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Abstract

We shall study continuous-time Markov chains on the nonnegative integers which are both
irreducible and transient, and which exhibit discernible stationarity before drift to infinity
"sets in". We will show how this 'quasi' stationary behaviour can be modelled using a
limiting conditional distribution: specifically, the limiting state probabilities conditional
on not having left 0 for the last time. By way of a dual chain, obtained by killing the
original process on last exit from 0, we invoke the theory of quasistationarity for absorbing
Markov chains. We prove that the conditioned state probabilities of the original chain are
equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us
to establish the simultaneous existence and then equivalence, of their limiting conditional
distributions. Although a limiting conditional distribution for the dual chain is always a
quasistationary distribution in the usual sense, a similar statement is not possible for the
original chain.

1. Quasistationarity and limiting conditional distributions

The phenomenon which we shall study is depicted in Figure 1. This illustrates

a simulation of a population which suffers an explosion after an initial period of

stationarity (a detailed description of the model will be given in Section 7). We will

introduce the notion of a limiting conditional distribution to describe the apparent

quasistationary behaviour of this and other more general transient Markov chains.

Let (Xt, t > 0) be a continuous-time Markov chain over a denumerable state space

which, for simplicity, we shall take as S = {0, 1 , . . . } . Let Q = (qy, i,j e S) be

the ^-matrix of transition rates, assumed to be stable and conservative, so that q{j
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Time x10=

FIGURE 1. Simulation of a population process.

(> 0), for j j^ i, represents the transition rate from state i to state j and qti = —«?,•,
where qt = ^2j9ti qij (< od) represents the transition rate out of state i. Let P(t) =
(Pu(t), i,j e 5), where

Pij(t)=?r(Xl=j\X0 = i),

and suppose that P is a g-transition function, that is, /7,/(0+) = qir It will not be
necessary to assume that the transition function P is determined uniquely by Q, but
we will assume that P is honest (5Z,es Pu (0 = !)• ^ e furtner assume only that P is
irreducible, that is, ptj (t) > 0 for all i, j e S and transient, that is,

Pij(t)dt < oo , i,j € S.

Under this latter condition, the process will visit each state, in particular state 0, at
most a finite number of times.

We shall examine the limiting behaviour conditional on recurrence to state 0:

DEFINITION 1. A probability distribution r = (r,, j e 5) is called a limiting
conditional distribution for the process if

lim Pr(X, = j \X0 = i, Xt+S = 0 for some s > 0) = r,•., j e S. (1)
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This is the definition introduced by van Doom and Schrijner [23], who used it to
study quasistationarity of random walks and other discrete-time Markov chains which
are skip-free to the left. Their results were extended to cover birth-death processes
in [10] and, more recently, general discrete-time Markov chains in [3].

Since the conditional probability can be evaluated as

Pr(X, = j \X0 = i, Xl+S = 0 for some s > 0) = _ P f f W ^ x L , (2)
Likes f

where bt = Pr(Z, = 0 for some t > 0\X0 = /), it should in principle be possible to
determine the limit (1). To this end, we shall define a dual chain in terms of the hitting
probabilities (bit i € 5).

2. The dual chain

First we note that b0 — 1 and (by irreducibility and transience) that 0 < bt < 1,
i 6 S. Next, let bi(t) = Pr(Xs = 0 for some s > t\X0 = i) and observe that
bj(O) = bi. By Lemma 4.1 of [10] we have that

bi(t) = ^ , i e S, t > 0.
Jo Poo(u)du

(Although [10] deals only with birth-death processes, the proof of Lemma 4.1 holds
for general Markov chains.) By conditioning on X, we see that bt(t) can also be
evaluated as

biit) = 2_jPjj(t)bj, i € 5, / > 0.
jeS

It follows immediately that b = {bi, i 6 5) is a subinvariant vector for P: in
particular,

y (t)bj =bi-— f PiO(u)du (< bi for t > 0), (3)
14Q JQ

where u0 = /0°°poo(u)du (< cxs). Hence, b is also subinvariant for Q in that
J2jes a'jbj < 0, / € 5 (see for example [16, Theorem 3.1]). We can be more precise:

