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Abstract

A new generalized class of fuzzy implications, called (h, f , g)-implications, is
introduced and discussed in this paper. The results show that the new fuzzy implications
possess some good properties, such as the left neutrality property and the exchange
principle.
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1. Introduction

Similar to cases that generalize classical conjunction and disjunction to t-norms and
t-conorms, fuzzy implications are generalizations of the classical implication of
classical logic. As we know, fuzzy implications have a significant role in approximate
reasoning and fuzzy control [2–5, 8, 11–13, 15]. Furthermore, these have been applied
to many other fields including fuzzy decision making, image processing, expert
systems, data mining, fuzzy relational equation, fuzzy mathematical morphology,
fuzzy subsethood measures and so on.

In a survey paper on fuzzy implication functions, Mas et al. [8] showed the
importance of having different fuzzy implications since they were used to represent
imprecise knowledge. Recently, Fodor and Torrens [4] studied the historical
development of logical connectives containing fuzzy implication functions for fuzzy
sets and fuzzy logic.

In the past, many authors studied the ways or methods of generating fuzzy
implications. Among these different methods, the most popular ones should be
residuated implications, and so on, which are obtained from t-norms, t-conorms and
negations (see the following book and articles [2, 3, 16]). Moreover, these methods
have been extended to fuzzy implications derived from copulas, uninorms, quasi-
copulas, overlap functions, aggregation operators and so on. At the same time, the
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above implications for discrete fuzzy numbers and interval values are presented (see
the following articles [4, 8]).

Other methods of generating fuzzy implications are obtained from given
implications, such as the so-called threshold generation method, the convex
combinations, ordinal sum method, ordering method and the method from a new
binary operation on the set of all fuzzy implications. Most of the above mentioned
methods preserve the most usual properties of initial implications.

Unlike the above methods derived from binary operators, a class of fuzzy
implications are constructed, based on generating functions. Yager proposed f- and
g-generated implications [15] (also see the following book and articles [1, 2, 9]).
Recently, Xie and Liu [14] proposed a generalization of Yager’s f-generated
implications. Similarly, Hilnena et al. [6] generated a class of new implications
through two fuzzy negations and a uninorm. Massanet and Torrens introduced h-
implications by means of the additive generators of representable uninorms [10].
Liu proposed a new class of fuzzy implications through the so-called generalized
h-generators [7].

In this paper, we propose a new class of fuzzy implications as new generalizations
of h-implications, and investigate some basic properties of these new implications.

2. Preliminaries

To make this work self-contained, we recall some necessary concepts and known
results used in the rest of the paper. We assume that the readers are familiar with the
basic facts about t-norms and t-conorms [2].

Definition 2.1 [2]. A function I : [0,1]2→ [0,1] is called a fuzzy implication, (shortly,
implication), if, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions hold:

(I1) if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), that is, I(·, y) is decreasing;
(I2) if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), that is, I(x, ·) is increasing;
(I3) I(0, 0) = 1;
(I4) I(1, 1) = 1;
(I5) I(1, 0) = 0.

The set of all fuzzy implications is denoted by FI.

Definition 2.2 [2]. A fuzzy implication I is said to satisfy:

(i) the left neutrality property (NP), if I(1, y) = y, y ∈ [0, 1];
(ii) the exchange principle (EP), if I(x, I(y, z)) = I(y, I(x, z)), with x, y, z ∈ [0, 1];

(iii) the identity principle (IP), if I(x, x) = 1, x ∈ [0, 1];
(iv) the ordering property (OP), if I(x, y) = 1⇐⇒ x ≤ y, with x, y ∈ [0, 1];
(v) the law of contraposition (CP(N)) with respect to a negation N, if I(x, y) =

I(N(y),N(x)), with x, y ∈ [0, 1].
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Remark 2.3. In fuzzy logic, there are three kinds of implications obtained from a
t-norm, s-norm and negation which are very usual, that is, (S , N)-implication, R-
implication (or residual implication), QL-implication. Given a t-norm T , a t-conorm
S and a negation N,

(a) (S ,N)-implication is defined by

IS ,N(x, y) = S (N(x), y), x, y ∈ [0, 1];

(b) R-implication is defined by

IT (x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1];

(c) QL-operation (may not necessarily be an implication) is defined by

IT,S ,N(x, y) = S (N(x),T (x, y)), x, y ∈ [0, 1].

