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Abstract

Let G be a finite group. Let cl(G) be the set of conjugacy classes of G and let eclp(G) be the largest
integer such that peclp(G) divides |C| for some C ∈ cl(G). We prove the following results. If eclp(G) = 1,
then |G : F(G)|p ≤ p4 if p ≥ 3. Moreover, if G is solvable, then |G : F(G)|p ≤ p2.
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1. Introduction

We first fix the notation. Let n be a positive integer and p be a prime. We may write
n = pam, where p - m. We use np = pa to denote the p-part of the integer n.

It is interesting to study how arithmetic conditions on the invariants of a finite group
affect the group structure. Let G be a finite group, P a Sylow p-subgroup of G and
Irr(G) the set of irreducible complex characters of G. It is reasonable to expect that
the degrees of irreducible characters of G restrict those of P. Let ep(G) be the largest
integer such that pep(G) divides χ(1) for some χ ∈ Irr(G). The fundamental Ito–Michler
theorem [5] asserts that ep(G) = 0 if and only if P CG and P is abelian. In particular,
this implies that |G : F(G)|p = 1, where F(G) is the Fitting subgroup of G. A natural
generalisation of the Ito–Michler theorem is the following result of Lewis et al. [3]:
if G is solvable and ep(G) = 1, then |G : F(G)|p ≤ p2. In [2], Lewis et al. studied a
similar problem for arbitrary finite groups and showed that if G is finite and ep(G) = 1,
then |G : F(G)|p ≤ p4.

Results for character degrees may have dual results for conjugacy class sizes. The
dual of the Ito–Michler theorem on the set of conjugacy class sizes is that every
conjugacy class of G has p′-size if and only if a Sylow p-subgroup of G is central.
In this paper, we study the dual versions of the results of Lewis et al. on the set of
conjugacy class sizes and show that analogues of the main results of [3] and [2] hold.
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Let G be a finite group and p be a prime number. We say that an element x ∈ G
is p-regular if the order of x is not a multiple of p. Let clsizepreg(G) denote the set of
conjugacy class sizes of p-regular elements of G. Inspired by the results in [6], we can
prove a little more by considering the conjugacy class sizes of the p-regular elements
in G. The following results and more will be proved in Section 2.

Theorem 1.1. Let G be a finite solvable group and suppose that p2 does not divide |xG |

for every p-regular element x ∈G. Then |G : F(G)|p ≤ p2. In particular, if P ∈ Sylp(G),
then P′ is subnormal in G.

Theorem 1.2. Let G be a finite group and suppose that p2 does not divide |xG | for every
p-regular element x ∈ G. Then |G : F(G)|p ≤ p4 if p ≥ 3 and |G : F(G)|p ≤ p2 if p = 2.

Theorem 1.1 is a consequence of Theorem 2.2 and Theorem 1.2 is Theorem 2.11.

2. Proof of the main results

We will use the following results very often in the proofs.

Lemma 2.1. Let N be a normal subgroup of G.

(1) If x ∈ N, then |xN | divides |xG |.
(2) If x ∈ G, then |(xN)G/N | divides |xG |.

We first observe that the condition that p2 does not divide |xG | for every p-regular
element x ∈G is inherited by all the normal subgroups of G and all the quotient groups
of G. Since the assertion for normal subgroups follows easily from Lemma 2.1(1), we
will just explain the assertion for quotient groups. Let N CG and T be a p-regular
class of G/N. Then there is a p-regular element xN ∈ G/N such that T = (xN)G/N . We
may write x = yz, where y is a p′-element, z is a p-element and yz = zy. If H = 〈x〉N,
then |H/N| is a p′-number and so z ∈ N. Thus, xN = yN and T = (yN)G/N . From this,
|T | | |yG | and the result follows.

Theorem 2.2. Suppose that G is a solvable group and p is a prime. If ap ≤ p for all
a ∈ clsizepreg(G), then a Sylow p-subgroup of G/F(G) has order at most p2.

Proof. If N is normal in G, then N and G/N inherit the hypothesis. In particular,
G/Op(G) inherits the hypothesis, so we can assume that Op(G) = 1. We wish to show
that a Sylow p-subgroup P of G has order at most p2. We know that P is elementary
abelian by [6, Lemma 3].

