The Latus Rectum of the Parabola

$$
(a x+b y)^{2}+2 g x+2 f y+c=0 .
$$

By Robert J. T. Bell.
If a circle has double contact with a parabola, the points of contact being P and P^{\prime}, its centre, G, is the point of intersection of the axis with the normals at P and P^{\prime}, and the perpendicular from G to $P P^{\prime}$ is the subnormal $G N$, which is half the latus rectum.

Now the equation $(a x+b y)^{2}+2 g x+2 f y+c=0$ can be written in the form

$$
\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)+2 g x+2 f y+c-(b x-a y)^{2}=0,
$$

which shows that $\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)+2 g x+2 f y+c=0$ represents the circle which has double contact with the parabola so that the chord of contact $b x-a y=0$ passes through the origin. The centre of the circle is the point $\left(\frac{-g}{a^{2}+b^{2}}, \frac{-f}{a^{2}+b^{2}}\right)$, and hence the length of the latus rectum of the parabola is $\pm 2 \frac{(b g-a f)}{\left(a^{2}+b^{2}\right)^{3 /}}$.

A similar method can be applied to the general equation in x, y, z, in the case where it represents a paraboloid of revolution, to obtain the latus rectum of the generating parabola.