More details including definitions, examples and properties of these implications
may be found in the works of Baczyński and Jayaram [2] and Dubois and Prade [3].
Yager [15] introduced two new kinds of implications as follows.

Definition 2.4 [15]. Let f : [0,1]→ [0,∞] be a strictly decreasing continuous function
with f (1) = 0. The function I : [0, 1]2 → [0, 1], defined by

I(x, y) = f −1(x · f (y)), x, y ∈ [0, 1]

with the understanding that 0 · ∞ = ∞, is called an f-generated implication. The
function f itself is called an f -generator of I. In such a case, to emphasize the apparent
relation we write I f instead of I.

Definition 2.5 [15]. Let g : [0, 1]→ [0,∞] be a strictly increasing continuous function
with g(0) = 0. The function I : [0, 1]2 → [0, 1], defined by

I(x, y) = g(−1)
(1

x
· g(y)

)
, x, y ∈ [0, 1]

with the understanding that ∞ · 0 = ∞, 1/0 = ∞, is called a g-generated implication,
where the function g(−1) is the pseudo-inverse of g given by

g(−1)(x) =

g−1(x) if x ∈ [0, g(1)),
1 if x ∈ [g(1),∞].

The function g itself is called a g-generator of I. In such a case, we will write Ig instead
of I.

Massanet and Torrens [10] introduced the so-called h-implications based on the
additive generators of representable uninorms.
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Definition 2.6 [10]. Fix an e ∈ (0, 1) and let h : [0, 1] → [−∞,∞] be a strictly
increasing continuous function with h(1) =∞, h(e) = 0 and h(0) = −∞. The function
I : [0, 1]2 → [0, 1] defined by,

I(x, y) =


1 if x = 0,
h−1(x · h(y)) if x > 0, y ≤ e,

h−1
(1

x
· h(y)

)
if x > 0, y > e,

is called an h-implication. The function h itself is called a h-generator (with respect to
e) of the function I. In such a case, we will write Ih instead of I.

Definition 2.7 [2]. Let I ∈ FI. The function NI : [0,1]→ [0,1] defined by NI = I(x,0)
is called the natural negation of I or the negation induced by I.

Remark 2.8. From the book by Baczyński and Jayaram [2], we may show that if IS ,N

is an (S ,N)-implication (see [16]), IT,S ,N is a QL-operation and IT,S ,N is a D-operation,
then

NIS ,N = N, NIT,S ,N = N, NIT,S ,N = N.

Proposition 2.9 [2]. If I ∈ FI satisfies the exchange principle (EP) and the left
neutrality property (NP) then I satisfies the law of contraposition CP(N) if and only if
N = NI and NI is strong.

3. New class of implications

In this section, we introduce a new class of fuzzy implications, discuss the
intersection of the new class with other known classes of implications and study the
law of importation for the new implications.

As stated above, Massanet and Torrens [10] introduced the h-implications by means
of a h-generator (see Definition 2.6). In this section, similar to the case of the h-
implications, we introduce a new class of implications.

Definition 3.1. Let c ∈ (0, 1) and h : [0, 1]→ [−∞,∞] be a h-generator. A function
I : [0, 1]2 → [0, 1] defined by

I(x, y) =


1 if x = 0,
h−1( f (x) · h(y)) if x > 0, y ≤ c,
h−1(g(x) · h(y)) if x > 0, y > c,

with the understanding that∞ · 0 = 0, is called an (h, f ,g)-operation, where f : [0,1]→
[0, 1] is an increasing function satisfying f (0) = 0, f (1) = 1; g : [0, 1]→ [1,∞] is a
decreasing function satisfying g(0) =∞ and g(1) = 1.

In such case, to emphasize the apparent relation, we write Ih, f ,g instead of I.
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Example 3.2. (i) Let f (x) = x2, g(x) = 1/x2 and h(x) = ln(x/(1 − x)) (with respect
to c = 1/2). Then for x, y ∈ [0, 1] we have

Ih, f ,g(x, y) =



1 if x = 0,
yx2

(1 − y)x2
+ yx2 if x > 0, y ≤

1
2
,

y1/x2

(1 − y)1/x2
+ y1/x2 if x > 0, y >

1
2
.