LEMMA 1.
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PROOF. Let u, = fo°° pi0(u)du, so that bt = Uj/u0. Since Q is conservative, P
satisfies the backward equations

Py'(t) = Y^iikPviO, i,j € 5, t > 0, (4)
k<=S

and hence, by [1, Proposition 2.1.1], it also satisfies the backward integral equations;
in particular,

Pmit) = SiOe-g" + I e-q's V qtkPuaif - s)ds, i € S, t > 0.
Jo keS: k&

Integrating this from 0 to oo, we get

/

OO /•(» pt

SiOe-'1"dt+ / e""' Yl qikPko(t~s)dsdt
Jo Jo »•«=<;• k ^ i= — + e~q'S Y\ °ik \ pk0(u)duds = — + — V qikuk.

<?< Jo keS: k*i JO <?. Qi keS: t#i

Rearranging this gives the result.

Now define P(t) = (pt f(0, i,j € 5) and Q = (qv, ij e S) by

, i J e S , and *„ = %&-, ij € S. (5)
b

Clearly Q is a ^-matrix and P is a (standard) transition function; it is a (2-transition
function because p,/(0+) = gy. However, we would like Q to be conservative and
P to be honest. They are not; P is dishonest with J^jeSPij(t) = 6,-(/)/6,- (< 1 for
f > 0) and <2 is non-conservative with

_ JO, if i > 1,
ij~\-l/u0, if i = 0 .

(Recall that b0 = 1.) We can remedy this by appending, to the irreducible class 5, an
absorbing state 6 and extending the definition of P and Q to S := S U {9} as follows:

P«(0 = 8$j, j e 5, pi9(t) = 1 - - ^ - , i g 5, (6)

and

qei = 0 , ; g 5, qi6 = —, i g 5. (7)
Mo
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In this way Q will be conservative and P will be honest. P will remain a Q-transition
function since, for i e 5,

.. PtBif) .. 1 / , bi(t)\ 1 1 ['
lim = lim - I I I = lim - / piQ(u)du
no t no t \ bt ) biU0 no t Jo

1 8m

bj UQ no bi Mo

In order to evaluate limiting conditional distributions, we shall only draw on ana-
lytical properties of the dual transition function. However, we note that the dual has
a pleasing probabilistic interpretation. Let L be the last exit time from state 0, that is,

= sup{f > 0 : X,(co) = 0}, and define the dual process (X,, t > 0) by

- \Xt(co), i f f -
X,(co) = {

[9, iff >L(a>);
the dual process is thus the original process killed at time L. Since L is a co-optional
time with Pr(L > 0|X0 = /) = bh it follows, from [15, Theorem 2.1], that X, is
Markovian with transition function P and, if Xo = i, its initial distribution is given by

bi, if j - i,

l-bh if j = 9,

0, otherwise.

Notice that X, is absorbed with probability 1:

( bi (t) \
1 1 = 1. i € S.

bi /

3. The existence of limiting conditional distributions

By the definition of P, we see immediately that, for every /, j e S,

Pu(0

Thus, in view of (2), the existence or otherwise of a limiting conditional distribution
can be established via the dual transition function using the analogous results for
absorbing chains.

Here is one such result, which will be familiar to readers conversant with the
classical (Vere-Jones) theory of quasistationary distributions (see for example [1,
Proposition 5.2.10]):
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THEOREM 1. Suppose that P is k-positive recurrent and let m = (m,, j e S) be the
(essentially unique) k-invariant measure for P. If in is finite, that is, ^2ieSmi < oo,
then

In order to employ this result in the present context we will need to understand
the term "^.-invariant measure" and the classification "X-positive recurrent". We will
find that the dual and the original chain have the same classification and that there
is a one-to-one correspondence between their A-invariant measures. This makes the
application of Theorem 1 quite straightforward.

