SELF-ADJOINT SQUARE ROOTS OF POSITIVE SELF-ADJOINT BOUNDED LINEAR OPERATORS

by C. A. STUART (Received 21st July 1971)

A corollary of the main theorem presented in this note is a generalisation of the well-known result that a self-adjoint square root of a positive self-adjoint compact linear map in a Hilbert space is itself a compact linear map. The method used here exploits the techniques developed recently in the study of k-set contractions ((1), (2)).

Before stating our results, it is convenient to recall the relevant definitions. In all that follows H will denote a Hilbert space.

Definition. The ball measure of non-compactness of a bounded set $\Omega \subset H$, denoted by $\beta(\Omega)$, is defined by

 $\beta(\Omega) = \inf \{\delta \colon \Omega \text{ can be covered by a finite number of balls in H with radius } \delta\}.$

Definition. A continuous map T: $H \rightarrow H$ is a k-ball contraction provided that

 $\beta(T(\Omega)) \leq k\beta(\Omega)$ for all bounded sets $\Omega \subset H$.

Note that a bounded set $\Omega \subset H$ is relatively compact if and only if $\beta(\Omega) = 0$. Hence a map T: $H \rightarrow H$ is completely continuous if and only if it is a 0-ball contraction. Many results originally obtained for completely continuous maps have now been extended to k-ball contractions, provided k < 1.

Turning now to linear maps, we see that, if $T: H \rightarrow H$ is bounded and linear, then T is a ||T||-ball contraction. However, as is easily seen by considering compact linear maps, ||T|| need not equal

 $\gamma(T) = \inf \{k: T \text{ is a } k \text{-ball contraction} \}.$

In fact, $\gamma(T) = 0$ if and only if T is compact. It is easily checked that γ defines a seminorm on the linear space of all bounded linear maps from H into itself. Just as $||TS|| \leq ||T|| ||S||$ for bounded linear maps on H, the above seminorm has the property that $\gamma(TS) \leq \gamma(T)\gamma(S)$. Concerning the involution *, denoting the adjoint, we recall that $||T|| = ||T^*|| = ||T^*T||^{\frac{1}{2}}$. Our main result shows that the seminorm γ has a similar property.

Theorem. Let H be a Hilbert space and A: $H \rightarrow H$ a bounded linear map. Then

$$\gamma(A) = \gamma(A^*) = \{\gamma(A^*A)\}^{\frac{1}{2}},$$

where A^* : $H \rightarrow H$ denotes the adjoint of A.

C. A. STUART

Proof. As is shown in (2), $\gamma(A) = \gamma(A^*)$. Furthermore, from what has been said above,

$$\gamma(A^*A) \leq \gamma(A^*)\gamma(A) = \{\gamma(A)\}^2.$$

Hence it is sufficient to prove that

$$\{\gamma(A^*A)\}^{\frac{1}{2}} \geq \gamma(A).$$

With this in mind, let $\gamma(A^*A) = k$. We shall now complete the proof by showing that A is a $k^{\frac{1}{2}}$ -ball contraction.

We give the proof for a real Hilbert space; but, *mutatis mutandis*, it will establish the result for complex Hilbert spaces.

It is enough to show that, if D = S(z, d) (the closed ball in H with centre z and radius d), then given any $\varepsilon > 0$, A(D) can be covered by finitely many balls of radius less than or equal to $k^{\frac{1}{2}}d + \sqrt{2\varepsilon d}$.

Now $A^*A(S(0, 1))$ can be covered by finitely many balls of radius $k + \varepsilon/d$. Suppose that

$$A^*A(S(0, 1)) \subset \bigcup_{j=1}^N S(x_j, k+\varepsilon/d).$$

Since D is bounded, $\{(x_j, y): y \in D\}$ is a relatively compact subset of the real line, for each $j \in \{1, ..., N\}$. Hence $\{(x_j, y): y \in D\}$ can be covered by a finite number, M_j (say), of closed intervals S_i^j each of length less than or equal to ε , for $i \in \{1, ..., M_j\}$ and $j \in \{1, ..., N\}$. Let $p = (p_1, ..., p_N)$ where $p_j \in \{1, ..., M_j\}$ and set

$$E_{p} = \{ y \in D : (x_{j}, y) \in S_{p_{j}}^{j} \text{ for each } j \in \{1, ..., N\} \}.$$

Clearly $A(D) = \bigcup A(E_p)$. Since this is a finite union the proof will be complete if we show that $A(E_p)$ is contained in a ball of radius $k^{\frac{1}{2}}d + \sqrt{2\epsilon d}$.

With this in mind, we note that each E_p is closed and convex. Suppose now that E_p is non-empty. Then let z_p denote the unique nearest point of E_p to z. It follows that

$$||z_p - y|| \le ||z - y|| \le d \quad \text{for all } y \in E_p.$$

$$\tag{1}$$

We shall now show that $A(E_p) \subset S(Az_p, k^{\frac{1}{2}}d + \sqrt{2\epsilon d})$. Let $y \in E_p$. Then

$$\|Ay - Az_{p}\|^{2} = (A(y - z_{p}), A(y - z_{p}))$$

= $(A^{*}A(y - z_{p}), y - z_{p})$
 $\leq \|A^{*}A(y - z_{p})\| \|y - z_{p}\|$
 $\leq \|A^{*}A(y - z_{p})\| d$ by (1).

Now,

$$\| A^*A(y-z_p) \| = \sup_{x \in S(0, 1)} |(x, A^*A(y-z_p))|$$

=
$$\sup_{x \in S(0, 1)} |(A^*Ax, y-z_p)|.$$

78

But, for $x \in S(0, 1)$, there exists $j \in \{1, ..., N\}$ such that $||A^*Ax - x_j|| \leq k + \varepsilon/d$, and so

$$\|(A^*Ax, y-z_p)\| \leq |(A^*Ax-x_j, y-z_p)| + |(x_j, y-z_p)|$$
$$\leq (k+\varepsilon/d)d + |(x_j, y-z_p)| \quad \text{by (1)}$$
$$\leq kd+\varepsilon+\varepsilon.$$

(Observe that, since y and $z_p \in E_p$, we have (x_j, y) and (x_j, z_p) both belong to the interval $S_{p_j}^j$ which has length less than or equal to ε .)

Therefore
$$|| A^*A(y-z_p)|| \le kd+2\varepsilon$$
, and so
 $|| Ay-Az_p || \le (kd+2\varepsilon)d = kd^2+2\varepsilon d$
 $\le (k^{\frac{1}{2}}d+\sqrt{2\varepsilon d})^2.$

Hence $||Ay - Az_p|| \le k^{\frac{1}{2}}d + \sqrt{2\varepsilon d}$, and the proof is complete.

Corollary. Let H be a Hilbert space and A: $H \rightarrow H$ be a positive self-adjoint bounded linear map. Then, for any self-adjoint square root, $A^{\frac{1}{2}}$, of A, we have

$$\gamma(A^{\frac{1}{2}}) = \{\gamma(A)\}^{\frac{1}{2}}.$$

Remark. Clearly this corollary has the classical result for compact linear maps as a special case.

Finally, I should like to thank the referee for some valuable comments.

REFERENCES

(1) R. NUSSBAUM, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-478.

(2) J. R. L. WEBB, Remarks on k-set contractions, Boll. Un. Mat. Ital. (4) 4 (1971), 614-629.

UNIVERSITY OF SUSSEX BRIGHTON