(ii) Let f (x) = x3, g(x) = 1/x3 and h(x) = ln(−(1/β) · ln(1 − x)) (with respect to
c = 1 − exp (−β) and β > 0). Then for x, y ∈ [0, 1] we have

Ih, f ,g(x, y) =


1 if x = 0,

1 − e[−β·{(−1/β)·ln(1−y)}]x2

if x > 0, y ≤ 1 − e−β,

1 − e[−β·{(−1/β)·ln(1−y)}]1/x2

if x > 0, y > 1 − e−β.

The next proposition shows that an (h, f , g)-operation is indeed a fuzzy implication.

Proposition 3.3. If I = Ih, f ,g is an (h, f , g)-operation, then I is a fuzzy implication, that
is, I ∈ FI.

Remark 3.4. (i) Based on the above results, we can say “(h, f , g)-implications”
instead of “(h, f , g)-operations”.

(ii) If f (x) = x and g(x) = 1/x, then the (h, f , g)-implication is the same as the
h-implication. This fact shows that the new implication Ih, f ,g is a natural
generalization of the h-implications.

In the next theorem, we investigate a necessary and sufficient condition under which
two (h, f , g)-implications are equal, when functions f and g are fixed.

Theorem 3.5. Let f : [0, 1] → [0, 1] be a strictly increasing continuous function
satisfying f (0) = 0, f (1) = 1, and let g : [0, 1] → [1,∞] be a strictly decreasing
continuous function satisfying g(0) = ∞ and g(1) = 1. Also let h1(x) and h2(x) be
two h-generators with respect to a fixed c ∈ (0, 1). Then the following statements are
equivalent:

(i) Ih1, f ,g = Ih2, f ,g;
(ii) there exists constants a, b ∈ (0,∞) such that

h2(x) =

a · h1(x) if x ∈ [0, c],
b · h1(x) if x ∈ (c, 1].

Proof. First we prove that (i) implies (ii). Assume that I1 = Ih1, f ,g and I2 = Ih2, f ,g are
two (h, f , g)-implications with I1 = I2.

From the definition of (h, f , g)-implications,

h−1
1 ( f (x) · h1(y)) = h−1

2 ( f (x) · h2(y)), x > 0, y ≤ c. (3.1)
h−1

1 (g(x) · h1(y)) = h−1
2 (g(x) · h2(y)), x > 0, y > c. (3.2)
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When x > 0 and y ≤ c,

equation (3.1)⇔ h2 ◦ h−1
1 ( f (x) · h1(y)) = f (x) · h2(y)

⇔ h2 ◦ h−1
1 ( f (x) · h1(y)) = f (x) · (h2 ◦ h−1

1 )(h1(y)),

and when x > 0 and y > c,

equation (3.2)⇔ h2 ◦ h−1
1 (g(x) · h1(y)) = g(x) · h2(y)

⇔ h2 ◦ h−1
1 (g(x) · h1(y)) = g(x) · (h2 ◦ h−1

1 )(h1(y)).

Substituting k = h2 ◦ h−1
1 and z = h1(y), we obtain the following equations:

k( f (x) · z) = f (x) · k(z), x ∈ (0, 1], z ∈ [−∞, 0], (3.3)

and
k(g(x) · z) = g(x) · k(z), x ∈ (0, 1], z ∈ (0,∞], (3.4)

where k : [−∞,∞]→ [−∞,∞] is a continuous strictly increasing bijection with k(0) =

0.
In equation (3.3), letting z = −1 yields

k(− f (x)) = f (x) · k(−1), | x ∈ (0, 1]. (3.5)

Fix arbitrarily z ∈ (−∞, 0). Obviously, there exists x1 ∈ (0, 1] such that f (x1) · z ∈
[−1, 0). From equations (3.3) and (3.5), we get

k(z) =
1

f (x1)
· k( f (x1) · z) =

1
f (x1)

· (− f (x1)) · z · k(−1) = −z · k(−1).

Now, by the definition of k, we have h2 ◦ h−1
1 (z) = −z · (h2 ◦ h−1

1 )(−1), and hence
h2(y) = −h1(y) · (h2 ◦ h−1

1 )(−1) = h1(y) · (−h2 ◦ h−1
1 (−1)), y ∈ (0, c). Thus, letting a =

−h2 ◦ h−1
1 (−1) ∈ (0,∞), yields h2(y) = a · h1(y), y ∈ (0, c). When y = 0, c, we also

have h2(x) = a · h1(x), since h1(0) = h2(0) = −∞ and h1(c) = h2(c) = 0. Hence, h2(y) =

a · h1(y), y ∈ [0, c].
In equation (3.4), letting z = 1 yields

k(g(x)) = g(x) · k(1), x ∈ (0, 1]. (3.6)

Fix arbitrarily z ∈ (0,∞). Then, there exists x2 ∈ (0,1] such that g(x2) · z ∈ [1,∞). From
equations (3.4) and (3.6),

k(z) =
1

g(x2)
· k(g(x2) · z) =

1
g(x2)

· g(x2) · z · k(1) = z · k(1).