First, there always exists a number X > 0, called the decay parameter (of 5), with
the property that, for each pair of states i, j e 5,

l im— logpu(t) = X.
t-yoo t

Indeed, this is true of any transition function P and 5 could be any irreducible class.
Clearly, P and P have the same decay parameter (recall that 5 is an irreducible class
for both - it is the whole state space for P). P is then said to be exponentially ergodic if
k > 0. This is because py (t) = O(e~kl) for each i, j e S. Clearly P is exponentially
ergodic if and only if P is exponentially ergodic.

Next, P is k-transient or k-recurrent according as

/ ekl
Pij(t)dt

o

is finite or infinite for some (and then all) pairs i,j € S and, if P is k-recurrent,

it is k-positive recurrent or k-null recurrent according as lim^oo ex'py (t) is strictly
positive or equal to 0 for some (and then all) pairs i, j € 5. Clearly, then, P and P
have the same A-classification.

Finally, a collection of strictly positive numbers m = (Wj, j € 5) is called a
A-subinvariant measure for P if, for all t > 0,

miPij (J) < e-k'nij, j € S,
ieS

and ^.-invariant if, for all t > 0,

miPij (0 = e'^'nij, j e S.
ieS

Now if, for any given collection m = (nij, j e 5), we define m = (rhj, j e 5) by
rhj = nij bj, then it is easy to prove that m is A.-(sub)invariant for P if and only if m
is X-(sub)invariant for P .
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Thus, in the context of Theorem. 1, we have, in particular, that P is A,-positive
recurrent if and only if P is A.-positive recurrent and, that m is a A.-invariant measure
for P if and only if m is a A.-invariant measure for P. It is a remarkable fact that
the premise £\-6S ™i < °° h°lds in the present context whenever P is exponentially
ergodic:

LEMMA 2. Let m be a X-subinvariant measure for P. Then ^2jeS
mjbj < oo if

X > 0. Ifm is k-invariant, the converse is also true and ^ ,G S m,&, = mo/(uoX).

PROOF. Suppose that A. > 0. Then

ibi - — V ] mt I pi0(s) ds = — / V ] niipi0{s) ds
"o ^ Jo «o Jo 1 ^

< - [°° moe-"° ds = ^ < oo. (9)
«o Jo A

Now suppose that m is X-invariant and that ^,eSm,fe1 < oo. If we set «,-(*) =
/o Pio(^) ^•s»tnen from (3) we have

° jeS

Now, fix / > 0 and suppose that A. = 0. Then

ieS ° ieS ieS

= — v m, / pl

" o T ^ Jo

= — / y2/n/p1-

" 0

Since ^ i e S
 mibi < oo, this gives mot/uo = 0, which is a contradiction; hence A. > 0.

It also gives equality in (9) and hence £ i e 5 m,&, = m0/(u0X). This completes the
proof of Lemma 2.

Using Theorem 1, Lemma 2 and both (2) and (8), we arrive at the following result:
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THEOREM 2. Suppose that k > 0 and that P is k-positive recurrent. Let m =
(nij, j € S) be the essentially unique k-invariant measure for P. Then the limiting
conditional distribution exists: for each i e 5,

lim Pr(X, = j \X0 = i, Xt+S = Ofor some s > 0) = ™J j , , j e S.

One drawback of Theorem 2 is that the transition function is seldom at our disposal.
However, if we confine our attention to the minimal transition function we can obtain
our A.-invariant measure directly from Q. So, let F(t) = (fy(t), i,j € 5) be
the minimal (^-transition function, that is, the minimal solution to the backward
equations (4). If m = (jrij, j € 5) is a A.-invariant measure for F, then, by [20,
Proposition 2], m is also a X-invariant measure for Q; that is,

iiqy = —knij, j e 5.
ieS

The converse statement is more delicate. We always have (by Fatou's Lemma) that
m is X-subinvariant for F if m is A-invariant for Q, but under what conditions is m
a k-invariant measure for F? Certainly F being ^.-recurrent is a sufficient condition
(again see [20, Proposition 2]). Necessary and sufficient conditions are given by
Pollett [17,18] in terms of a "reverse" ^-matrix, but these are usually difficult to check.
Much simpler conditions hold for absorbing chains under the "natural" premise that
the X-invariant measure is finite (see [16] and [19]); the following is not the most
general statement available, but it will be enough for our purposes.