Let K = Op′(G). Since G is p-solvable and a Sylow p-subgroup is abelian, G/K
has a normal Sylow p-subgroup Q/K. Let P be a Sylow p-subgroup of G, so Q = KP.
The action of Q/K on the classes of K has all orbits of size 1 or p and thus the same is
true for the action of P on the classes of K. Since |P| and |K| are coprime, the actions
of P on the classes of K and on Irr(K) are permutation isomorphic, so the P-orbits on
Irr(K) all have size 1 or p.
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Now let χ be an irreducible character of Q = KP and let θ be an irreducible
constituent of the restriction χK . Let T be the stabiliser of θ in Q, so that |Q : T | is
the size of the p-orbit of θ and hence |Q : T | is 1 or p. Now χ = ηQ, where η is some
irreducible character of T . But K is a normal Hall subgroup of T , so θ has an extension
ψ to T and, by Gallagher’s theorem, η = ψβ, where β is an irreducible character of
T/K, which is abelian since P is abelian. Thus, β(1) = 1, so η(1) = ψ(1) = θ(1) is not
divisible by p, and χ(1) = |Q : T | η(1), so the p-part of χ(1) is |Q : T |, which is 1 or p.

We know that no irreducible character of Q has degree divisible by p2, so, by the
main result of [3], p3 does not divide |Q| and the theorem is proved. �

Remark 2.3. Theorem 1.1 is a straightforward consequence of Theorem 2.2. Once we
know that |G : F(G)|p ≤ p2, since p-groups of order at most p2 are abelian, it is easily
seen that P′ ≤ F(G) and thus P′ is subnormal in G.

Proposition 2.4. Let p be an odd prime and let G be a p-solvable group that satisfies
ap ≤ p for all a ∈ clsizepreg(G). Suppose that G = Op′(G) and Op(G) = 1. Suppose
also that G admits a minimal normal subgroup N = T1 × · · · × Tn � T n, where T is a
nonabelian simple group. Then |G|p ≤ p.

Proof. Let P be a Sylow p-subgroup of G. Then P is elementary abelian by [6,
Lemma 3] and thus the p-length of G is 1. Let K = Op′(G). Since G = Op′(G), it
follows that G = PK.

The action of G/K on the classes of K has all orbits of size 1 or p and so the same is
true for the action of P on the classes of K. Since |P| and |K| are coprime, the actions
of P on the classes of K and on Irr(K) are permutation isomorphic, so the P-orbits on
Irr(K) all have size 1 or p. Since P is abelian, it follows by a similar argument to that
in the proof of Theorem 2.2 that no irreducible character of Q has degree divisible by
p2. Thus, |G|p ≤ p by [2, Proposition 2.4]. �

Theorem 2.5. Let p be an odd prime and let G be a p-solvable finite group. If p2 does
not divide |gG | for any p-regular element g of G, then the following statements hold:

(1) |G/sol(G)|p ≤ p and |G/F(G)|p ≤ p3;
(2) either |G/F(G)|p ≤ p or F∗(Op′(G)) = F(Op′(G)).

Proof. Let L = Op′(G). Then |L|p = |G|p, sol(L) ≤ sol(G), F(L) ≤ F(G) and
F(sol(L)) ≤ F(sol(G)). Furthermore, p2 does not divide |gL| for any p-regular element
g of L. Hence, we may replace G by L and assume that G = Op′(G).

To see (1), set R = sol(G). Note that |G/R|p ≤ p by Proposition 2.4 and that
|R/F(R)|p ≤ p2 by Theorem 2.2. Since F(R) = F(G), we conclude that

|G/F(G)|p ≤ |G/R|p|R/F(R)|p ≤ p3.

For (2), write U = Φ(F∗(G)). Since F∗(G/U) = F∗(G)/U and F(G/U) = F(G)/U,
we may assume that U = 1. Now F∗(G) is a direct product of simple groups. Assume
that F∗(G) > F(G). Then G/F(G) admits a nonabelian minimal normal subgroup and
Proposition 2.4 implies that |G/F(G)|p ≤ p. �

https://doi.org/10.1017/S0004972718000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000072


[4] On p-parts of conjugacy class sizes of finite groups 409

Lemma 2.6 [2, Lemma 3.1]. Let S be a nonabelian simple group and let p be a prime
dividing |S |. Then |S |p > |Out(S )|p.

Lemma 2.7. Let S be a nonabelian simple group and p ≥ 3 be a prime divisor of |S |.
Then there exists a p-regular element x ∈ S such that |xS |2p > |Aut(S )|p.

Proof. For a simple group of Lie type and any prime p, or for an alternating group
and p ≥ 5, there is a p-block of defect 0. Hence, there is a conjugacy class clG(x) of
p-defect 0 and |G|p divides |clG(x)|. Clearly, x is p-regular since otherwise |clG(x)|p <
|G|p. The result now follows from Lemma 2.6.

Thus, we only need to consider the alternating groups An and p = 3.
Assume n is odd. Set α = (1, 2, . . . , n). Then α ∈ An and |clS n (α)| = (n − 1)!. Thus,

|clAn (α)| is a multiple of 1
2 (n − 1)!. Set β = (1, 2, . . . , n − 2). Then again β ∈ An and

|clS n ( β)| = n!/(2(n − 2)). Thus, |clAn ( β)| is a multiple of 1
2 n!/(2(n − 2)). If 3 - n, then

the class of α satisfies the condition. If 3 | n, then 3 - n − 2 and the class of β satisfies
the condition.