Now, by the definition of k, we have h2 ◦ h−1
1 (z) = z · (h2 ◦ h−1

1 )(1), and hence h2(y) =

h1(y) · (h2 ◦ h−1
1 )(1) = h1(y) · (h2 ◦ h−1

1 (1)), y ∈ (c, 1). Thus, letting b = h2 ◦ h−1
1 (1) ∈

(0,∞), yields h2(y) = b · h1(y), y ∈ (c, 1). When y = 1, we also have h2(x) = b · h1(x)
since h1(1) = h2(1) =∞. Hence, h2(y) = b · h1(y), y ∈ (c, 1].
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Next, we prove that (ii) implies (i). Let h1 be a h-generator and a, b ∈ (0,∞). Define

h2(x) =

a · h1(x) if x ∈ [0, c],
b · h1(x) if x ∈ (c, 1].

Evidently, h2 is a well-defined h-generator. Moreover, for any z ∈ [−∞,∞],

h2
−1(z) =

h−1
1 (z/a) if z ∈ [−∞, 0],

h−1
1 (z/b) if z ∈ (0,∞].

Next, we prove that I1 = Ih1, f ,g and I2 = Ih2, f ,g are equal. Note that when x = 0, the
equality I1(0, y) = I2(0, y) holds for all y ∈ [0, 1]. When x > 0 and y ≤ c,

I2(x, y) = h−1
2 ( f (x) · h2(y)) = h−1

2 ( f (x) · a · h1(y))

= h−1
1

( f (x) · a · h1(y)
a

)
= I1(x, y).

Also, when x > 0 and y > c, we obtain

I2(x, y) = h−1
2 (g(x) · h2(y)) = h−1

2 (g(x) · b · h1(y))

= h−1
1

(g(x) · b · h1(y)
b

)
= I1(x, y),

which proves that I1 = I2. �

Corollary 3.6. Let f : [0, 1]→ [0, 1] be a strictly increasing continuous function
satisfying f (0) = 0, f (1) = 1 and g : [0,1]→ [1,∞] be a strictly decreasing continuous
function satisfying g(0) =∞ and g(1) = 1. Also, let h1(x) and h2(x) be two h-generators
with respect to a fixed c ∈ (0, 1) such that −h2 ◦ h−1

1 (−1) = h2 ◦ h1(1). Then the
following statements are equivalent:

(i) Ih1, f ,g = Ih2, f ,g;
(ii) there exists a constant a ∈ (0,∞) such that h2(x) = a · h2(x) for all x ∈ [0, 1].

Proposition 3.7. If I = Ih, f ,g is an (h, f , g)-implication where g(x) < ∞ and f (x) > 0,
x ∈ (0, 1], then we have the following statements:

(i) I satisfies the left neutrality property (NP);
(ii) I(x, y) ≤ c⇐⇒ (x > 0 and y ≤ c), I(x, y) > c⇐⇒ (x = 0 or y > c);

(iii) I satisfies the exchange principle (EP);
(iv) I(x, x) = 1⇐⇒ (x = 0 or x = 1). This shows that I does not satisfy the identity

principle (IP);
(v) I(x, y) = 1⇐⇒ (x = 0 or y = 1). This shows that I does not satisfy the ordering

property (OP).

The following proposition discusses the natural negations of the (h, f , g)-
implications.
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Proposition 3.8. If I = Ih, f ,g is an (h, f , g)-implication, then

NI(x) =


1 if x = 0,
c if f (x) = 0, x , 0,
0 otherwise.

In particular, if f (x) > 0 for all x ∈ (0, 1], then NI = N1 is defined by

N1(x) =

1 if x = 0,
0 otherwise.

Corollary 3.9. If I = Ih, f ,g is an (h, f , g)-implication, then I does not satisfy the law of
contraposition CP(N) with any fuzzy negation N.

Following this, we explore the continuity of (h, f , g)-implications.

Proposition 3.10. Let I = Ih, f ,g be an (h, f ,g)-implication where f and g are continuous
functions. Then I is continuous except at the points (0, y) with y ≤ c.