THEOREM 3. Suppose that k > 0 and let m = (w;, j e 5) be a k-invariant
measure for Q such that ^,ieS rhi < oo. Then m is a k-invariant measure for F if and
only if

Theorem 3 is stated for convenience in terms of F and Q. Of course, it holds for
any chain whose state space 5 consists of an irreducible class 5 and an absorbing
state 0 and whose absorption probabilities (a,, i € S) are strictly positive. For the
particular F and Q under consideration, namely those constructed from F and Q by
way of (5), (6) and (7), we have already noted that a, = 1 for every i e S. It is also
easy to prove, using say the backward integral recurrence ([1, expression (2.2.10)]),
that F is the minimal (^-transition function if and only if F is the minimal (2-transition
function. Further, if m is a ^.-invariant measure for Q then m is a ^.-invariant measure
for Q, where, as before, m, = m, bj and, since m will also be X-subinvariant for F it
follows, from Lemma 2, that ^2ieS mxbi < oo. Thus, we have the following result:
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THEOREM 4. Suppose that X > 0 and let m = (nij, j € 5) be a X-invariant
measure for Q. Then 53,-gs WI'^' < °° and m ' 5 a X-invariant measure for F if and
only if

whence if F is X-positive the limiting conditional distribution exists: for each i 6 S,

mibi
lim Pr(X, = j \X0 = i, Xl+S = 0 for some s > 0) = J ' , y € 5. (10)

Our programme leading to Theorems 2 and 4 has been one of applying results from
the theory of absorbing chains to the dual chain and then expressing the conditions
which emerge in terms of the original chain. Further results can be obtained in this
manner. For example, under asymptotic remoteness of 9 for F, that is, fi0{t) -*• 0 as
i ->• oo, a finite X-invariant measure exists for F if (and only if) X > 0. Hence, under
this condition, exponential ergodicity is enough to ensure that there exists a A-invariant
measure m such that ]C-6S «,-&,• < oo. However, the asymptotic remoteness condition,
once restated in terms of the original process, amounts to lim^oo bj(t)/bi = 1 and so,
since this will not usually be easy to check, it is perhaps better to deal directly with
F and appeal to say [1, Theorem 1.5.7]. Other results can be obtained by applying
Kesten's conditions [8] to Q and thus directly establish the existence of the limiting
conditional distribution (1); again there is no obvious benefit in expressing these
conditions in terms of Q.

The form of the dual ^-matrix allows us to obtain results for special processes. In
particular, since qiS > 0 only if i = 0, a direct jump to the absorbing state is possible
only from state 0. For example, the dual of an irreducible birth-death process is an
absorbing birth-death process. In the next section we shall obtain a result on the
existence of limiting conditional distributions for an irreducible birth-death process
by directly applying van Doom's results [22] to its dual.

4. Birth-death processes

Consider an irreducible birth-death process (Xt, t > 0) on 5 = {0, 1,. . .}. Its
^-matrix is given by

A.,, if j = i + l,

fjii, if J = 1 — 1,

0, otherwise,
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where A,,- > 0, i > 0, /A, > 0, i > 1 and /x0 = 0. Define series A and C by

oo i oo ,

A = V* and C = V
;=0 A l 7 r ' ,=0 A l 7 r

where n0 = 1 and, for / > 1,

Assume that C = oo (F honest) and that A < oo. Then F is the unique (2-transition
function. It is both irreducible and transient and the hitting probabilities are given by

1

The classical theory of birth-death processes involves constructing a sequence of
(orthogonal) polynomials ($,(•)> i € 5), where$,, : R —*• R, by </>o(̂ ) = 1. ^-o î(x) =
XQ—x and, for i > 1,

If we let /n, = ,̂</>,(X), / € S, where k is the decay parameter of 5, then m will be the
essentially unique X-invariant measure for Q.