Assume n is even. Set α = (1, 2, . . . , n − 1). Then α ∈ An and |clS n (α)| = n!/(n − 1).
Thus, |clAn (α)| is a multiple of n!/(2(n − 1). Set β = (1, 2, . . . , n − 3). Then β ∈ An and
|clS n ( β)| = n!/(6(n − 3)). Thus, |clAn ( β)| is a multiple of n!/(2 · 6(n − 3). If 3 - n − 1,
then the class of α satisfies the condition. If 3 - n, then the class of α satisfies the
condition. If 3 | n − 1, then 3 - n − 3 and the class of β satisfies the condition.

For the sporadic groups, the result can be checked by using [1]. �

Lemma 2.8. Let S be a nonabelian simple group and let G be an almost simple group
with S ≤ G ≤ Aut(S ). Let p be an odd prime. Suppose that p divides |S | and ap ≤ p
for all a ∈ clsizepreg(G). Then |G|p = p.

Proof. This follows from Lemmas 2.6 and 2.7. �

Proposition 2.9. Let p be an odd prime and let G be a finite non-p-solvable group with
a trivial p-solvable radical and Op′(G) = G. If ap ≤ p for all a ∈ clsizepreg(G), then G
is a nonabelian simple group with |G|p = p.

Proof. Since the p-solvable radical is trivial, it follows that F(G) = 1 and, thus,
F∗(G) = E(G) = T1 × T2 × · · · × Tk, where T1, . . . , Tk are nonabelian simple groups
with p dividing |Ti| and CG(F∗(G)) = 1. For each i ∈ {1, . . . , k}, we have p | |Ti| and Ti

is nonabelian and simple. Thus, by Lemma 2.7, there exists a p-regular element xi ∈ Ti

with p | |xTi
i |. Let x = x1 × · · · × xk ∈ F∗(G). Then |xG | is divisible by pk. This forces

k = 1. Hence, F∗(G) is a nonabelian simple group and G is an almost simple group
with socle F∗(G). The result now follows from Lemma 2.8. �

Theorem 2.10. Let p be an odd prime and suppose that v is a positive integer and G is
a group such that every section H of G that is p-solvable satisfies |H : F(H)|p ≤ pv. If
ap ≤ p for all a ∈ clsizepreg(G), then |G : F(G)|p ≤ p1+v.
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Proof. If G is p-solvable, then |G : F(G)|p ≤ pv < p1+v and we are done. So, we assume
that G is not p-solvable. If L = Op′(G), then Op′(L) = L and, by [2, Lemma 3.3],
|G : F(G)|p = |L : F(L)|p. By induction on |G|, one may assume that G = Op′(G). Let
Rp be the p-solvable radical of G. Then G/Rp has a trivial p-solvable radical and
Op′(G/Rp) = G/Rp. By Proposition 2.9, G/Rp is a nonabelian simple group with
|G/Rp|p = p. Since F(G) ≤ Rp, we have F(Rp) = F(G) ∩ Rp = F(G). Now Rp is a
p-solvable group and is normal in G and ap ≤ p for all a ∈ clsizepreg(Rp), so we obtain
|G : F(G)|p = |G : Rp|p · |Rp : F(Rp)|p ≤ p · pv = p1+v. �

Theorem 2.11. Let G be a finite group and suppose that p2 does not divide |xG | for
every p-regular element x ∈ G. Then |G : F(G)|p ≤ p4 if p ≥ 3 and |G : F(G)|p ≤ p2 if
p = 2.

Proof. If p = 2, then G is solvable by a result in [4] and the theorem follows by
Theorem 2.2. If p ≥ 3, then the theorem follows by Theorems 2.5 and 2.10. �

Remark 2.12. We provide an example to show that the bound we obtained for the
solvable groups is the best possible. Indeed, we claim that [3, Example 3.3] will work.

In that example, we have G = HV , where H ≤ Γ(V), and furthermore we may write
G = A n K, where A is an elementary abelian group of order p2 and K is a p′-group.
Consider the action of A on Irr(K) and cl(K). The stabiliser of A on every nonprincipal
ψ ∈ Irr(K) has a normal subgroup of order p (since p2 - χ(1) ∈ cd(G)) and the same
holds for the conjugacy classes of K.

Let K be the Hall p′-subgroup of H. Then KV is a normal Hall p′-subgroup of G.
We note that KV is a Frobenius group. Pick a p-regular element x ∈ G. There are now
two possibilities. First, if x ∈ V , then p | |CG(x)|. Otherwise, we may assume that a
conjugate of x is in K and so we may assume that x ∈ K. Thus, p | |CH(x)| | |CG(x)|. In
both cases, p2 - |xG | for any p-regular element x ∈ G.
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