Next several theorems show the fact that the intersections of (h, f , g)-implications,
(S , N)-implications, QL-implications, D-implications and R-implications generated
from left-continuous t-norms are almost empty.

Theorem 3.11. Let I = Ih, f ,g be an (h, f , g)-implication where for f there exists x1 ∈

(0, 1) such that f (x1) > 0. Then I is not an (S ,N)-implication.

Proof. Assume that I is a (S , N)-implication obtained form a s-norm S and a fuzzy
negation N. From Remark 2.8, we have NI = N. However, by Proposition 3.8,

NI(x) =


1 if x = 0,
c if f (x) = 0, x , 0,
0 otherwise.

Moreover, we know that the (S ,N)-implication obtained from NI is

I(x, y) =


1 if x = 0,
S (c, y) if f (x) = 0, x , 0,
y otherwise.

Then when y ∈ (c, 1), we have

I(x1, y) = h−1( f (x1) · h(y)) = y.

We get f (x1) · h(y) = h(y), a contradiction. This shows that I is not a (S , N)-
implication. �

Similarly, for QL-implications we can obtain the following similar conclusion.

Theorem 3.12. Let I = Ih, f ,g be an (h, f ,g)-implication. Then I is not a QL-implication.
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Theorem 3.13. Let I = Ih, f ,g be an (h, f , g)-implication. Then I is not a D-implication.

Proposition 3.14 [2]. For a function I : [0, 1]2 → [0, 1], the following statements are
equivalent:

(i) I is an R-implication generated from a left-continuous t-norm;
(ii) I satisfies IP, EP, OP and it is right-continuous with respect to the second

variable.

Theorem 3.15. Let I = Ih, f ,g be an (h, f , g)-implication. Then I is not an R-implication
obtained from a left-continuous t-norm.

Now we investigate the intersections between (h, f , g)-implications and f - and g-
generated implications.

Proposition 3.16 [2]. Let f be an f -generator, I f an f -generated implication. Then:

(i) the natural negation NI f is a strict negation if and only if f (0) <∞;
(ii) I f is continuous except at the point (0,0) if and only if f (0) =∞.

Theorem 3.17. Let I = Ih, f ,g be an (h, f , g)-implication. Then I is not an f -generated
implication.

Proof. If f (0) < ∞, then from Proposition 3.16, NI is a strict negation, which
contradicts Proposition 3.8.

If f (0) = ∞, then from Proposition 3.16, I is continuous except at the point (0,0),
which contradicts Proposition 3.10. Hence, I is not a f -generated implication. �

Proposition 3.18 [2]. Let g be a g-generator, Ig a g-generated implication. Then Ig is
continuous except at the point (0,0).

From this proposition, we can easily prove the following theorem.

Theorem 3.19. Let I = Ih, f ,g be a (h, f , g)-implication. Then I is not a g-generated
implication.

In classical logic, (p ∧ q)→ r ≡ (p→ (q→ r)) is a tautology which is called the
law of importation (LI). The general form of the above equivalence is given as

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1],

where I ∈ FI, T is a t-norm. In this case, we say that the implication I satisfies the LI
with respect to T .

The following conclusion shows the relationship between the Ih, f ,g- implications
and the LI.

Proposition 3.20. Suppose that I = Ih, f ,g is an (h, f , g)-implication. If I satisfies the LI
with a t-norm T, then T is positive, that is, T (x, y) = 0 if and only if x = 0 or y = 0.
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Theorem 3.21. Suppose that T is a t-norm and I = Ih, f ,g is an (h, f , g)-implication,
where f is a strictly increasing continuous function and g is a strictly decreasing
continuous function. Then the following statements are equivalent:

(i) I satisfies the LI with respect to T;
(ii) T (x, y) = f −1( f (x) · f (y)) = g−1(g(x) · g(y)), x, y ∈ [0, 1].

4. Conclusions

In this paper, we proposed a class of new fuzzy implications, called (h, f , g)-
implications, which were generalizations of the h-implications proposed by Massanet
and Torrens [10]. We investigated some basic properties of these new implications.
In the future, we plan to explore the law of importation for the new implications,
and establish the relationship of the new implications with the R-implications,
(S , N)-implications, D-implications, QL-implications, f -generated and g-generated
implications. This may lead to possible applications of these new implications in
approximate reasoning and fuzzy control.
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