The dual process is clearly an absorbing birth-death process with 5 an irreducible
class and 9 an absorbing state which is accessible from S; we get (in an obvious
notation):

kg = 0 and kj = kjbj+i/bi, i > 0,

Ao = ^o(l — ^i) and /Z, = ^ib^i/bi, i > 1,

ne = 1 and jf, = fc?7r,-, i > 0,

<&,(*) = 0 and 0,(*) = </>,(*)/*>„ i > 0

and m, = 7r,̂ ,(A.) = ft,7r,0,(A.), i > 0.

Since a, = 1, we may apply Theorem 4.1 of [22] to deduce that if k > 0 then

while if A = 0 then the limit is identically 0. Thus, using (2) and (8), we arrive at the
following result for an irreducible, transient birth-death process (c/ [ 10, Theorem 4.4]):

THEOREM 5. If k > 0 the limiting conditional distribution exists: for each i € S,

lim Pr(X, = j \X0 = i, Xl+S = 0 for some s > 0) = A M > W ) , j € 5 .
' -•oo A . 0 ( l — Ol )
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5. Quasistationary distributions

For irreducible Markov chains the existence of a limiting distribution corresponds to
the existence of a stationary distribution, or, equivalently, the chain is positive recurrent
if and only if its transition function admits a finite invariant measure (see for example
[1, Theorem 1.6 and Proposition 1.7]). There is no direct analogy which characterizes
limiting conditional distributions for absorbing chains. However, in cases where
the chain is absorbed with probability 1, a limiting conditional distribution is also
a quasistationary distribution in that the state probabilities at time t, conditional
on non-absorption by t, do not depend on t, but the converse is not generally true
(see [24]).

On this basis it is tempting to conjecture that if a limiting conditional distribution
r = (rj, j e S) exists in the sense of (1), then it is also a quasistationary distribution
in the following sense: for all t > 0 and j e S,

Pr(X, = ; \X,+S - 0 for some s > 0) = r),. (11)

However, this can never be true. We will establish that there is no initial distribution
for which the conditional probability in (11) does not depend on t. If we denote this
conditional probability by r,(t) and let v = (vj, j e S) be the initial distribution of
the chain, then, from (2), we have that

where pj (t) = J2ies
 v'Pu (')• ^ n letting t -> 0 we find that

This can be justified as follows. First, since py (t) < 1, we have pj (0+) = Vj by the
dominated convergence theorem. Next, using (3), we observe that the denominator
of (12) can be written as

ViPik(t)bk = 2_ vtbiit) = 2_^ Vibj / po(u)du
keS ies .eS ieS " ° •'O

and so its limit near 0 is Eies v'^>-
Therefore, if r = (r;, j e S) is to be a quasistationary distribution in the sense

of (11), we must have that
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and so we may write pj (t) = g(t)\Jj, where 0 < g(t) < 1. A standard argument (see,
for example, [16, proof of Proposition 3.1]) then shows that g(t) = e'*' for some
\x > 0. We have proved that, for some fx > 0, v is a /i-invariant measure for P:

VjPij(t) — e M Vj, j € S.
ieS

However, since P is honest it follows, from [16, Lemma 3.1], that when fi > 0 there
can be no finite /z-invariant measures for P. This is a contradiction and we deduce
that ri (t) must depend on t. Hence, there can be no quasistationary distribution in the
sense of (11).

6. Numerical issues

The natural way to evaluate the limiting conditional distribution (10), in situations
where it is known to exist, is to evaluate a suitably normalized ^.-invariant measure of
the g-matrix restricted to Sn = {0, 1 , . . . , n] in the hope that the resulting sequence
converges to the limiting conditional distribution as n gets large. However, one must
tread carefully.

Define a truncated g-matrix (n) Q by (n) Q = ( M q y , i, j e Sn), where {n)qi} = qi}

and let (n) F be the minimal (n) ^-transition function. The first thing to notice is that
Sn might not be irreducible for (n) F. However, we can always choose an increasing
sequence of finite, irreducible subsets of S which approximate 5 ([2, Lemma 1]). For
simplicity, we shall therefore suppose that Sn is irreducible.

