greater period than in those of tables II and III (Milani, private com-

munication). They deal with semi major axis terms of very low amplitude before 

integration. These terms are not yet obtained at the present state of precision of 

our computation. 

4 . Study of the Sun-Outer Planets System 

III. 
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TABLE ΤΙ 
Long period terms of the study of the 4 outer planets in the longitudes of Jupiter and 
Saturn. The unit is the arcsecond. 

Argument Period 

05 - 06 54019 - 4 (575 11 579 

05 - 07 1 119 981 1 594 -2(575 

05 - 06 - 06 + 07 1 987 (320 1 000 - 2 400 

06 - 07 51 533 341 -825 

205 - 2 06 27 009 -272 (5(58 

TABLE III 
Amplitude of the long period terms in the longitudes of Uranus and Neptune. The unit is 
the arcsecond. 

Argument Period 

05 - 07 1 119 981 -20 583 9 996 

07 - 08 53(5 444 -327 218 

05 - 06 54019 -2(52 13 

05 - 08 3(52 713 215 -20(5 

Θγ — 08 5(52 479 15(5 - 4 1 
06 — 07 51 533 -111 22 

4.2. F U N D A M E N T A L FREQUENCIES 

The value of the fundamental frequencies is determined at every iteration with a 

still very slow convergence. We have estimated the uncertainty from the results of 

the last five iterations. The system which has been studied, that of the Sun and 

of the outer planets is very close to the real problem. We can give an estimate of 

the real frequencies using the contribution of the inner planets Agi and Asi to the 

Lagrange Laplace solution given in (Bretagnon, 1990). 

We have 

Ags = 0.0116" Δ * 5 = 0 

Δ^β = 0.0052" Ase = - 0 . 0 0 8 2 " 

Ag7 = 0.0010" Δ * 7 = 0.0003" 

Δ 0 8 rr-0.0001" Δ * 8 = 0.0004" 

We give in table IV the frequencies thus obtained, as well as the results of 

Applegate et al (ADGSW, 1986), of Nobili et al (NMC, 1989) and Laskar (L90, 

1990). 

5. Conclusion 

The frequencies ge and g7 that we have obtained still hold an important uncertainty. 

The other frequencies are a significant result. Throughout the coming iterations, 

the increase of precision in the computation should enable us to determine the 
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T A B L E IV 

Fundamental frequencies associated to the outer planets. T h e unit is the arcsecond per 

year. 

this work ADGSW NMC L 90 

4.2576 ± 0.0005 4.2422 4.257 49 4.2488 

96 28.226 ± 0 . 0 2 0 28.2318 28.245 53 28.2207 

97 3.092 ± 0 . 0 1 0 3.0905 3.086 76 3.0895 

9» 0.6694 ± 0.0040 0.6733 0.672 55 0.6671 

Sb 0 0 0 0 

se - 2 6 . 3 4 5 7 ± 0.0025 - 2 6 . 3 3 2 4 - 2 6 . 3 4 4 96 - 2 6 . 3 3 0 2 

S7 - 2 . 9 9 5 6 ± 0.0005 - 2 . 9 9 4 8 - 2 . 9 9 2 66 - 3 . 0 0 5 6 

*s - 0 . 6 9 1 9 ± 0.0002 - 0 . 6 9 2 3 - 0 . 6 9 2 51 - 0 . 6 9 1 9 

fundamental frequencies to an accuracy included between 10 4 and 10 3 arcsecond 

per year. 
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