Next, let Xn be the decay parameter of Sn. By [14] (see also [4]), all the eigenvalues
of («) Q have negative real parts and -kn is the one with maximal real part. Moreover,
it has multiplicity 1 and both the corresponding left and right eigenvectors have
positive entries. This left eigenvector, (n)m = ((„)»»,•, i € Sn), is of course the unique
kn -invariant measure for (n) Q:

(«)9i/ = -knwmr j eSn.

Thus, provided n is not too large, (n)w can be evaluated using any of the standard
techniques for evaluating eigenvectors, such as inverse iteration (see for example [5]).
The difficulty here is that whilst it is always true that kn { k ([2, Lemma 2]), the
sequence {(n)m) might not converge, in any sense, to a A-invariant measure for Q (see
[6, Example 5.1]). Another related issue is the normalization of (n)m. In view of (10),
it would be natural to define a sequence (n)r = ((n)A"(., i e Sn) by
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where ((„>£,, / € Sn) are the hitting probabilities of state 0 for the truncated chain,
and use this to approximate the limiting conditional distribution. (Note that the act of
truncating Q to Sn effectively means that states n + l,n + 2,... are aggregated into a
single absorbing state and so (nybi is the probability that the chain reaches 0 before it
is absorbed there.) However, evaluating the product Mmt in)bj may result in a loss of
precision if Mmt is large and (n)bi is small, or vice versa. This frequently occurs in
cases when (n)bi decays quickly as i increases, in which case (n)r may exhibit a mode
near i = 0 when none exists.

There are several ways to overcome this problem. Perhaps the most effective is to
first evaluate the hitting probabilities (bit i e 5), then calculate the dual ^-matrix and
work with this. Now only ratios of the 6,'s (usually of the form bj+l/bj, / ^ 0, with
|/| small) need to be evaluated. In some cases the hitting probabilities can be obtained
analytically (see below), but in most cases they must be estimated using a truncation
procedure: a procedure which always works. First observe that, under the conditions
we have imposed, the hitting probabilities form the unique, bounded solution to

jeS

(see [1, page 298]). It is therefore natural to consider the corresponding system of
equations for the truncated chain:

jeS.

Indeed, it is easy to see that the hitting probabilities of the truncated chain form the
unique solution to (13). More importantly, it can be shown that, for each i € 5,
(n)bj f b,as n —> oo ([6, Theorem 5.6]) and thus we have an effective means of
estimating (fe,, i e S).

Once Q is determined, we can approximate the limiting conditional distribution

using truncations of Q. Define (n) Q by (n) Q - ( w q t j , i,j e Sn), where wqtj = qi}

and let Mm = ((n)m(, i € Sn) be the unique A.n-invariant measure for (n) Q:

Note that A.n is also the decay parameter of Sn for the truncated dual chain; this
is because bn^q.. = (n^q^bj, i,j e Sn and hence (in an obvious notation for the
minimal transition functions) bt („>/,-, (0 = wf ui.t)bj, using standard methods (see
[18, proof of Lemma 3.3]). Note also that the minimal (n) <2-chain has two absorbing
states: the absorbing state 0, inherited from Q and the one resulting from truncation,
this being the aggregation of states n + l,n + 2 We may now redefine the
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sequence (n)r = ((n)r,., i € Sn) by

and use this to approximate the limiting conditional distribution. However, although
there is a growing collection of results, covering a variety of circumstances, which
deal with invariant measures (see [7,21]), there are presently few results on truncation
procedures for estimating X-invariant measures. One important exception is the class
of Markov chains which are skip-free to the left; these include birth-death processes
and branching processes. For these chains it is possible to show, using the methods of
Kijima [9], that (n)r converges weakly to the normalized ^.-invariant measure for Q,
this being the limiting conditional distribution (10) (c/ [6, Theorem 5.7]).

7. A density-dependent population model

To illustrate our results we shall use the following population model. Let / :
[0, oo) -*• [0, oo), V > 0 and 0 < a < 1 and consider the birth-death process
over 5 = {0, 1, . . .} obtained by setting k0 = q0 and, for n > 1, A.n = aqn and
fMn = (1 — a)qn, where qn = Vf(n/V). We will assume tha t / (« /V) > 0 for
all n > 0, so that the process is irreducible and that a > 1/2, a condition which
guarantees that the process is transient. Since the jump chain is a simple random
walk with positive drift, the hitting probabilities are given by bt•=• p \ i > 0, where
p = \/ct-\.

We have defined a density-dependent Markov chain (see for example Kurtz [11-
13]) with constant jump probabilities. If X, is the number in the population at time t,
we can think of V as the area of the habitat and hence X,/ V as being the population
density. It can be shown, using the methods of Kurtz [11], that as V becomes large the
density process (x,(V), t > 0), where ;c,(V) = X,/ V, becomes more "deterministic": if
x^ ->• x0, then x,(V) converges (uniformly in probability over finite time intervals) to
the unique solution (x(t), t > 0) of the differential equation

^ F(x), JC(O)=JCO, (14)
dt

where F(x) = af (x) — (1 — a ) / (x) — (2a — 1)/ (x). For example, if we choose /
to be

then (14) has a semi-stable equilibrium point at n (see Figure 2). Trajectories of (14)
with x (0) < n approach n as t —> oo; otherwise they diverge. We chose an irrational

https://doi.org/10.1017/S0334270000011735 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011735


[15] Quasistationarity of Markov chains with positive drift 437

10000 12000

FIGURE 2. Solutions to (14) with / (x) = (n - x)2/{n + xf and with boundary conditions x(0) < n,
x(0) = n andx(0) > n (a = 0.501).
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FIGURE 3. Limiting conditional distribution for the density process with / (x) = (n — x)2/(n + x)3,
V = 5 and a = 0.501.
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6 8 10 12 14 16 18
Time

FIGURE 4. Simulation of the density process with / (*) = {n — x)2(2n — x)2/(ji + JC)5, V = 5 and
a =0.501.

number jr as our equilibrium point because then qn > 0, no matter what the value of
V and, in particular, so the equilibrium point would not be an absorbing state for the
density process. We also chose / to satisfy f (x) —> 0 as A: —>• oo in order that qn

would be small when n is large.
Figure 1 (above) shows a sample path of the density process with V = 5 and

a = 0.501, starting at 0 and lasting for 7000 events. Notice that the density process
appears to fluctuate, in turn, about each of the three deterministic trajectories illustrated
in Figure 2, 'switching' from one to another when in close proximity. The limiting
conditional distribution is useful in modelling these fluctuations. Figure 3 shows the
(approximate) limiting conditional distribution of the density process evaluated using
the same parameter values V = 5 and a = 0.501.

The limiting conditional distribution was estimated using the methods described in
Section 6. The dual q-matrix was constructed using the hitting probabilities bj — p',
i > 0 and then a truncation procedure was applied. Since the dual is a birth-death
process, (n)r is guaranteed to converge weakly to the limiting conditional distribution
as n gets large. The particular distribution shown in Figure 3 was evaluated using
a truncation size of n = 30 (corresponding to a maximum population density of
n/ V = 6); it was plotted only for values of the density between 1 and 5.

By varying / , our population model can incorporate a range of behaviours. For
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FIGURE5. Limiting conditional distribution for the density process with/ (x) = (JT— x)2(2n—x)2/(n +
x)5, V = 5anda = 0.501.
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example, if we had chosen / to be

/(*) =

so that, as before, / (n/ V) > 0 for all n > 0 and / (x) -*• 0 as x -*• oo, we would
get two equilibria for the limiting deterministic model, one at n and the other at In.
A sample path of the density process for this model is illustrated in Figure 4 using the
same parameter values as used previously.

Notice that the process fluctuates between the deterministic equilibria before even-
tually drifting to oo. The approximate limiting conditional distribution illustrated in
Figure 5 was evaluated using a truncation size of n = 50 and plotted for values of the
density between 2 and 8.
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